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Abstract: The increasingly wide usage of smart infrastructure and location-aware terminals has helped
increase the availability of trajectory data with rich spatiotemporal information. The development of
data mining and analysis methods has allowed researchers to use these trajectory datasets to identify
urban reality (e.g., citizens’ collective behavior) in order to solve urban problems in transportation,
environment, public security, etc. However, existing studies in this field have been relatively
isolated, and an integrated and comprehensive review is lacking the problems that have been tackled,
methods that have been tested, and services that have been generated from existing research. In this
paper, we first discuss the relationships among the prevailing trajectory mining methods and then,
classify the applications of trajectory data into three major groups: social dynamics, traffic dynamics,
and operational dynamics. Finally, we briefly discuss the services that can be developed from studies
in this field. Practical implications are also delivered for participants in trajectory data mining. With a
focus on relevance and association, our review is aimed at inspiring researchers to identify gaps
among tested methods and guiding data analysts and planners to select the most suitable methods
for specific problems.
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1. Introduction

The development of information and communications technology (ICT) and the proliferation of
smart cities have generated tremendous volumes of data comprising specific geographic locations
and corresponding time stamps [1]. The Internet of Things (IoT) comprising web-enabled smart
devices using built-in sensors [2], radiofrequency identification (RFID), automated fare collection (AFC)
systems, the Global Positioning System (GPS), Global System for Mobile Communications (GSM)
beacons, and social networks provide abundant trajectory information for researchers to observe urban
dynamics on a round-the-clock basis [3]. These trajectory datasets have demonstrated significant
academic and practical value; they have been mined and analyzed by researchers to develop solutions
for a wide range of emerging but important research questions in fields such as transportation,
urban planning, abnormity and violation detection, and environmental protection [3–6].

Diverse methods have been utilized for analysis; they can be classified as statistical, visual,
computational, or a combination of these [3], and they have been tested in many related planning,
transportation or geographical studies. However, mining methods are continuously being developed
as new and diverse application issues arise [3]. Hence, an integrated survey is urgently needed on the
application issues regarding trajectory data and the corresponding mining methods applicable to these
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issues. Such a survey will help other researchers identify problems, discover methodological gaps,
and further develop new methodologies more rationally and efficiently.

The core objective of this paper is to review the methods and applications of trajectory data
mining, as well as services that harness these methods to specific urban issues. The rest of the paper is
structured as follows. In Section 2, a survey of similar literature reviews focusing on trajectory data
mining is presented, which is used for developing research questions. Section 3 briefly elaborates
the methodology applied for conducting this research. Section 4 offers an overview on the concept
of trajectory data and its classifications. Section 5 discusses mining methods for trajectory data,
while Section 6 presents potential applications of these methods as well as the problem-solution
mapping relationship. Section 7 reviews the services that are supported by this mapping relationship.
Section 8 presents a series of open discussions regarding the practical implications of trajectory data
mining. Section 9 concludes this review and presents an outlook for future research.

2. Research Questions

Data mining, also popularly referred to as “knowledge discovery” [7,8], is an important process
that extracts useful information from huge datasets. Since the emergence of data mining, its methods
and applications have been widely investigated in the general data mining domain, as indicated in
numerous literature reviews from early stages. For example, surveys of data mining methods for classic
relational and transactional data can be found in Fayyad et al. [7] and Han et al. [9], which investigate
the general concepts of data mining, and the fundamental techniques for preprocessing, clustering,
classification, outlier identification, etc. Beyond this, some scholars (e.g., Mennis [10] and Miller [11])
reviewed theoretical and applied research in spatial and geographic data mining. Such research
essentially derives from those in the general data mining domain, with methods specifically adapted
to address spatial peculiarities, such as spatial correlation rules and spatial–non-spatial association.
These mining tasks present certain rudiments for movement data research, but the reviews fail to
consider the temporal dimension that is immanent in trajectory data.

Review papers that focus solely on trajectory data mining rarely follow a complete
application-driven framework. Kong et al. [12] categorized trajectory data into explicit trajectory
data and implicit trajectory data according to the degree of data structured, and introduced the
“applications” of trajectory data from travel behavior, travel patterns, and other aspects. Their review
contributed to the classification of multi-source heterogeneous trajectory data, but confused trajectory
data mining methods with application issues, as well as practical services. Zheng [3] developed a
profound survey on the techniques concerned with different stages of trajectory data mining, following
a road map from the derivation of trajectories, to the preprocessing and management of trajectory data,
and to the mining tasks such as trajectory pattern mining, trajectory classification, and abnormality
detection. This review technically explored the approaches to adapt the existing methods in the general
data mining domain to deal with emerging trajectory data, yet lacked the association between practical
problems and methodological bases. For this reason, it contributes more to the community of data
science than to a broad range of disciplines.

Andrienko et al. [13] developed a taxonomy describing the possible types of information that
could be extracted from trajectory data and the respective types of analytical tasks in a systematic
way. This taxonomy considers three fundamental sets, i.e., space, time, and objects, and distinguishes
tasks according to the relations among the elements involved in each set. Andrienko et al. [13] also
discriminated generic classes of analytical techniques, including visualization, data transformation,
computational analysis methods, etc., and linked the types of tasks to the classes of techniques that
could support fulfilling them. This work helps to match generic approaches with specific tasks in the
field of trajectory data mining. However, it merely focuses on the methods developed from GIS-based
visual analytics. By contrast, the contribution of our work breaks through this limitation, and moves
into a broader field of computational analysis.
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From a pure application perspective, Castro et al. [6] surveyed the existing research on mining
taxi GPS traces, and grouped the surveyed work into three categories: social dynamics, which studies
the collective behavior or movement patterns of a city’s pollution; traffic dynamics, which studies the
resulting flow of the population through the city’s road network; operational dynamics, which learns
from taxi drivers’ knowledge of the city. This categorization method is more intuitionistic than
Andrienko et al. [13] and has been widely referenced by researchers in the field of taxi trajectory mining,
for example in [14–16]. However, Castro et al. [6] only considered the application of taxi trajectories.
Besides, the matching relationship between fundamental mining methods and practical applications
were not clearly elaborated. Our paper extends their work by considering beyond a specific kind
of trajectory, meanwhile focusing more on the application issues in each category as well as their
corresponding solutions.

Based on the review of similar research, the following gaps are identified. First, the exponential
growth of ICT has enriched the connotation of trajectory data in recent decades, while some existing
review papers are limited to specific kinds of trajectory data, e.g., taxi GPS traces in Castro et al. [6] or
photo streams with spatiotemporal tags in Andrienko et al. [13]. In order to acquire a well-rounded
understanding towards trajectory data mining, the first research question has been outlined as:
What kinds of trajectory data can be utilized nowadays? Following this prerequisite, the major
questions forming this application-driven research are delivered naturally: Which mining methods
are applied or adapted to deal with trajectory data? What are the up-to-date application issues in
trajectory data mining? What are the practical services that can be developed from studies in this
field? Besides these obvious questions, there is a core thought that runs through our entire research
and distinguishes our research from previous reviews: What is the matching relationship between the
mining methods, the application issues that can be solved by these methods, and the practical services
that can be derived from these applications?

3. Methodology

In order to answer the research questions proposed above, a systematic literature review (SLR) is
performed “with respect to the planning for literature review, the design of search string, sources to be
searched, publication inclusion and exclusion criteria, publication quality assessment and the data
extraction process” [17]. Following the methodology indicated by Bach et al. [18] and Wahono [19],
our research procedure is designed as shown in Figure 1. Since the major sections of our work
follow a narrative workflow from trajectory mining methods to applications of these methods and to
practical services derived from these applications, the literature for each section may be scattered and
independent from each other. Therefore, unlike Bach et al. [18], which focuses on the applications of
textual mining specifically in the financial sector, the literature reviewed in our research is evaluated
by manual judgement, rather than the bibliometric software they indicated. The relevance between the
literature in each section is also established through manual analysis.

Based on the analysis of existing literature reviews that are concerned with trajectory mining as
presented above, the need for a systematic review and its research questions are identified (Step 1).
Following the established review protocol in Moher et al. [20] (Step 2), the materials for this research
are acquired by searching publications using the search string “trajectory data mining”, for the period
from 2004, in the Web of Science Core Collection database (Step 3), and then, are selected according to
the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standard [20] for
writing SLRs to form our review list (Step 4). Useful information is manually extracted from the selected
literature (Step 5) and assigned to each major section that corresponds to research questions (Step 6).
The relevance between the information assigned to each major section is established based on manual
analysis (Step 7), so as to interpret the matching relationship between trajectory mining methods,
application issues, and practical services (Step 8). During the reviewing process, additional literature
is tracked and included by snowballing approaches [20], in order to fulfil our research needs. Thus,
the reference list of this paper is longer than the original review list generated by PRISMA.
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Figure 1. Research steps for the literature review.

4. Trajectory Data

What does the concept of a “trajectory” mean in the field of data mining? According to Zheng
et al. [3,21], it is a trace generated by a moving object within a certain spatiotemporal context and is
generally represented by a series of chronologically ordered points. In other words, trajectory data are
essentially a sequence of spatial points ordered by timestamps and generally carry some descriptive
information in addition to basic spatiotemporal messages. Therefore, a piece of trajectory data can be
described as TR = <P1, P2, . . . , Pn>, where Pn = (IDn, Xn, Yn, Tn, An) is the nth trajectory point; IDn is
the identifier; (Xn, Yn) is the location of Pn in the specific coordinate system (i.e., natural geographic
coordinate system or self-built coordinate system); Tn is the timestamp of the point (i.e., the moment
when Pn is event-triggered [22] or regularly recorded); An is potentially a list of additional descriptive
properties for Pn (e.g., instantaneous speed, running direction).

Different categories of trajectory data have been emerging and are being applied with the
development of ICT. Renso et al. (2013) [23] distinguished GPS, GSM, and geosocial networks as
significant carriers of trajectory data. Soon afterwards, Pelekis and Theodoris (2014) [24] enriched
trajectory data sources with RFID and Wi-Fi. These data carriers represent currently existing types of
trajectory data, which can be roughly categorized as explicit or implicit [12], as illustrated in Figure 2.
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Figure 2. Trajectory data categories [12].

4.1. Explicit Trajectory Data

In this paper, explicit trajectory data are defined as a type of well-structured data which directly
provide time and location information and have strong spatiotemporal continuity. They are regularly
collected by terminal equipment at high (and usually fixed) frequencies, with no need to be triggered
by any specific events. For example, trajectory data reported from GPS devices equipped in taxis are
an uninterrupted series of spatiotemporal points recorded at fixed time intervals (e.g., 30 s intervals in
most Chinese cities [25]). This kind of data is well-structured and contains relatively precise and direct
spatiotemporal information along with other data fields, such as data fields indicating altitude, speed,
direction, vehicle status, etc. [26].

In such cases, the above trajectory point model can be further evolved into a trajectory segment
model: TR = <SubTR1, SubTR2, . . . , SubTRn>, where SubTR = (IDsub, trP1, trP2) is the sub-trajectory
(i.e., segment) that forms the complete trajectory; IDsub is the unique identity of the segment; trP1 and
trP2 are the adjacent chronologically ordered trajectory points that delineate the segment. The trajectory
segment can be obtained by finding the linear difference between trP1 and trP2, while the complete
trajectory consists of n such segments connected end to end in chronological order.

4.2. Implicit Trajectory Data

Apart from explicit trajectory data, there exist such data carrying spatial and temporal information.
Although they are not the trajectory data we usually think of, trajectory information can be extracted
from them after basic data processing operations. This paper refers to such data that do not directly
represent trajectory information as implicit trajectory data. In contrast to explicit trajectory data,
implicit trajectory data have no definite continuity in time and space. In other words, they are triggered
by an event rather than passively recorded. Such an event may refer to a bus or subway check-in,
social network sign-in, sensor activation, signal tower reception, etc.; points with spatiotemporal
information will not be recorded unless the corresponding event happens.

Unlike explicit trajectory data, which are usually recorded in a structured database format
(e.g., Oracle DMP), the storage formats of implicit trajectory data are diverse and unstructured
(e.g., text, image, audio, video) because of the variety in data sources and data collectors [21].
Although these forms of data present different properties, they have been applied to deal with similar
or correlative issues among common mining methodologies [23,24].

4.2.1. Sensor-Based Trajectory Data

Sensor-based trajectory data (e.g., active fiber composite (AFC) and transit smartcard data [27])
are recorded when an object passes through a sensor. These sensors are mounted at a series of
fixed positions and can only be activated at very close distances. Thus, sensor-based data have
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high spatiotemporal accuracy but weak spatiotemporal continuity, which is limited by the number
of sensors.

4.2.2. Signal-Based Trajectory Data

The collection of signal-based trajectory data requires multiple signal projectors (e.g., cell towers,
Wi-Fi transmitters, Bluetooth connectors) to be distributed in advance. GSM-based data consist
of chronologically ordered sequences of cell identifiers along which the moving object passes.
Wi-Fi and Bluetooth-based data comprise temporal sequences of identifiers of access points that
have communicated with the moving object [28]. This type of data is more complex than the previous
ones and generally contains the device ID, connection/disconnection timestamp, signal strength, etc.
Preprocessing is needed to extract trajectory information [29].

4.2.3. Web-Based Trajectory Data

Web-based trajectory data are contained in a geolocalized social network. Recent years have
witnessed the rise of social sites/apps (e.g., Twitter, Facebook, Weibo) equipped with geotag functions.
In addition to spatiotemporal information, such social network services also carry semantic information
regarding specific events, human activities, emergencies, etc. [30]. To some extent, web-based trajectory
data are more informative than any other categories because useful knowledge may be extracted from
the additional semantic information they are carrying, but they are also more implicit due to the noise
they contain and semantic messages that are difficult to process.

4.3. Supplementary Data

In most studies, trajectory data do not function alone; they are projected into built environments
for better analysis. Such built environment information (e.g., points of interest (POIs), road network,
terrain distribution, urban structure), which is usually integrated with trajectory data in data mining
applications, is regarded as supplementary data. This kind of data generally exists on or can be
extracted [31] from comprehensive digital map platforms.

POI is a major data category that represents the reality of built environments. It literally refers to a
specific point that someone finds useful or interesting [32]; POI data contain information for almost all
key nodes within an urban area (e.g., locations of buildings concerned with retail, catering, education;
administration and locations of facilities related to transportation, communication, and security) [32,33].
The supplementary information from POI data can be used to develop a more reasonable and rational
explanation for patterns and behavior detected in trajectories.

Other supplementary data are mainly related to the geographical context of trajectories [34]
(e.g., road network, elevation system). In fact, it is quite a natural perception and practice to connect
trajectory data with such geographic frameworks because geography is one of the two most remarkable
attributes of trajectories (the other is time) [35]. Existing online map platforms (e.g., open-source
platforms like OpenStreetMap (OSM) and commercial platforms like Google Map and Baidu Map) can
serve as sources for these supplementary datasets [36–38].

5. Trajectory Data Mining Methods

What does trajectory data mining mean? Similar to the common understanding of general data
mining, trajectory data mining means to discover interesting knowledge (e.g., movement patterns,
travel behavior, traffic abnormality) from trajectory datasets. Generally, trajectory data mining has two
major tasks: description and prediction [3,21]. Description is to interpret human-readable information
from massive volumes of trajectories, while prediction is to discover uncharted or prospective values
by analyzing existing variables in datasets. These two basic tasks are performed for all applications
and services that are related to trajectory data.

With regard to methods for trajectory data mining, this paper focuses more on the methodology
or principles rather than listing all specific technical procedures that have been adopted in previous
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research. We concentrated only on the prevalent methods and tried to ascertain the connections between
them. We divided these methods into two categories: first-tier and second-tier methods. The former
sorts trajectories directly based on their attributes, while the latter usually contains sequences of first-tier
methods, sometimes together with non-mining methods (e.g., statistical or topological), to study the
spatiotemporal permutation of trajectories.

5.1. First-Tier Trajectory Data Mining Methods

As noted above, first-tier methods classify trajectories directly from cleansed datasets based on
their inherent properties. These methods are basic, yet most important in the field of trajectory data
mining. The application of first-tier methods is usually followed by a descriptive interpretation of the
results, and on many occasions, functions as the preparation for subsequent extended analysis, such as
with second-tier methods. Data cleansing is a preprocessing task before first-tier data mining, but we
will not discuss it in detail here. Detailed information regarding data cleansing can be found in [39–41].
In this article, all of the methods discussed are assumed to be based on cleansed datasets.

5.1.1. Clusterings

Clustering is a first-tier trajectory data mining method. It is an unsupervised learning process that
reveals similarities within a trajectory dataset by dividing trajectories into categories (i.e., clusters)
according to their properties to indicate homogeneity and heterogeneity [42]. In other words,
the movement characteristics of trajectories should be similar within a cluster, while different between
clusters. A general clustering approach is to represent each trajectory with a feature vector, and then,
measure the similarity between trajectories by calculating the distance between their feature vectors [3].
However, it is not easy to generate feature vectors with a uniform length for different trajectories,
since trajectories may vary significantly in terms of length, shape, sampling frequency, point quantity,
point order, and many other properties. Besides, it is also difficult to encode the sequential properties
of points in a trajectory into its feature vector.

Considering the challenges mentioned above, a series of technical explorations have been done.
On the one hand, there are widely accepted clustering algorithms for trajectories which are essentially
extensions of classical clustering algorithms [43–45] with specific customization on the similarity
(or distance) functions to determine cluster membership. A detailed discussion on how these functions
are applied can be found in Rokach [45]. Generally, depending on the goal of analysis, similarity
(or distance) functions such as similar destination, similar origin, similar direction, or others are utilized
to determine which trajectories belong to the same cluster.

On the other hand, there have been efforts to develop trajectory-specific clustering approaches.
Many of them are accommodating statistical or probabilistic models for measuring the characteristics
of trajectories. For instance, Gaffney and Smyth [46] and Cadez et al. [47] proposed mixed regression
model-based approaches to aggregate trajectories likely to be generated by a common representative
trajectory with Gaussian noise. The Expectation Maximization (EM) algorithm they proposed clusters
trajectories with respect to the overall distance between two entire trajectories. Similarly, Alon et al. [48]
abstracted trajectories as sequences of position transitions and utilized a Hidden Markov model (HMM)
that best fit the trajectories to select cluster members.

The approaches proposed by Gaffney and Smyth [46], Cadez et al. [47], and Alon et al. [48] are
applicable to entire trajectories. In other words, they group similar trajectories as a whole. However,
in reality, moving objects rarely move together for an entire path. Besides, discovering common
sub-trajectories is also useful in many applications, especially when there are regions of special interest
for analysis. To this end, Lee et al. [49] proposed a partition-and-group framework, which partitions
an entire trajectory into a set of line segments, and groups similar line segments into a cluster using the
Trajectory Hausdorff Distance [50]. A representative trajectory describing the overall movement of the
trajectory partitions that belong to a cluster is identified by sweeping a vertical line across the line
segments in the direction of the major axis of a cluster.
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The clustering approaches mentioned previously are developed for static datasets. They are not
suitable for incremental clustering, when trajectory data are received incrementally, e.g., continuous new
points reported by a GPS system. Li et al. [51] proposed an incremental clustering framework for
trajectories to deal with this situation. The framework has two components: online micro-clustering
maintenance and offline macro-clustering creation. For the online part, micro-clusters are incrementally
updated when new data are added; for the offline part, when the user requests current clustering
results, macro-clustering is performed on the sets of micro-clusters rather than all trajectories over
the entire time span. This approach is able to save the computational cost and the storage of received
trajectories when processing trajectory data streams.

All the methods discussed in this section are oriented towards trajectories in a free spatial context,
i.e., with no road network constraints. Kharrat et al. [52] proposed the NETSCAN algorithm that applies
specifically to trajectories that lie on a predefined network. NETSCAN is essentially an extension of
classic DBSCAN that first computes dense paths in the network and then, clusters the sub-trajectories
similar to the dense paths. Apart from this, there are few studies focused on trajectory clustering in
a road network setting, because this task can be easily solved by the combination of map matching
and regular trajectory clustering algorithms. Map matching is the process to project trajectories onto a
corresponding road network, and meanwhile, attaching road network information to the trajectories.
Map matching approaches can be found, for example, in Miwa et al. [53] and Quddus et al. [54].

5.1.2. Classification

Classification differs from clustering because it is a supervised or partially supervised learning
process [55]. The classification classes need to be predefined, and a training set of objects needs to be
prelabeled with the class that they belong to. For example, a typical case of trajectory classification
may be to label each trajectory from a large set with its means of transportation based on a small set of
trajectories that have already been labeled. This small set is the training set. Thus, the labeling process
(i.e., assigning objects to predefined classes based on the means of transportation) is classification.

A typical trajectory classification algorithm contains two steps. First, it needs to extract
a set of discriminative features that can be used to train an existing standard classification
model (e.g., logistic regression [56], support vector machine (SVM) [57], decision trees [58],
nearest neighbors [59]). This step is to find the trajectory properties that are best suited to
defining the various classes of trajectories. Trajectories have many potential useful properties
(e.g., transportation means, average speed, time duration, trajectory length), but their discriminative
power depends on the type of classes expected. For example, if the taxi fare is a class type, the trajectory
length has a stronger discriminative power than the time duration because taxis charge according to
mileage rather than time. The second step is to select a proper standard classification model, and then,
apply it to the extracted discriminative features.

Several comparative studies have been performed on standard classification models and their
corresponding classical classification algorithms [60]. Most of these classical methods can be directly
applied to trajectory classification. For example, Bolbol et al. [61] utilized SVMs for transportation mode
classification. They first evaluated the discriminative power of several features for six transportation
modes (i.e., bus, subway, train, private car, bicycle, and walking) through statistical methods,
and identified speed and acceleration as the most discriminative. Second, they applied a standard
SVM algorithm to these features to classify trajectory segments. Zheng et al. [62] did similar work,
except that that they applied a decision tree-based inference model to the discriminative features for
transportation mode classification.

In many situations, trajectories are classified following some preprocessing (e.g., segmentation,
clustering, statistical analysis) that prepares the features needed for classification [62–64]. For example,
Zheng et al. [62] proposed a change point-based segmentation method to partition each complete
trajectory into separate segments of different transportation modes; they identified a set of features
not affected by differing traffic conditions that could be fed to the inference model. Lee et al. [63]
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performed trajectory clustering to extract regional and sub-trajectory features for an SVM-based
classification model.

5.2. Second-Tier Trajectory Data Mining Methods

The first-tier methods presented above are generally used to categorize trajectories. In many
cases, they are then followed by second-tier trajectory mining methods, which are used to analyze the
spatiotemporal characteristics of the individual trajectories within or between categories that were
identified by the first-tier methods. In other words, this is a subsequent processing of the results from
the first-tier processing. Many types of methods are available for this stage but the three most versatile
are pattern mining, outlier identification, and prediction.

5.2.1. Pattern Mining

Pattern mining concentrates on discovering interesting, significant, or unexpected patterns that
exist in databases. It is one of the most fundamental tasks of data mining [65]. Various patterns can be
mined (e.g., frequent items, sequential rules, periodic patterns, subgraphs, associations) corresponding
to various algorithms for pattern mining (e.g., frequent pattern (FP) growth, a priori, ECLAT) [66–68].
These algorithms can be categorized into three types of trajectory pattern mining: periodic, frequent,
and collective.

A periodic pattern refers to trajectories periodically executed by a moving object [69–71].
For example, it may reflect the regular movement patterns from office staff, which are rather similar each
working day. In contrast, a frequent pattern is not focused on such temporally repetitive phenomena
of individuals but refers to a specific sequence of places that have been visited by a certain number of
moving objects with no specific temporal constraints [66]. A typical example of a frequent pattern is a
park itinerary, which is followed by most tourists. A collective pattern is a combination of these two and
is performed by groups sharing similar mobility interests both temporally and spatially. In other words,
these moving objects travel together [70]. Periodic pattern mining utilizes location sequences as mining
criteria. Early-stage approaches [71,72] require the time period to be a specific input in the mining
algorithm. They cluster the sequences of locations in each preset time branch and then, iteratively
connect the detected frequent sequences to obtain the integral pattern. However, such work to preset
the time period involves many uncertainties. For example, the division of time intervals will definitely
affect the clustering output, but these effects are difficult to measure. Meanwhile, different time
periods may occur as the discovery progresses, but these algorithms are not equipped with dynamic
adjustment capabilities. Li et al. [73] developed the Periodica algorithm to overcome these problems
by bypassing the time period presetting. Their algorithm selects regions where more trajectory
points exist as the reference spots and then, automatically detects the periods in each spot through
a combination of Fourier transformation and autocorrelation. These periods are used to discover
periodic patterns from location sequences between reference spots. Hierarchy-based clustering with a
probability-based distance measurement model is performed on these location sequences. Compared to
previous algorithms, Periodica better matches realworld scenarios because the period-setting criteria
are unpredictable in principle until the real movement sequences are considered [74].

Frequent pattern mining focuses on the collective routes or paths that have been frequently traveled
by multiple moving objects [66]. Thus, such patterns can be discovered simply by using the spatial
features of trajectories [75] (i.e., only the sequences of spatial locations need to be considered).
Typical examples include frequent spatiotemporal sequential patterns (FSSP) mining [76] and
generalized sequential patterns (GSP) mining [77]. However, some have considered frequent patterns
not only as spatial elements but also as temporal elements along spatial trajectories. For example,
Giannotti et al. [78,79] defined the T-pattern as an assemblage of individual trajectories sharing the
common attribute of visiting the same sequence of locations with similar transition times. There are
roughly two scenarios for frequent patterns, as illustrated in Figure 3. For Figure 3a, frequent pattern
mining can be based on the clustering methods discussed in Section 5.1.1 or simply by applying
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statistical analysis [76,77]. For Figure 3b, however, frequent patterns cannot be discovered within
one step. Thus, a two-step approach can be used [79,80], which consists of detecting significant
regions outside the trajectories and then, performing sequence mining in these regions as a temporally
annotated sequence.

Figure 3. Frequent patterns based on (a) spatial sequences and (b) spatiotemporal sequences.

Collective pattern mining (i.e., group pattern mining) essentially finds movement patterns
that have been performed by groups with similar mobility interests [70]; such interests require
not only spatial proximity but also time coordination. Considering the spatiotemporal closeness,
internal structures, and external performances, group patterns can be roughly categorized into three
types, as illustrated in Figure 4: flock, convoy, and swarm [3]. A flock [81,82] refers to a group of at
least o objects that move together for at least t successive timestamps; the positions where these moving
objects remain on each time slice can be observed in a disk with a radius r. Thus, such patterns can be
described with three parameters: o, t, and r. A convoy [83,84] is similar to a flock except for its relaxed
requirements for the disk shape. A convoy pattern allows its moving objects to form any disk shape on
each time slice as long as the positions can be clustered, usually by density-based clustering with a
maximum neighborhood distance d and minimum object number o [83]. A swarm further relaxes the
requirements for a convoy. The timestamps do not need to be successive in this situation; in other
words, there does not need to be at least o positions that can be clustered on every time slice [85].
A swarm shares similar parameters to the other two, including o, t, and d. However, it also includes
the swarm parameter k, which indicates the minimum number of time slices on which the collective
patterns can be detected. For example, Figure 4c shows a swarm situation where o = 4, t = 3, and k = 2.
It is neither a flock nor a convoy because object O4 breaks away from the group at timestamp t2. It can
be considered a swarm pattern because all four objects can be clustered into one group at timestamps
t1 and t3. Density-based clustering is the most common method for collective pattern mining, whether
it is for flocks [86], convoys [83,87], or swarms [88,89]. In most cases, clustering is the first-tier step,
while parameters are checked next to determine which category a collective pattern belongs to.

Figure 4. Collective pattern categories: (a) flock, (b) convoy, and (c) swarm [3]. Each image contains
three timestamps (i.e., t1, t2, t3) and four moving objects (i.e., O1, O2, O3, O4).
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5.2.2. Outlier Identification

In data mining, outlier identification (i.e., outlier or anomaly detection) involves the detection of
rare items, events, or observations that arouse suspicion by differing significantly from the majority of
the dataset. Outliers can also be referred to as anomalies, novelties, noise, deviations, and exceptions [90].
For trajectory data, outlier detection involves discriminating trajectories that are barely consistent with
the common characteristics of the majority of trajectories [91]. To some extent, it is complementary to
the above trajectory mining methods; these methods focus on the homogeneity of the data, while outlier
identification is more concerned with the heterogeneity.

Thanks to this complementary relationship, a major methodology for outlier detection is to
concentrate on the byproducts of trajectory clustering. Theoretically, trajectories that do not belong to
any cluster should be outliers. However, a significant disadvantage of this indirect approach is that it
cannot guarantee sufficient differentiation between byproducts. In other words, these byproducts may
also show some similarities, although these similarities may not satisfy the clustering criteria of the
previous step. Thus, further detection should be performed to distinguish real outliers among these
byproducts. This kind of work may fall into a trap of continuous looping.

There have been some attempts at outlier identification from a more direct perspective.
One approach is to mine all trajectories for outliers [92,93]. In such cases, each complete trajectory is
abstracted to a set of key features (e.g., the spatial coordinates of the start and end points, the values
(minimum, maximum, mean) of the directional vectors and velocities). Then, distance-based algorithms,
which are usually equipped with a distance function defined as the weighted sum of the differences of
the abstracted features [93], are applied to outlier detection. In this situation, the basic unit for mining
is the complete trajectory. However, such methodology may not be able to find outlying trajectory
sections. For example, Figure 5 clearly shows that section A–B of trajectory TR3 is different from its
neighboring trajectories (TR1, TR2, TR4), but it may not be distinguished as unusual because the overall
behavior of TR3 is similar to that of its neighbors. From a mathematical perspective, the significant
differences in sub-trajectories may be averaged out over the complete trajectory.

Figure 5. Example of an outlying sub-trajectory: section A–B of trajectory TR3 [91].

Another approach is to focus on the decomposed trajectories [91,94,95]. These methods
generally partition each complete trajectory into a set of sub-trajectories and then, detect the outlying
sub-trajectories by applying a distance function or clustering approach. Eventually, the complete
trajectories that contain outlying sub-trajectories are discriminated as outliers. Lee et al. [91] defined
this as a partition-and-detect framework, as demonstrated in Figure 6, and proposed the TRAOD
algorithm, which utilizes a hybrid of distance-based and density-based approaches for the second step
of outlier detection.

These methods are generally based on clustering and its extensions; in other words, they are
unsupervised or semi-supervised learning processes. However, supervised learning approaches
are also available for outlier identification; these are typically based on classification. For example,
Yuan et al. [95] extracted a set of pre-identified features (i.e., direction, speed, angle, and location) from
trajectories to which they then applied distance measures to discriminate anomalies. Li et al. [96]
utilized trajectory features to train a two-label classifier model: one label classified normal trajectories
while the other classified abnormal ones.
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Figure 6. Partition-and-detect framework [91].

5.2.3. Prediction

In data mining, prediction involves assuming that certain turns of events will occur based on
the description of other related data. The prediction itself is calculated from the available data and
modeled in accordance with the existing dynamics [97]. There are two approaches to predictions using
trajectory data: predicting the future location of a moving object, and predicting its entire route within
a road network context. There are three categories of location prediction: (1) based on the dynamics of
the moving objects of concern [98–101], (2) based on the dynamics of other objects (e.g., a set of located
users with a social-spatial performance that exceeds IP-based geolocation) [102], and (3) based on both
the objects of concern and other objects [103–105].

Two major approaches have been applied to these three categories of location predictions:
the Markov chain model [103–105] and the trajectory pattern-based method which relies on frequent
pattern mining (see Section 5.2.1) and the association rules among the patterns and corresponding
influencing factors. For example, Ying et al. [106] first extracted trajectory patterns to identify the
mobility behavior motivated by geographic, temporal, and semantic factors; they then matched the
current movements of the objects of concern to the extracted patterns. Monreale et al. [107] introduced
a decision tree called the T-pattern tree after extracting trajectory patterns as predictive rules. The tree
was built and evaluated with a formal training and test process and eventually, shows a certain level of
accuracy for next-location prediction.

In contrast, route prediction speculates a sequence of paths starting from a certain location of a
certain moving object. This is generally conducted under strict built environment constraints (e.g., a road
network) [108–110]. Currently, there are three approaches to route prediction: trip observation-based,
Markov model-based, and turning behavior-based. Trip observation-based prediction is based on
the fact that a large portion of a typical driver’s trips are repeated. Thus, this type of prediction
utilizes observed locations of the object’s past trips to develop algorithms for end-to-end route
prediction [110]. These algorithms essentially match the first part of an object’s current trip with its
set of previously observed trips to determine the most likely following part. Markov model-based
prediction is applicable to both location prediction and short-term route prediction. For route prediction,
a simple Markov model is first trained from the object’s long-term trip history and then, applied to
making a probabilistic prediction for the next road segment considering the path that the object
just followed [111]. Turning behavior-based prediction is focused on the object’s turning choices at
intersections. When strung together, these choices form a route in the road network. In other words,
if the object’s aggregate turning behavior (including the choice to go straight ahead) can be predicted,
its future route can be identified [112,113]. The Markov model is a typical method for turning behavior
prediction, but other ways include pure statistical methods. For example, Krumm [113] proposed an
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algorithm and variations to infer the proportion of drivers that take each turning option at intersections
based on the assumption that drivers are more likely to choose a turning option that offers more
destination options.

5.3. Relationships between Trajectory Data Mining Methods

As discussed previously, first-tier methods are the foundation of second-tier methods. For most
tasks, we need the former to categorize trajectories according to their homogeneity or heterogeneity,
while the latter is used for deeper or more synthetic analysis on the already clustered or classified
trajectories. Table 1 describes such relationship for specific tasks. Each task is concerned with a specific
second-tier mining method, which naturally requires a corresponding first-tier method. For example,
frequent pattern mining (second-tier) applies clustering (first-tier) to find places of significance [79,80].
There exists some overlapping between second-tier methods. For example, a prediction method
(second-tier) can use pattern mining (also second-tier) to obtain a concise representation of the object’s
moving behavior, which is essential for future location prediction [106,107].

Table 1. Relationships between trajectory data mining methods.

Categories First-Tier Mining Methods

Categories Methods Clustering Classification

Second-tier
Mining

Methods

Pattern
Mining

Grouping spatially close trajectories
[86,87];
Grouping temporally related trajectories
for periodic pattern mining [69,71,73];
Extracting places of significance for
frequent pattern mining [79,80];
Detecting similar mobility interests for
collective pattern mining [83,86–89];
Aggregating close locations for
sequence analysis [114];

No classification-related tasks have
been identified for pattern mining.

Outlier
Identification

Grouping trajectories or sub-trajectories
with homogeneity [91,94];

Sorting out trajectories based on
pre-identified features [95,96];

Prediction

Grouping multiple users with similar
mobility intentions [102,115];
Grouping similar trips of one specific
object [116];
Mining trajectory patterns for location
prediction [100,101,106,107];

Matching one object’s current
movement with its movement patterns
for location prediction [107,116];
Matching one object’s ongoing
trajectory with its previous trajectories
for route prediction [110];

Note: Not all cases are listed. Information in this table is summarized based on our literature survey.

6. Application Issues with Trajectory Data Mining

In the previous sections, we discussed three categories of emerging trajectory-related data and
two classes of data mining methods for extracting information from trajectories. In this section, we look
at the application issues that can be addressed with mining trajectory data. Current application issues
can be sorted into three categories: social dynamics, traffic dynamics, and operational dynamics [6].
These issues can be matched with the trajectory data mining methods that were presented in Section 5.
Note that there is no firm one-to-one mapping relationship between an application issue and mining
method. A single application issue may require several mining methods, or different issues can be
tackled with the same method. The matching relationships between issues and methods depend on
the specific tasks involved with an issue. These relationships and their corresponding references are
presented in Table 2, which may help guide other researchers to select the most suitable methods for
specific application issues.
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Table 2. Relationships between trajectory-related application issues and trajectory mining methods.

Application Categories Application Issues Description of Issues Major Tasks Involved Mining Methods Involved

Social Dynamics

Discovery of Social
Relationships

Discovery of social ties between
individuals and communities

Grouping individuals’ stay locations Clustering [117]

Extracting chronologically ordered
sequences of stay locations Frequent pattern mining [117]

Discovery of interaction between animals Detecting groups of moving animals,
describing groups’ features Collective pattern mining [88]

Detection of Social Events
Detection of event occurrence Grouping based on spatiotemporal

properties Clustering [118]

Profiling of discovered events Extracting features and categorizing events Classification [119]

Characterization of
Connection between Places

Detection of hotspots Grouping according to spatiotemporal
properties Clustering [120,121]

Description of land uses and regional
functions

Discovering regions with similar functions Clustering [120,121]

Extracting features and categorizing regions Classification [120,121]

Description of connection between places Extracting origin/destination links Clustering [122,123]

Discriminating abnormal links Outlier identification [124]

Traffic Dynamics

Profiling of Moving Objects
Inferring mobility activities and modes Extracting features and categorizing activities Classification [61,125,126]

Profiling movement patterns Extracting sequences of visited places Frequent pattern mining [127,128];
Clustering [129]

Trajectory-based Prediction

Predicting an object’s future
location/route

Establishing probabilistic model for
prediction

Statistical methods (e.g., Markov
Chain) [104,105]

Comparing current trajectory with extracted
historical trajectories Frequent pattern mining [106,107]

Predicting traffic jams Inferring traffic density and comparing it
with road capacity

Frequent pattern mining [130];
Statistical methods [131]

Operational Dynamics
Interest Recommendation Friend–place recommendation Extracting shared movement patterns and

ranking similarities Frequent pattern mining [132–134]

Trip Recommendation Suggesting order of visiting locations Predicting routes based on user preferences Frequent pattern mining [135,136]

Note: Information in this table is summarized based on our literature survey. Application categories are recommended by Castro et al. [6].
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6.1. Social Dynamics Issues

To some extent, social dynamics can also be considered as community dynamics. A community
is a group of entities that share some common interests. In the context of trajectory data mining,
such interests are represented as common mobility behavior based on the observed trajectories [6].
In most cases, the application issues for social dynamics are not constrained by the built environment
(e.g., road network). Rather, they are concerned with collective movement trends at the community,
city, or even region level. This is in contrast to detailed network-based paths, which are motivated
by various internal demands (e.g., work, shop, school) and affected by various external factors
(e.g., weather, traffic, policy) [6,15]. Previous research on social dynamics issues has utilized trajectory
data to tackle questions such as where people go during the day [15,137], the locations of hotspots
(i.e., where traveling origins and destinations accumulate) around the city [138,139], the functions of
these spots in an urban context [120,121], and the strength of connections between different parts of
the city [140]. These studies have used diverse categories of trajectory data to reveal a well-rounded
understanding of the urban reality. Zheng et al. [21] defined such data as digital footprints and
the framework for mining trajectory data as urban computing, which they have detailed in several
papers [4,21,22].

6.1.1. Discovery of Social Relationships

Theoretically, trajectory data can be used to extract existing interactions between moving objects
and discover more about the properties of these interactions. Such interactions and their properties are
defined here as social relationships; they include those between individuals, communities, or even
animals (e.g., predator-prey interactions [141]).

To what extent can interpersonal relationships be inferred from spatiotemporal trajectories?
The wealth of geographic information in social media has provided an opportunity for researchers
to explore this question in detail. For example, Crandall et al. [142] proposed two sub-questions:
(1) Provided that, on multiple occasions, two individuals are in roughly the same geographic location
at nearly the same time, how likely are they to know each other? (2) How does this likelihood depend
on the proximity of the co-occurrences in time and space? They then established a framework for
quantifying answers from a social media website and found that a high likelihood of interpersonal ties
can be triggered, even from a small chance of co-occurrences. They also built a probabilistic model to
show how such large probabilities of social ties arise from co-occurrences. Meanwhile, some researchers
have attempted to answer this question by examining the relationship between individuals’ social ties
and their visits to the same places [117,143]. For example, Wang et al. [143] tracked the trajectories and
communication records of millions of cellphone users and discovered that the similarity between two
individuals’ movements strongly correlates with their proximity in a social network.

In terms of community-level social relationships, many studies have followed classical clustering
and pattern mining methodologies, as discussed in Section 5 [6,117,144]. For example, Gaito et al. [117]
proposed the concept of a geocommunity, which combines the geolocations of individuals and
social communities with common mobility interests. They extracted geolocations by clustering
the stay-locations of individuals and then, utilized density-based clustering to discover their
communities. They then adopted sequential pattern analysis methods to detect the social relationships
between communities.

6.1.2. Detection of Social Events

From the perspective of trajectory mining, a social event refers to a gathering of long-term but
temporary stay-locations. Thus, detecting social events involves recognizing the existence of such
gatherings. When combined with the properties of the gatherings (e.g., semantic information), the type
of social event can also hopefully be identified [145]. Typically, there are three methods for recognizing
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social events from trajectories: statistics-based, classification-based, and clustering-based. In many
cases, multiple methods are applied.

As a typical example of statistics-based detection, Giannotti et al. [130] discovered social events
by identifying a high concentration of stationary objects that were previously moving within a specific
spatiotemporal constraint. This method can be followed by a classification procedure to identify the
event type. For example, Calabrese et al. [119] classified the feature vectors of attendees’ origins
detected from cellphone data to estimate the type of event.

As a more realistic scenario, Zheng et al. [118] proposed the snapshot, which indicates a social
event that satisfies the following conditions: (1) the groups of individuals are dense, (2) the shape
and location of the groups generally do not change, and (3) the group members can enter and leave
at any time as long as there are a certain number of members in this group for a certain period of
time. They then proposed a density-based clustering method to detect snapshot clusters, from which
gathering (i.e., social event) patterns can be extracted.

6.1.3. Characterization of Connections between Places

The characterization of places and profiling of connections between places are closely related
application issues for trajectory data mining. Both utilize origin–destination (OD) information as the
key to uncovering urban realities at a relatively macro scale, and they share similar mining methods
(e.g., hierarchy-based clustering, density-based clustering, classification).

Detecting hotspots within a city is a first-tier task for characterizing a place. A hotspot refers to a
region where urban activities regularly accumulate [138,139] and is usually mined through clustering
methods. For example, Chang et al. [138] considered areas with a high intensity of taxi requests to be a
typical kind of urban hotspot and clustered passenger pick-up points (which can be distinguished in
taxi GPS datasets based on certain field values) to discover such hotspots. They even built a hotness
index based on the properties of these clusters. Liu et al. [146] also used a clustering-based approach to
represent urban hotspots by certain crowdedness dynamics considering the real clustering properties
of objects. They proposed a non-density-based approach called mobility-based clustering, where each
sample object is utilized as a sensor to perceive the crowdedness around it by using its instant mobility
properties (e.g., a taxi’s instant speed).

Another type of application is identifying the land use types and regional functions within a city.
Such work is generally conducted in two steps: clustering to extract regions and classification to assign
function-related properties to the extracted regions [120,121,147]. For example, Pan et al. [121] tried
using taxi GPS trajectories to classify urban land use. They applied a modified density-based clustering
method called iterative DBSCAN to extract regions. They then classified regions into different social
functions based on the taxis’ pick-up and drop-off dynamics.

Similarly, characterizing connections between places also relies on the OD mechanism within
the trajectories. For example, Liu et al. [122] utilized taxis’ pick-up and drop-off records (PDRs) and
the check-in and check-out records generated by smartcards to study the connected regions and
corresponding connection strength. They applied clustering techniques to analyze the trip relationship
between different zones with an OD matrix. As a complement to such research, abnormal connections
can be detected with outlier identification methods as discussed in Section 5.2.2, which discriminate
abnormal connections from normal ones [124]. Another issue is identifying the properties of the
detected anomalies, which, in turn, comes back to the above characterization of connections [148].

6.2. Traffic Dynamics Issues

Traffic dynamics specifically refers to how people carry out their mobility intentions depending
on the road network or other built environments and governed by their underlying travel demands [6].
In this paper, we broaden the understanding of traffic dynamics issues by referring to tasks that are
directly related to the movement or moving object, as well as predictions directly based on existing
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movements. Unlike research on social dynamics, which principally utilizes OD-related information,
research on traffic dynamics usually makes full use of trajectories.

6.2.1. Profiling of Moving Objects

Starting from the trajectory, the most direct type of research would be to profile the moving
object that generates the trajectory. Such research includes but is not limited to deducing the activity
types of humans [125], profiling the mobility routine of humans [127,128], inferring transportation
modes [61,62], understanding the moving behavior of animals [126,149], and describing the movement
patterns of animals [88,150]. These issues seem scattered but are essentially concerned with the inherent
properties of the trajectories and have the common ambition of understanding the behavior of the
moving object.

Research in this category has mostly been focused on inferring the activity types of travelers and
identifying their traffic mode. These two issues can be addressed through classification methods based
on some preset features, as done by Zheng et al. [62]. Clustering methods are used in frequent pattern
mining to deal with profiling issues for human mobility routines and animal movement patterns.
Such approaches essentially extract the sequences of places that moving objects have frequently visited,
as discussed in Section 5.2.1.

6.2.2. Trajectory-Based Prediction

In Section 5.2.3, we discussed prediction in detail as a major trajectory mining method. This involves
two major issues: predicting the next position (or destination) of the moving object and inferring the
route that the moving object will follow. Here, we introduce another major issue: forecasting the
occurrence of traffic-related incidents such as traffic congestion. Specific solutions for the first two issues
were presented in Section 5.2.3. Thus, here we only discuss the methods for predicting traffic congestion.

Areas with traffic congestion essentially have high traffic density. Thus, the problem of predicting
congestion can be transformed into the problem of inferring traffic density. Giannotti et al. [130]
established a tree structure formed by T-patterns to predict the locations of areas where large amounts of
trajectories accumulate. Each T-pattern represents a sequence of visited positions and the corresponding
transition time, and each tree node carries a support value indicating the number of T-patterns that
connect the tree root to the current node. Another approach is extending the classical Markov-based
route prediction method. The predicted routes will eventually constitute a certain level of traffic density.
By comparing the predicted traffic density with the capacity of the corresponding road segments,
we can theoretically find areas at risk of congestion. Castro et al. [131] used this approach to build a
prediction model based on the probabilities of switching between road segments and determined the
capacity by referencing the historical traffic density.

6.3. Operational Dynamics Issues

In this paper, operational dynamics refers to the information that can be extracted from
trajectory data, which can potentially be applied to social, economic, commercial, or other operations.
Compared with the above two categories, issues with operational dynamics require deeper mining to
reveal the properties hidden within the trajectories.

6.3.1. Interest Recommendation

Interest recommendation is based on the hypothesis that people who share similar mobility
profiles are likely to share similar interests and preferences [132]. There also exists a two-way positive
interaction mechanism between potential friendship and shared movement patterns. In other words,
if two people consistently display similar mobility profiles, they can be recommended to become friends.
In turn, if a person’s friends frequently visit certain places or follow certain routes, these places and
routes can be recommended to the person. This has become one of the most fundamental hypotheses
in current social network operations.
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A common method for interest recommendation is to mine the mobility history for frequent
patterns. For example, Li et al. [132] established a framework for a friend–place recommender
system with three internal modules: mobility history representation, user similarity evaluation,
and friend-place recommendation. In the first module, hierarchy-based clustering is performed on the
stay-locations of each user to obtain their mobility history, which is then visualized in a hierarchical
graph. In the second module, similar sequences of shared graph nodes are retrieved from all users’
graphs, which are then used to generate similarity scores for each user pair. In the third module,
users are ranked according to their scores in relation to a given user. Those ranking relatively high
can then be recommended as potential friends to the given user. Places can be recommended to the
user by integrating supplementary data (e.g., POIs, semantic tags) with the mobility histories of these
potential friends. Li et al.’s framework [132] has been widely accepted by researchers and followed in
several studies [133,134]. For example, Zheng et al. [134] established a fully executable friend–place
recommender system based on this framework. Additionally, there exists interest recommendation
research using implicit data, which explores beyond friend–place recommendations. For instance,
Amato el al. [151,152] described a recommender system on the basis of the interactions among users
and generated multimedia content, which can support different social applications using proper
customizations (e.g., recommendation of news, photos, art pieces, etc.).

6.3.2. Trip Recommendation

Another issue in this category is trip recommendation. This differs from the route prediction
discussed in Sections 5.2.3 and 6.2.2; although trip recommendation also produces a sequence of places
to be visited like route prediction, it does not specify the visiting order within the sequence. Similar to
interest recommendation, trip recommendation also mines mobility history for frequent patterns with
some customization to deal with users’ specific trip preferences. For example, Brilhante et al. [135]
formulated TripBuilder, which abstracts each user’s mobility history as a chronologically ordered
(annotated with the start and end times) sequence of POIs and then, profiles each user’s trip preferences
based on the functional classification of the POIs. This framework utilizes the wisdom of the crowds
to find personalized itineraries for a user, given their trip preferences and visiting time budget.
Zheng et al. [136] built a complete system that can mine GPS traces to perform two kinds of trip
recommendations: a generic one indicating the most interesting places and routes of a given region,
and a personalized one that provides the user with places matching their personal preferences.

7. Trajectory Data-Based Services

The information and knowledge obtained from trajectory data mining are applicable to a wide
range of services. Services are rooted in real life while being based on the solutions to the application
issues discussed in Section 6. Note that there is no specific one-to-one mapping relationship between
application issues and trajectory data-based services. In fact, their links are rather flexible depending
on specific scenarios. Table 3 lists some examples of trajectory data-based services and their relation to
the corresponding application issues.

7.1. Transportation and Urban Planning

Transportation services generally require the characterization of regions (e.g., OD distribution,
hotspot distribution) and commuters (e.g., preferred means of transportation, spatiotemporal law
of commuting). Occasionally, realworld transportation services also require prediction and trip
recommendations. Transportation services include but are not limited to improving the driving
experience [153–155], augmenting public transit services [156–158,183], and transportation planning
and management [14,160,161].
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Table 3. Relationships between trajectory data-based services and application issues.

Services Service Contents
Application Issues Involved

Social Dynamics Traffic Dynamics Operational Dynamics

Transportation
Improving driving experience Trip recommendation [153–155]

Augmenting public transit services Characterization of connections
between places [96,156] Trajectory-based prediction [157–159]

Enhancing transportation planning
and management

Characterization of connections
between places [14,160] Trajectory-based prediction [161]

Urban Planning

Understanding urban land use and
urban evolution

Characterization of connections
between places [120,162]

Facilitating urban infrastructure
planning

Characterization of connections
between places [163,164]

Evaluating transportation system Characterization of connections
between places [165,166]

Environment
Assessing air pollution Characterization of connections

between places [167]

Assessing noise pollution Characterization of connections
between places [168,169]

Energy Inferring energy consumption Characterization of connections
between places [170]

Eco-car infrastructure planning Characterization of connections
between places [171] Profiling of moving objects [171]

Social Services
Supporting friend-searching Discovery of social relationships

[133,142] Profiling of moving objects [133,142] Interest recommendation
[134,142]

Suggesting routes and places Profiling of moving objects [172–174] Trip recommendation [172–174]

Understanding communities Discovery of social relationships
[175] Profiling of moving objects [175,176]
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Table 3. Cont.

Services Service Contents
Application Issues Involved

Social Dynamics Traffic Dynamics Operational Dynamics

Commercial
Services

Optimizing commercial localization Characterization of connections
between places [177] Profiling of moving objects [177] Trip recommendation [177]

Guiding advertising allocation Characterization of connections
between places [178] Profiling of moving objects [178] Trip recommendation [178]

Optimizing department layout Characterization of connections
between places [179] Profiling of moving objects [179]

Public
Administration

Detecting abnormal behavior Profiling of moving objects [180]

Monitoring public gathering Detection of social events [181] Profiling of moving objects [181]

Predicting natural disasters Trajectory-based prediction [182]

Note: Information in this table is summarized based on our literature survey. Not all cases are listed.
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In urban planning, trajectory data mining has two main functions: characterizing locations
and characterizing the connections between locations. These two categories can help urban
planners understand urban boundary evolution [162], plan urban infrastructure [163,164], assess the
transportation system [165,166], etc.

7.2. Environment and Energy

Evaluating the pollution at different locations is a prerequisite for pollution mitigation. To this
end, trajectory data mining can be used to characterize places and integrate their properties with
supplementary data, e.g., air pollution data [21,167] and noise pollution data [168,169], in order to
describe the pollution situations in different regions of the city.

With regard to energy, trajectory data mining is concerned with discovering energy-consuming
patterns from a regional or individual perspective. This is related to characterizing places and profiling
commuters. Researchers have utilized trajectory data to mine the movement patterns of energy-wasting
vehicles [170], establish eco-driving feedback platforms [184], select locations for eco-car charging
infrastructure [171], etc.

7.3. Social and Commercial Services and Public Administration

Social services are mainly related to profiling individual movement patterns, discovering social
relationships, and recommending interests. Addressing these application issues can help facilitate
social services, recommend potential friends [133,134,142], suggest places and routes [172–174],
understand community life [175,176], etc.

Commercial services need information regarding the visiting potential of commercial places
based on the mobility routines of consumers. Characterizing places and profiling individuals can
help improve commercial services, such as optimizing commercial siting [177], guiding advertising
allocation [178], and improving department layouts [179].

Public administration is often related to identifying places or individuals that are likely to
trigger public incidents. Characterizing places and moving objects are significant in this domain.
In addition, public administration requires a certain foresight regarding mobility dynamics; thus,
trajectory-based prediction is also important. Researchers have improved public administration
by detecting abnormal behavior [180], monitoring public events [181], monitoring and predicting
hurricane movement [182,185], etc.

8. Practical Implications

In previous sections, we reviewed the concepts, methodologies, application issues, and resulting
services of trajectory data mining from a rigorous academic perspective. In this section, we present an
open discussion on the practical implications. For potential participants in the domain of trajectory
data mining, a series of commonly used practical tools are recommended. For the most concerned
privacy protection problem involved in this domain, a brief survey on current situations is conducted
and potential solutions are proposed. There is also a future outlook based on our surveyed literature,
which may indicate some directions for authors about trajectory data mining.

8.1. Practical Tools in Trajectory Data Mining

The practice of trajectory data mining methodologies requires the use of certain software tools.
As the number of available tools continues to grow, it is increasing difficult to define a most suitable
tool, or even to determine the most widely accepted tools nowadays. The typical life cycle of new tools
generally begins with theoretical papers as methodological prototypes, followed by demand-responsive
software distribution of successful algorithms [186]. These algorithms are either included as a family
in new commercial or open-source packages, or are being integrated into existing commercial or
open-source packages afterwards.
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In fact, from the very beginning, programming languages provide researchers with the initial
tools to conduct trajectory data mining. Python, for example, is a universal computer language that
is widely applied in this domain [187]. If the users have become familiar with basic programming
concepts such as variables, data types, functions, conditions, loops, etc., and are good at learning
from online technical communities, such as GitHub, it is not very difficult to build up a basic data
mining program. We always encourage researchers to be proficient in one of the computer languages
(e.g., Python, C, Fortran), since this will enable them to easily convert algorithms or even algorithm
thoughts into practice, without being restricted by the software platform.

Apart from pure programming languages, open-source software can be another good choice for
researchers and learners in trajectory data mining. R is both a computer language and software that
is powerful in statistical analysis [188]. Although its core computing modules are written in C, C++,
and Fortran, it also provides a scripting language, i.e., R language, for customized programming.
A series of analysis techniques, including statistical testing, predictive modeling, and data visualization,
is supported by R. WEKA is another famous and powerful open-source software for data mining [189],
which supports data preprocessing, data collection, classification, regression analysis, visualization,
feature selection and many other machine learning functions. Advanced users can call its components
through Java programming and command lines, while it also provides a graphical inference for
basic users. KNIME is a platform that can be extended to use the mining algorithms in WEKA.
Besides, it integrates many other data science tools covering data management, modeling, deploying,
reporting, etc. [190]. KNIME uses a data flow-like approach to establish the mining process, which is
composed of a series of functional nodes. Each node has an input port for receiving data and models,
and an output port for exporting results, thus, users can easily connect to the nodes for process
management. RapidMiner is also an extendable platform that can be applied in this domain. It owns a
specific advantage in machine learning, by providing support for any third-party machine learning
libraries [191].

Although the open-source software mentioned above can assist us in trajectory data mining,
the power of commercial software can hardly be ignored. In order to obtain greater profits in a
limited product life cycle, these tools are made more attractive in terms of user-friendliness and
strong service support. IBM SPSS Modeler is a representative commercial tool for mining tasks.
It is equipped with an intuitive user interface and allows users to create various algorithms without
programming [192]. Oracle Data Mining (ODM) is a component of the Oracle platform, which is a
world-famous database management tool. It enables users to build and apply models directly inside
their Oracle Database [193]. SAS Data Mining is another commercial option with user-friendly GUI
and specific strength in predictive modeling and prescriptive modeling [194].

Advances in computing power have enabled us to move beyond manual and time-consuming
mining practice to quick and automated data analysis, meanwhile bringing about many powerful
tools for trajectory data mining. Each tool has its own strengths. For scholars who need to dig deeply
into the philosophy and methodology of data mining, we recommend programming languages and
open-source tools with more customization possibilities. For business users who pursue practical
efficiency and stable output, highly integrated commercial software may be a better choice.

8.2. Privacy Protection in Trajectory Data Mining

With the ubiquity of smart devices and the improvement of powerful data mining techniques,
there are increasing concerns that trajectory data mining may pose a threat to our privacy and
information security. However, we need to notify that the majority of applications in this domain are
not deeply concerned with private information.

Consider a most extreme case that is happening at this moment: scientists are utilizing multi-source
trajectory data to trace the transmission chain of COVID-19 (coronavirus disease). The major objective
is to act quickly, when a person is diagnosed with COVID-19, to find all the people this person was
in close proximity with [195]. One popular approach is contact tracing based on “check points” as
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suggested by Yasaka et al. [196], which uses an anonymized graph of interpersonal interactions to
report risk levels to users. This process does not technically need any location information or personal
data. Another approach is using Bluetooth-based smartphone apps, e.g., the TraceTogether app from
the Singaporean government. Such apps cryptographically create a new temporary ID periodically
and utilize Bluetooth’s near-field communication function to record IDs of close contact. If any user is
diagnosed with COVID-19, the doctor will instruct them to share locally stored data with the central
server. The server will obtain all the temporary IDs the “infected phone” has been in contact with,
and then, inform them with a push token technique.

As indicated above, even under the conditions of a pandemic, we are still able to avoid privacy
offences when taking advantage of trajectory data, typically with two ideas: the first is to represent
personal information with virtual IDs during the process of tracing and publicity; the second is
to replace absolute geographic coordinates with relative position information when unnecessary,
e.g., when no mass infection is detected. In fact, apart from the emergent situations concerning
individuals, the major focus of trajectory data mining is on the discovery of general or significant
patterns, not on the specific information regarding individuals. For this reason, we believe that the real
concerns are with unconstrained access to individual records, especially privacy-sensitive information
such as religious, financial, or healthcare records that usually come along with implicit trajectory
data. For applications that do involve such information, simple desensitization approaches, such as
removing sensitive IDs from data, or to a more advanced degree, such as randomization methods [197]
and encryption methods [198], are sufficient enough to protect the privacy of most individuals.

Nevertheless, privacy protection discussed here is from a pure technical perspective. In the real
world, concerns cannot be completely eliminated whenever and wherever sensitive information is
collected and stored in a digital form. Like any other technology, trajectory data mining is possible to
be misused. Thus, not only the researchers in the general data mining domain, but also those in the
fields of database encryption, counterterrorism, and social sciences, are expected to work with lawyers,
politicians, entrepreneurs, and consumers to take responsibility in establishing solutions to protect
personal privacy and data security.

8.3. Future Prospects for Trajectory Data Mining

The diversity of trajectory data, mining methods, and mining applications has brought about a
series of challenging research issues. From the surveyed literature in this paper, we can glimpse some
development trends in trajectory data mining and provide suggestions for authors in this filed.

The first significant trend is to combine trajectory data with other data sources to fulfil a mining
task. The rationality of integrating multi-source heterogeneous data first lies in avoiding information
bias, or in other words, enriching trajectory information with other sources. An example can be found
in Wang et al. [199], which leveraged POIs and road network data to fill in the missing information
in sparse trajectories, in order to better estimate the travel time of a path in a city’s road network.
On the other hand, such combination may unlock the potential power of knowledge that can hardly be
discovered from a single data source. For instance, Zheng et al. [200] inferred the fine-grained noise
situation of different times of day for each region of New York City by using the 311 complaint data
together with social media check-in data, road network data, and POIs.

The second prospect in this field is the development of scalable and interactive mining methods.
Unlike traditional data analysis, data mining must be able to process huge amounts of data effectively,
and if possible, interactively. As the amount of data increases rapidly, it is essential to develop
more scalable algorithms for mining tasks. The incremental trajectory clustering algorithms in
Li et al. [51], for example, are an early-stage attempt to deal with such dynamic data growth. To this
end, Ding et al. [201] established a united platform named Ultraman to achieve scalability and efficiency
when dealing with big trajectory data, by extending Apache Spark with an integrated key-value
store and enhancing the MapReduce paradigm to allow flexible optimizations based on random data
access. Practical direction to improve the overall efficiency and user interaction is constraint-based
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mining. As integrated in many practical tools such as KNIME [190], it endows users with added
control by allowing specifications and constraints to guide the mining workflows in their search for
interesting knowledge.

Beyond trajectory data mining itself, privacy handling is another task to be tackled in the future.
There exists an underlying balance between a sufficient degree of useful knowledge and the ethics of
tracking activities. Although there have been many technical approaches to protect personal privacy
as mentioned previously (e.g., randomization [197] and encryption [198]), no promising methods to
achieve or even measure this balance have yet been developed. In addition, the best results with real-life
relevance of trajectory data mining can be achieved by interdisciplinary efforts. This community is
expecting more research with extensive practical significance and interdisciplinary influence.

8.4. Trajectory Data Mining in Industry 4.0

Recent decades have witnessed that people and things are becoming increasingly interconnected.
Smartphones, vehicles, devices, built environments, and natural environments have been filled with
digital sensors, all of which are generating unprecedented big data, including trajectory data as we
have discussed. Urban realities mined from such data make it possible that demand-responsive
urban services be highly realized. For instance, the digitization journey in the transportation and
logistics sector is already well underway and is expected to accelerate in the immediate future.
Companies are using IoT solutions, such as big data analytics, for demand forecasting and, in turn,
optimizing inventory planning, warehousing fulfillment, and distribution [202]. The consequence of
developing such IOT solutions and Big Data science is the conception of Industry 4.0 [203].

Industry 4.0 refers to the fourth industrial revolution. Its initiative places significant emphasis
on the utilization of data to form intelligent systems and processes, so that in this context,
manufacturing and service-providing will largely have the ability to self-plan and self-adapt [203].
To accomplish the vision of Industry 4.0, or even to survive in the “Digital Darwinism”,
digital transformation is a common task faced by individuals, enterprises, and countries [204].
Yet, even in highly integrated Europe, a digital divide does exist among the member states [205].
Northern Europe takes the lead in terms of the utilization of innovative industries, such as the
application of big data, while there also exists a worrisome trend of the European countries lagging
behind other global leaders of Industry 4.0, such as the USA and China [205]. Our literature survey on
trajectory data mining, to some extent, has also confirmed this trend, as the majority of research cases
in this specific domain are contributed by countries with Industry 4.0 advantages.

In the new digital divide, Industry 4.0 will play an important role for individuals, in that routine jobs
are likely to be replaced by those requiring analytical skills, flexibility in decision making, and training
in certain topics, such as trajectory data mining, text mining, and machine learning, as proved by
many recent surveys on Industry 4.0 employment demands, for example, in Bach et al. [206] and
Fareri et al. [207]. Regardless of the social skill requirements of Industry 4.0 job positions, trajectory data
mining is of educational advancement from a technical perspective. Not only can it address the specific
application issues mentioned previously, it also provides a methodology for data evidence-based
decision making, which will largely benefit future participants in Industry 4.0. Therefore, the practical
implications here indicate the need for interventions of education, such as curriculum with a focus on
big data acquisition, management, mining, and analysis.

9. Conclusions

Advances in smart infrastructure and location-acquisition terminals have contributed to the
increasing availability of massive trajectory data with rich spatiotemporal information on the mobility
of a wide range of moving objects, including humans, vehicles, and animals. By developing data mining
and analysis methods, researchers have revealed abundant urban realities from trajectory datasets,
such as the movement patterns of humans, the inter-place relationships within cities, and the dynamics
of social events to solve complex urban problems in transportation, environment, public security, etc.
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However, despite the wealth of information in this field, existing studies have been relatively
isolated and lacking an integrated and systematic survey to the issues that have been addressed,
solutions that have been tested, and services that have been developed. This paper was an attempt
at conducting such a survey. We started with classifying diverse trajectory data and reviewed the
prevailing trajectory mining methods in two classes. We classified the application issues of trajectory
data mining into three major groups based on how they are related: social dynamics, traffic dynamics,
and operational dynamics. We then built up matching relationships between data mining methods
and application issues, and briefly presented the prospects of services that have been established based
on the methods and techniques in this field. A series of open discussions was also conducted regarding
the practical tools, ethics, and future directions of trajectory data mining.

The major contribution of this paper is in providing a systematic and integrated view on the
emerging issues, methodologies, and services in trajectory data mining while identifying the inherent
relevance and associations that have previously been unrepresented in this domain. The classification
of application issues can help readers to identify new issues where trajectory data mining could be
applied. The relevance between mining methods and the matching relationship between mining
methods and application issues can contribute to identifying method gaps and inspire researchers to
develop new methods. The consistent association linking methods, application issues, and services
can provide a reference for data analysts and experts to select the most suitable solutions for specific
problems. This paper can also provide new researchers with a quick understanding of trajectory
data mining.

The main limitation of our work lies in the manual selection of surveyed literature, which may
lead to certain information bias. Besides, our work is based on the review of the articles, reports,
and book sections that can be accessed through Web of Science at present. Due to the time difference
between literature creation and publication, as well as the imperfect search function, specific research,
e.g., the latest ones or those Web of Science has no authorization to disclose, might be invisible in
our review.

The smallest unit of analysis in our work is the application-oriented method. In fact, within each
method, there correspondingly exist a series of algorithms. Therefore, our work can be extended by
conducting a comparative analysis on the algorithms that implement a specific mining method on
specific application issues, so that the review will be able to provide a reference for the choice between
algorithms. Additionally, research work concerning the future prospects we have discussed in the
section of practical implications may also be promising under the current context.
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