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Abstract: Traditional MEMS gyroscope readout eliminates quadrature error and relies on the phase
relationship between the drive displacement and the Coriolis position to accomplish a coherent
demodulation. This scheme shows some risk, especially for a mode-matching gyro. If only a slight
resonant frequency deviation between the drive and sense mode occurs, a dramatic change in the
phase relationship follows, which leads to a wrong demodulation. To solve this, this paper proposes
a new readout based on the quadrature error and an auxiliary phase-locked loop (PLL). By tuning
the phase shifter in the sense-mode circuit, letting the quadrature error and the carrier of the mixer
be in 90◦ phase alignment, the Coriolis was simultaneously in phase with the carrier. Hence, the
demodulation was accomplished. The carrier comes from the PLL output of the drive-mode circuit
due to its low jitter and independence of the work mode of the gyro. Moreover, an auxiliary PLL is
used to filter the quadrature error to enhance the phase alignment accuracy. Through an elaborate
design, a printed circuit board was used to verify the proposed idea. The experimental results show
the readout circuit functioned well. The scale factor of the gyro was 6.8 mV/◦/s, and the bias instability
was 204◦/h.

Keywords: coherent demodulation; quadrature error; phase alignment; phase-locked loop (PLL);
MEMS gyro; vibratory gyroscopes; MEMS sensors

1. Introduction

Gyroscopes are important sensors in inertial navigation devices and global positioning systems.
Traditional mechanical gyroscopes cannot meet the requirements of modern application systems due
to their large size, heavy weight, high power, high price, low bandwidth and low shock resistance. In
the later period, fiber optic gyroscopes and laser gyroscopes appeared, but the problems of high cost,
large volume and high power were still not solved. These problems remained the bottleneck restricting
their application and development. The capacitive silicon-based micromechanical gyroscope integrates
the advantages of MEMS technology and integrated circuit technology. It has the advantages of low
cost, small size, light weight and low power consumption (Low-CSWaP). It has been widely used in
many fields such as the consumer, automotive, medical and industrial fields. With the continuous
improvement of performance, it will excel in high-end applications such as navigation, defense,
aviation and aerospace [1,2]. Recently, high performance gyros such as the frame type [3–7], the disc
type [8–12], the butterfly [13–19], etc. have attracted a lot of attention from academia and industry.
The vibratory MEMS gyro is based on the Coriolis effect to measure the input angular velocity [20].
However, due to the non-ideality of the micro-machine process, the direction of the drive displacement
cannot be completely consistent with the drive axis, and a quadrature error is formed in the sense axis,
which interferes with the Coriolis signal. Compared with the Coriolis signal, the amplitude of the
quadrature error is very large.On the other hand, the gyro often works in the low-pass region to reduce
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sensitivity to environment fluctuations. Under this condition, the Coriolis signal is very weak. How to
extract such a small signal from the huge interference has become an important research issue.

To address it, many studies eliminate the quadrature error and amplify the Coriolis signal. There
are three methods: (1) use a special device structure or trimming process to prevent the drive vibration
from deviating [21–23]; (2) set a quadrature error cancellation electrode at the sense axis and feed
the quadrature error back to the electrode to offset the unwanted force [7,8,17,24–26]; (3) bring the
quadrature error back to the input of the preamplifier and cancel the quadrature error in the electrical
domain [27–29]. However, the first method increases the production time and cost, and cannot fix
the quadrature error in real time considering long-term use and environmental change. The second
method will not work for some special devices due to the difficulty of constructing the cancellation
electrode. Even if it is performed successfully, additional noise is introduced on the electrode and
pollutes the Coriolis force, which reduces the mechanical signal-to-noise ratio. The third method adds
electrical noise directly to the input of the preamplifier, reducing the electrical signal-to-noise ratio.
Besides, both of the latter increase the complexity of the readout circuit.

As for preserving the quadrature error, Sharma et al. [30] utilized the quadrature error to build the
mode-matching circuit and achieved a high performance readout. Norouzpour-shirazi et al. [31] took
advantage of the large amplitude feature of the quadrature error, converted the amplitude modulation
signal to a phase modulation signal, and used a digital demodulation to extract the angular rate
information. Inspired by this, this paper proposes a novel readout based on the quadrature error and an
auxiliary phase-locked loop (PLL). The quadrature error is used as an indicator while the PLL output of
the drive mode is adopted as the carrier. By adjusting the phase shifter in the sense mode, the indicator
is allowed to lag the carrier by 90◦. Simultaneously, the Coriolis signal is in phase with the carrier,
which leads to a correct coherent demodulation. The method does not depend on the relationship
between the two resonant frequencies; that is, it is independent of the working mode of the gyro. To
improve the phase alignment accuracy, the quadrature error is allowed to pass through an auxiliary
PLL and the output is taken as the new indicator. This new readout is verified in a printed circuit board
(PCB). The measurement results show the scale factor is 6.8 mV/◦/s and the bias instability is 204◦/h.
Although the bias instability is two orders of magnitude larger than the latest research result [18], it is
believed that with subsequent optimization, the performance will be greatly improved. The article is
organized as follows. First, it briefly introduces the MEMS gyro device and then illustrates the new
readout architecture in detail. Afterwards, the elaborated design of the drive/sense mode circuit is
presented. Finally, it provides the experimental results and comes to a conclusion.

2. The MEMS Vibratory Gyro

The device is frame type, as shown in Figure 1, which is based on electrostatic excitation and
capacitive detection transduction [32]. It is based on a silicon on insulator (SOI) process and fabricated
by bulk micromachining technology. The thickness of the structure layer is as high as 100 µm, which
produces a large elastic stiffness in the thickness direction and suppresses the out of plane vibration.
With a large mass and large detection capacitance, the output current in the sense mode is relatively
large, which is helpful for improving the mechanical sensitivity. The driving and detection electrodes
of the drive mode adopt an interdigital comb structure, while the differential detection electrodes
of the sense mode adopt the parallel plate style, which shows high sensitivity. The gyro was made
in-house and wafer-level packaged with a 100 mTorr vacuum. The drive-mode resonant frequency
was 5.817 KHz, and the sense-mode was 6.05 KHz. The drive-mode quality factor (Q) value was
35,000 while the sense-mode was 500. The Q value of the sense mode was low because of two points.
(1) The anchor losses in the sense mode are much higher than those in the drive mode. (2) The electrode
structure of the sense mode is a parallel plate instead of an interdigital comb; hence, the squeeze film
damping is much larger than that in the drive mode. However, the low Qs value brings a benefit;
that is, the amplitude and phase stability of the Coriolis displacement at the drive-mode resonant
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frequency are higher when working in the low-pass region. That is, the error introduced by frequency
or damping changes is small. The parameters of the gyro are summarized in Table 1.
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Table 1. MEMS gyro’s parameters.

Parameters Values

Drive-mode resonant frequency 5.817 KHz
Drive-mode Q value 35,000

Sense-mode resonant frequency 6.05 KHz
Sense-mode Q value 500

Vacuum level 100 mTorr
Work mode Mode splits

DC polarization voltage 5–10 V
Quadrature error ratio 0.22

3. Proposed Readout Circuit Architecture

The traditional readout circuit, as shown in Figure 2a, is based on the phase relationship between
the drive displacement and the Coriolis [3,6,20]. In particular, in the mode matching condition, the
drive displacement is anti-phase with the Coriolis and the readout circuit can perform well. However,
when mode mismatch happens due to environmental disturbance, the Coriolis leads or lags the drive
displacement by 90◦, which leads to a wrong demodulation [20]. Besides, considering the different
signal paths, a slight phase error between the drive displacement and the Coriolis exists. On the other
hand, the two inputs of the mixer, which come directly from the output of the amplifier, contain some
noise. Both of these two problems lower the demodulation performance.
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Figure 2. (a)Traditional readout circuit; (b) The proposed readout circuit based on quadrature error
and auxiliary phase-locked loop (PLL).

This paper presents a new readout scheme, as shown in Figure 2b, which is based on the idea that
by aligning the phase difference between the quadrature error and the carrier at 90◦, the Coriolis is
simultaneously in phase with the carrier, which leads to a correct demodulation. This method can
demodulate the angular rate information correctly, regardless of the work mode of the gyro. The
quadrature error is selected as the indicator due to its large amplitude and the feature of the constant
90◦ phase difference between the quadrature error and the Coriolis. The PLL output in the drive mode,
instead of the drive displacement, is adopted as the carrier because of two points. (1) The jitter of
the PLL output is low. (2) The PLL output can be viewed as just a carrier that does not stand for the
drive displacement or velocity. This idea removes the limitation of the phase relationship between the
drive displacement and the Coriolis. As depicted in Figure 2b, the phase shifter in the sense mode is a
key block by which the 90◦ phase alignment can be achieved. The auxiliary PLL is another important
module, with which the jitter of the quadrature error is reduced and the phase alignment accuracy
is raised.

As shown in Figure 2b, the readout circuit is composed of a closed-loop drive circuit and an
open-loop detection circuit. The drive circuit employs a PLL to achieve continuous frequency tracking
and low frequency variation [33]. The PLL output passes through a resistance divider and then excites
the device. Since the amplitude of the PLL output is constant, the output of the divider is invariant. If
the temperature effect is not considered, the drive displacement is constant. This scheme eliminates
the need for the traditional amplitude control circuit. As for the interface, the capacitance change of
the gyro device is read by a trans-impedance amplifier (TIA) instead of a switched-capacitor amplifier
or a charge amplifier due to its merits of low power, low noise, low capacitive load and low Q load.
The analog output is quantized by a 16-bit Analog-to-Digital Converter, wherein the high resolution
helps to reduce the quantization noise.

4. Drive Mode Circuit

As shown in Figure 3, the drive circuit consists of a TIA, inverting amplifier, low-pass filter,
phase shifter, PLL, resistance divider and passive filter. The inverting amp follows the TIA due
to the anti-phase relationship between the actuation voltage and the TIA output. Considering the
mechanical noise of the gyro, the filter LTC1565 [34] is connected behind the inverting amp. The PLL
chip NJM567 [35] exhibits good frequency stability and excellent frequency tracking, whose center
frequency is configured by an off-chip tunable resistor. Since the PLL output leads its input by 90◦

when the PLL locks, a phase shifter is inserted in front of the PLL to compensate the 90◦ phase shift. In
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addition, the phase shifter also compensates the slight phase shift introduced by the TIA, the inverting
amp and the filter.
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Figure 3. Closed-loop drive circuit based on PLL.

In an ideal condition, the relative phase of each node in the drive loop is shown in Figure 3.
Considering the gyro’s nonlinearity and the feed-through of the actuation voltage, the PLL output is
divided to a suitable value. Moreover, the actuation voltage is smoothed by a passive filter to reduce
its harmonic components. As depicted in Figure 3, the positive terminal of the TIA is grounded, which
leads to a virtual ground of the corresponding terminal in the gyro. Hence, a parasitic capacitor in
the gyro is bypassed to ground, which further reduces the feed-through of the excitation voltage. In
order to maintain stability, capacitors C1 and C2 are laid across the feedback branch of the TIA and the
inverting amp, respectively.

4.1. Low Noise TIA

Regarding the ultra-high Q value of the drive mode, the mechanical noise of the gyro can be
negligible relative to the electrical noise. Meanwhile, the TIA, as the first stage in the drive circuit,
dominates the electrical noise contribution and needs a low noise design. The TIA with noise model
is shown in Figure 4. The noise characteristics of the amp are characterized by the input equivalent
noise current in and the input equivalent noise voltage vn. The capacitance change ∆C represents the
vibration displacement of the gyro while the output current Iin stands for the vibration velocity. The
current to voltage conversion is realized by the feedback resistor R1, whose noise is modeled by in,R1.
The feedback capacitor C1 includes the stray capacitors, and its impedance value is much larger than
R1. The input capacitor Cin contains the static capacitance between the mass and electrode, the gyro’s
pad capacitance and the PCB trace parasitic capacitance.
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When the impedance value of Cin is much larger than the equivalent input impedance of the TIA,
the input current Iin mostly flows into the input terminal of the TIA. Hence, the transfer function is
expressed by:

Vo(s)
Iin(s)

= −R1
1

1 + sC1R1
(1)

Taking C1 = 0.5 pF and R1 = 1 MΩ, the 3 dB cut-off frequency of the TIA is about 0.3 MHz, which
is much larger than the signal bandwidth and will not affect the signal processing. As for the low-noise
amp AD8065 [36], in is 0.6 fA/

√
Hz, and vn is 7 nV/

√
Hz. The total input equivalent noise is [37]:

iin,eq,noise =

√
in2 +

4kT
R1

+

(
vn

R1

)2

+
(vn2πfdCin)

2

3
(2)

Herein, fd is the signal frequency. Thanks to the ultra-low noise characteristic of the AD8065 and
ultra-high resistance of the feedback resistor R1, the value of the first three terms of Equation (2) is
small, and the fourth term dominates. Hence, reducing the input capacitance Cin is crucial. The
following measures can be taken: (1) selecting the small package chip of the AD8065; (2) placing the
AD8065 next to the gyro as close as possible to reduce the trace line in the PCB; (3) digging out the
grounded copper near the trace, which connects the gyro and the inverting terminal of the AD8065.

4.2. Phase Shifter

In order to compensate for the leading 90◦ phase caused by the PLL, the phase shifter needs to
provide a lagging 90◦ phase. Besides, the phase shifter must make up the slight phase shift introduced
by the TIA, the inverting amp and the filter. The phase shifter is based on the amplifier of AD8065, as
illustrated in Figure 5a. The resistors R4 and R6 form the negative feedback, while R5 and C3 constitute
the tunable phase shift mechanism.
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Assuming the amplifier is ideal, using the “virtual short” and “virtual open” characteristics,
we get:

1
sC3

vi(s)
1

sC3
+ R5

−

vi(s) −
1

sC3
vi(s)

1
sC3

+ R5

R4
R6 = vo(s) (3)

If R4 = R6, then:
vo(s)
vi(s)

=
1− sR5C3

1 + sR5C3
(4)

Thus, the pole and zero coincide. The amplitude frequency response is a constant 0 dB, while the
phase frequency response is:

∠
vo(f)
vi(f)

= − 2arctan
(

f
1/2πR5C3

)
(5)
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The phase frequency response curve is shown in Figure 5b. Since the phase shifter needs to
provide a phase shift slightly greater than 90◦, the pole/zero should be a little lower than the resonant
frequency of 5.81 KHz. If the pole/zero are set to 4.8 KHz and the R5 is 10 KΩ (for a 20 KΩ tunable
resistor), then the C3 is calculated as 3.3 nF.

4.3. PLL

The PLL is based on the chip of NJM567. The circuit is shown in Figure 6 [35]. Pin 3 is used
as the input, and pin 5, as the output, which is a rectangular wave and exhibits a leading 90◦ phase
compared with pin 3 when PLL locked. Note that the output pin 8 does not function well. The PLL
center frequency is set by R1 and C1, and the frequency range is 0.01 Hz–500 KHz. The frequency is set
by the equation f0 = 1/(1.07 × R1 × C1). In light of the 5.81 KHz resonant frequency, if the C1 is set to
15 nF, then the R1 is derived as 10.6 KΩ (for a 20 KΩtunable resistor).
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Figure 6. The PLL circuit based on NJM567, with pin 3 as input and pin 5 as output [35].

The maximum capture bandwidth is 14% × f0, which is set by the capacitor C2 and the PLL
input amplitude [35]. If the curve of f0 × C2 = 1.3 × 103 (Hz-µF) is selected and then C2 is set to 0.22
µF, a minimum input amplitude of 200 mVrms is required. In this situation, a capture bandwidth of
5.4–6.2 KHz is calculated and it is large enough to resist the resonant frequency variation induced by
the environmental disturbance.

5. Sense Mode Circuit

The overall detection circuit is shown in Figure 7. It consists of a differential TIA, instrumentation
amplifier, low-pass filter, phase shifter, auxiliary PLL, mixer and active low-pass filter. Due to the large
mechanical noise, the LTC1565 filter is inserted in the detection path to improve the signal-to-noise
ratio. In order to achieve a 90◦ phase alignment between the quadrature error and the carrier, the phase
shifter is inserted in front of the mixer to achieve a lagging phase shift of 0◦ to −90◦. The auxiliary
PLL is realized by NJM567. When the auxiliary PLL output and the carrier are 180◦ phase aligned, the
quadrature error is simultaneously aligned with the carrier by 90◦, and the Coriolis is concurrently in
synchronization with the carrier, which leads to a correct coherent demodulation! The demodulator is
based on AD835 [38], and the low-pass filter is based on the second-order Butterworth Sallen–key type
filter [39].
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5.1. C/V Conversion Circuit

The gyro in the sense mode can be equivalent to a pair of differential capacitors Cs, as shown
in Figure 8. The capacitance change ∆Cs corresponds to the vibration displacement of the mass and
generates the current is(t) when the polarization voltage VP is applied to the common terminal of the
differential capacitors. The current is VP × d(∆Cs)/dt. In addition, “sense+” and “sense−“ electrodes
need to be grounded to minimize the parasitic capacitance, so each electrode is followed by a TIA
whose non-inverting terminal is grounded. In order to suppress high frequency noise and prevent
oscillation, the small capacitors C1 and C2 are added in the feedback branches, respectively.
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Considering the drive-mode resonant frequency is 5.81 KHz, only the low frequency response
of the C/V conversion circuit needs to be paid attention to. As shown in Figure 8, the upper TIA
output is vo1(t) = −is(t)×Rf, and the lower is vo2(t) = is(t)×Rf. Assuming the second stage amp is
ideal, using the virtual break characteristic of the amplifier, we have vp(t) = vo2(t) ×R2/(R1 + R2),
and vn(t) = (vo1(t) − vo(t)) ×R2/(R1 + R2) + vo(t). Then, by applying the virtual short feature and
letting vn(t) ≈ vp(t), we get the output:

vo(t) =
R2

R1
(vo2(t) − vo1(t)) = 2is(t)Rf

R2

R1
(6)

In the actual design process, the following values were taken: Rf = 1 MΩ, C1 = 0.5 pF, R1 = 100 Ω,
R2 = 10 KΩ and C2 = 1 pF.
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5.2. Coherent Demodulator

The demodulator is shown in Figure 9, which is based on the AD835 chip [38]. The two inputs are
connected to pin 8 and pin 1, and the output, to pin 5. The chip adopts a dual power supply. In order
to make the output have a good reference, the lower end of the resistor R2 needs to be grounded, as
shown in the Figure 9. If the total resistance mounted on the output is R and the small resistor R2 is
k × R, then the large resistor R1 is derived as (1−k) × R. The function from the inputs to the output
is [38]:

W =
XY

(1− k)U
(7)
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Herein, U is a trimming voltage, and the typical value is 1.05 V. In order to realize the simplified
expression of W = XY, let (1 − k) × U = 1, then k = 0.0476. That is, R1 = 20 × R2. Let R2 = 200 Ω; then,
R1 = 2 KΩ.

5.3. Low Pass Filter

The filter uses a Butterworth type filter because it has good low-pass characteristics and has the
maximum flatness in the passband [39]. The filter is of the second-order form and the Sallen–Key
scheme, as shown in Figure 10.

Sensors 2020, 20, x 9 of 16 

5.2. Coherent Demodulator 

The demodulator is shown in Figure 9, which is based on the AD835 chip [38]. The two inputs 
are connected to pin 8 and pin 1, and the output, to pin 5. The chip adopts a dual power supply. In 
order to make the output have a good reference, the lower end of the resistor R2 needs to be 
grounded, as shown in the Figure 9. If the total resistance mounted on the output is R and the small 
resistor R2 is k × R, then the large resistor R1 is derived as (1−k) × R. The function from the inputs to 
the output is [38]: 

( )
XYW = 

1 k U−
 (7) 

Herein, U is a trimming voltage, and the typical value is 1.05 V. In order to realize the simplified 
expression of W = XY, let (1−k) × U = 1, then k = 0.0476. That is, R1 = 20 × R2. Let R2 = 200 Ω; then,  
R1 = 2 KΩ. 

 
Figure 9. The coherent demodulator (Mixer) based on AD835, where X and Y are the input and W is 
the output [38]. 

5.3. Low Pass Filter 

The filter uses a Butterworth type filter because it has good low-pass characteristics and has the 
maximum flatness in the passband [39]. The filter is of the second-order form and the Sallen–Key 
scheme, as shown in Figure 10. 

 
Figure 10. Second-order Butterworth active low-pass filter (Sallen–Key type) [40]. 

The filter gain is set to 1. According to KCL (Kirchhoff's current law) and KVL (Kirchhoff's 
voltage law), the transfer function of the filter is 

Figure 10. Second-order Butterworth active low-pass filter (Sallen–Key type) [40].



Sensors 2020, 20, 4564 10 of 16

The filter gain is set to 1. According to KCL (Kirchhoff’s current law) and KVL (Kirchhoff’s voltage
law), the transfer function of the filter is

Vo(s)
Vin(s)

=
1

1 + C1(R1 + R2)s + R1R2C1C2s2 (8)

Let the normalization coefficients be:

a1 = ωCC1(R 1 + R2) (9)

b1 = ωC
2R1R2C1C2 (10)

Herein,ωC is the corner frequency of the Butterworth filter. If the values of C1 and C2 are given,
the values of R1 and R2 can be calculated:

R1,2 =
a1C2 ±

√
a1

2C22 − 4b1C1C2

4πfCC1C2
(11)

Since the resistance value is a real number, the root number must be greater than 0, so

C2 ≥ C1
4b1

a1
2 (12)

Since the maximum bandwidth of the input angular velocity is 80 Hz, the corner frequency of the
Butterworth filter needs to be greater than 800 Hz. If the corner frequency is set to 1 KHz and use is
made of the Butterworth table [40], the optimal values of the normalized coefficients a1 and b1 can be
obtained: a1 = 1.3617, b1 = 0.618. If the value of C1 is set to 10 nF, then C2 must be larger than 13.33 nF.
By setting the value of C2 to 15 nF and substituting these parameter values into Equation (11), we get
R1 = 7.22 KΩ and R2 = 14.45 KΩ.

6. Experimental Results

The readout circuit of the MEMS vibratory gyro was implemented on the PCB, as shown in
Figure 11a. The upper half is the drive mode circuit, the lower half is the sense mode, and the middle is
the positive supply, negative supply and ground. The gyro device is under the plastic cover. The TIAs
of the drive and sense mode are closely next to the gyro to reduce the trace parasitic capacitance [36,37].
Additionally, the TIAs in the sense mode are laid symmetrically to achieve high performance. Since
the traces connecting the gyro and the TIA are sensitive, the grounded coppers are dug out to reduce
the feed-through. The PLL and Analog-to-Digital Converter are located at the corner of the PCB to
prevent them from contaminating the rest blocks, especially the TIAs.
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Figure 11. Functional and performance measurement. (a) PCB board; (b)functional test; (c) rotating
table test; (d) rotating table chamber and setup of the PCB.

The function and phase alignment test is shown in Figure 11b. The measurement equipment
consists of a power supply, RIGOLDP1308A; a function generator, KEITHLEY3390; and an oscilloscope,
AgilentDSO7034B. The rotating table measurement is illustrated in Figure 11c. The test equipment includes
a low-noise power supply, KEYSIGHTE36313A; a single-axis angular rate temperature-controlled rotating
table, Hangzhou AOBOSLT-01V1-100C; and its control system. Since the gyro is a Y-axis angular rate gyro,
the PCB was erected and fixed on the rotating table as depicted in Figure 11d. The power and signal lines
on the PCB were connected to the outside by the slip ring of the rotating table.

6.1. Function and Phase Alignment Measurement

Firstly, the gyro was allowed to remain static and the drive mode circuit was opened. The function
generator was used to excite the gyro, and the output of the inverting amp was carefully measured to find
the exact resonant frequency of the drive mode. Secondly, the tunable resistor of the phase shifter was
adjusted, letting its output phase lag the excitation voltage by 90◦. The PLL free-running frequency was set
near to the drive-mode resonant frequency. Thirdly, the drive mode circuit was closed and it was ensured
that the stable oscillation was built up. The output of the filter was measured in the sense mode to identify
the quadrature error, as shown in Figure 12a. Its frequency was 5.81 KHz, and its amplitude was 1.01 V.
It passed through the phase shifter and the auxiliary PLL to become a low jitter signal as illustrated in
Figure 12b. Fourthly, the tunable resistor of the sense-mode phase shifter was adjusted and the auxiliary
PLL output and the carrier were set in 180◦ alignment. Simultaneously, the two inputs of the mixer were
in 90◦ alignment, as shown in Figure 12c, wherein the yellow is the phase-shifted quadrature error and
the green is the carrier. Finally, the PCB was rotated along the Y-axis by hand to simulate an angular rate
input, and the demodulated result is depicted in Figure 12d. The peak-to-peak swing was about 2 V, which
shows that the gyro and its readout worked properly and were very sensitive.
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Figure 12. (a) Quadrature error of the detection path; (b) Waveform of the quadrature error after
passing through the auxiliary PLL; (c)Waveform of the quadrature error and the demodulated carrier,
phase aligned at 90◦; (d) Analog output when the PCB was rotated by hand.

6.2. Scale Factor Measurement

According to the IEEE gyro test standard, the gyro was set, the power was turned on, half an hour
was allowed to elapse, and the angular rate was controlled at 0◦/s, ± 0.1◦/s, ± 0.2◦/s, ± 0.5◦/s, ± 1◦/s, ±
2◦/s, ± 5◦/s, ± 10◦/s, ± 20◦/s, ± 50◦/s, ± 100◦/s, ± 150◦/s and ± 200◦/s. The digital outputs were collected
by a data acquisition system, and its sample rate was 65 Hz. At each angular rate point, the output was
acquired for 10 s and then an average function was used to obtain the mean value. The least squares
method was used to fit the original data. By using the MATLAB function of polyfit (x, y, 1), the scale
factor was plotted as shown in Figure 13. The fitted result is Y = −0.0068 × X + 2.6721 [V], so the scale
factor is 6.8 mV/◦/s and the zero offset is 2.6721 V.
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6.3. Bias Instability Measurement

The input angular rate was set to 0◦/s, and the digital output was recorded for two hours. Based
on the Allan variance equation [41], τ was set at 1/65, 2/65, 4/65, 8/65, 16/65, 32/65, 64/65, 128/65, 256/65,
512/65, 1024/65, 2048/65, 4096/65, 8192/65, 16384/65 and 32768/65 s, respectively, and the Allan variance
calculation was performed. Finally, the Allan variance curve was plotted as shown in Figure 14. From
0.01 to 1 s, there is an angular random walk with a slope of −1/2, which is determined by the white
noise of the angular rate, that is, the Brown noise of the gyro device. From 2 to 4 s, there is the bias
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instability, which is determined by the 1/f (flicker) noise of the angular rate. At 5 s and above, a rate
random walk with a slope of +1/2 appears, which is determined by the white noise of the angular
acceleration. On the whole, the curve presents a flat bottom, but the interval is narrow, which is caused
by the excessively large Brown noise of the gyro and the white noise of the angular acceleration.
Sensors 2020, 20, x 13 of 16 
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To explain the Allan curve and guide the next optimization, it is necessary to analyze the limiting
factors of the bias instability. In a sense, the Leeson formula [42] describing the phase noise of the
oscillator can guide the zero-bias optimization of the gyroscope. To reduce the bias instability, it is
necessary to increase the gyro’s Q value, lower the resonant frequency, and reduce the electrical thermal
and 1/f noise. As shown in Figure 14, the bias instability is 204◦/h, which is two orders of magnitude
higher than the latest research level [6,11,18]. The bias instability performance is not good. The limiting
factors may be (1) the Q value of the sense mode being too low, (2) the 1/f noise of the readout circuit
being high, or (3) the mechanical noise of the gyro device being large. Other minor factors may be
(1) the excitation voltage in the drive mode being quasi-square and the C/V conversion circuit being
single-ended, exhibiting more feedthrough; (2) the amplitude stability of the drive displacement in the
drive mode not being high enough; or (3) the amplitude of the quadrature error in the sense mode
being too large, leading to the detection link gain being too small and the electrical signal-to-noise ratio
being too low.

The next optimization measures are (1) selecting a high Q and low-noise gyro device; (2) using
techniques such as chopping and correlated double sampling to reduce the electrical 1/f noise; (3) adding
an amplitude-level-control circuit, adopting the sine-wave actuation and employing a differential C/V
circuit; and (4) performing a partial quadrature error cancellation in the sense mode to relieve the low
gain pressure.

7. Conclusions

This paper presents a novel readout technique based on aligning the quadrature error and
demodulation carrier at 90◦ by using a tunable phase shifter on the detection path. The method can
demodulate angular velocity, regardless of the relationship between the drive position and the Coriolis
displacement. Moreover, by using an auxiliary PLL, the phase jitter of quadrature error is reduced,
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and the accuracy of the phase alignment is improved. Through detailed analysis and careful design, a
complete drive circuit and detection circuit were finally realized. The experimental results showed that
the readout circuit functioned well. The scale factor of the MEMS gyro was 6.8 mV/◦/s, and the bias
instability was 204◦/h. The new coherent demodulation method can also be applied to other vibratory
MEMS gyroscopes.

8. Patents

Hua Chen, Yanqing Zhong andYubao Fan—“Adaptive phase alignment module and method,
and measurement and control circuit of vibrating gyroscope”, Chinese patent, application no.:
201910034788.0, application date: 2019.01.14, status: disclosure.

Hua Chen, Qiangtao Lai, Guiliang Guo, etc.—“A Closed-loop PLL-based Driving Circuit for
MEMS gyroscope”, Chinese patent, application no.: 201610357769.8, application date: 2016.05.26,
status: disclosure, reexamination.
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