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Abstract: A direction of arrival (DOA) estimator for two-dimensional (2D) incoherently distributed
(ID) sources is presented under proposed double cross arrays, satisfying both the small interval
of parallel linear arrays and the aperture equalization in the elevation and azimuth dimensions.
First, by virtue of a first-order Taylor expansion for array manifold vectors of parallel linear arrays,
the received signal of arrays can be reconstructed by the products of generalized manifold matrices
and extended signal vectors. Then, the rotating invariant relations concerning the nominal elevation
and azimuth are derived. According to the rotating invariant relationships, the rotating operators
are obtained through the subspace of the covariance matrix of the received vectors. Last, the angle
matching approach and angular spreads are explored based on the Capon principle. The proposed
method for estimating the DOA of 2D ID sources does not require a spectral search and prior
knowledge of the angular power density function. The proposed DOA estimation has a significant
advantage in terms of computational cost. Investigating the influence of experimental conditions and
angular spreads on estimation, numerical simulations are carried out to validate the effectiveness
of the proposed method. The experimental results show that the algorithm proposed in this paper
has advantages in terms of estimation accuracy, with a similar number of sensors and the same
experimental conditions when compared with existing methods, and that it shows a robustness
in cases of model mismatch.

Keywords: incoherently distributed sources; direction of arrival; angular spreads; generalized
manifold matrix; double cross arrays

1. Introduction

In view of the problem of localization, traditional parameter estimation algorithms are based on
a point source model. When spatial scattering characteristics of targets can be ignored and propagations
are supposed to be a single straight path between targets and receive arrays, the point target model can
simplify the calculation. However, in practical applications, due to scattering, reflection, diffraction
and refraction in a complex environment, a large number of multipath phenomena result in the signal
source expanding at a certain angle in space, which often has more complex spatial distribution
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characteristics than the point signal source, and distributed source models are presented in this
context [1]. The distribution source exists in two situations. First, the size of the target cannot be
ignored when compared with the distance. At this time, the reflection intensity of different parts
of the target is random, and the direction is also variable. For instance, in an underwater sonar
background, with the reduction of distance, the spatial geometry of a target cannot be ignored, many
parts of the target reflecting signals; the point target model cannot describe the characteristics of
the source effectively, and distributed sources models are suitable in this context. Secondly, due to
the complex environment near the target, local strong scattering occurs. For example, with wireless
communications in an environment with high-rise buildings, the intensity of the reflected signal
changes with the orientation [2]. There are also similar scenarios, such as the area target or clutter
involved in radar signal processing, whose array observation signal usually has a certain diffusion
in the spatial and temporal domain [3,4]. At this time, the parameters estimation of targets based on
a point source model assumption is seriously deteriorated, while the algorithms based on a distributed
source model can obtain more accurate information.

The distributed signal source model has a broad application prospect in radar, sonar and mobile
communication because it adopts the signal model, which is more in line with the actual signal
characteristics. A distributed source can be thought of as an aggregation of point sources, which are
also called scatterers, in a spatial range with a certain density distribution. According to the dependence
of scatterers on the time domain, sources are divided into incoherently distributed (ID) sources and
coherently distributed (CD) sources. The spatial distribution characteristics of ID and CD sources are
described by the angular power density function (ADPF) and angular signal distribution function
(ASDF), respectively. According to the spatial distribution characteristics of the distributed sources,
APDF or ASDF can be expressed as a variety of distribution functions, such as Gaussian, uniform
and asymmetric distributions [5]. Sources can be one-dimensional (1D) and two-dimensional (2D),
depending on the spatial dimension of the sources. Whatever distribution function a source has,
the APDF or ASDF of a 1D distributed source is described by two parameters: nominal angles, which
can be called direction of arrival (DOA), and angular spreads, which reflect the spatial extension of
a source. The APDF or ASDF of a 2D distributed source is depicted by four parameters including
the nominal azimuth and nominal elevation, which can be collectively called DOA, and the elevation
spread and azimuth spread, which can be called angular spreads reflecting the 2D spatial extension of
a source. Compared with the 1D source, which has more parameters, the complexity of estimation for
2D sources significantly increases. In this paper, we are concerned with 2D ID sources.

Regarding point sources, the DOA estimation has recently made some important achievements
in the field of mixed signal and multiple input multiple output (MIMO) systems, as well as sparse
arrays. Under a uniform rectangular array, the 2D DOA estimation of circular and non-circular mixed
signals is proposed in [6]. The authors of [7] have proposed an adaptive beamforming algorithm
based on the minimum variance distortionless response principle. With coprime arrays, the authors
of [8] have presented a virtual array interpolation estimator; the authors of [9] have proposed a sparse
reconstruction using a proposed sliding window scheme for optimization; the authors of [10] have
proposed an ESPRIT framework estimator; the authors of [11] have proposed an estimator utilizing
Toeplitz matrix functions to resolve off-grid sources. An estimator was proposed in [12] for 2D DOA,
based on the least squares technique in the electromagnetic vector sensor MIMO system. The authors
of [13] have proposed a DOA estimator based on off-grid sparse Bayesian learning. In [14], the authors
have proposed an estimator where transmitted and received DOA are first estimated via trilinear
decomposition and refined by 2D searches.

Considering CD sources, scholars have presented estimators in [15–25]. For 1D ID distributed
sources, scholars have proposed various parameter estimation algorithms, mainly including subspace
algorithms such as DSPE [1] and DSPARE [4], covariance matching estimation techniques [26–28],
maximum likelihood estimation algorithms [29–32] and beamforming algorithms [33–35]. For 2D ID
sources, the authors of [36] have proposed a 2D covariance matching estimation technique, which uses
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four-dimensional nonlinear optimization with a large amount of computation. Scholars have proposed
low-complexity estimators for 2D ID sources. The authors of [37] have proposed an estimator for
DOAs where nominal elevations were first obtained through rotating invariant relations, after which
nominal azimuths were solved by a Capon spectral search, which increased computational complexity.

In this paper, aiming at the parameters of 2D ID sources, an estimator is proposed under double
cross arrays. Based on the rotating invariant relations derived through the first order of the Taylor
expansion of array manifold vectors, received vectors of arrays are reconstructed via products of
extended signal vectors and generalized manifold matrices. Nominal angles can be obtained through
signal subspaces of covariance matrices of received vectors. According to the solved nominal angles,
angular spreads can be searched via the 2D Capon principle. The main contributions of this article are
listed below:

• Generally, the parameters of ID sources constitute an approximate conclusion under the condition
of smaller sensor spacing. We propose a double cross array that satisfies both the small space
between sensors and the aperture equalization in the elevation and azimuth dimensions.

• Based on the reconstructed received signal vectors and deduced rotating invariant relations,
we propose an approach to a solution for nominal angles according to the ESPRIT framework,
and we propose an angle matching as well as angular spreads solutions using the Capon estimation.

• The proposed method has an advantage in the DOA estimation with respect to the computational
cost, shows advantages in terms of estimation accuracy with a similar number of sensors,
and shows robustness in the case of a model mismatch.

The structure of the paper is as follows. Section 2 elaborates the source model and the received
vectors of proposed arrays. In Section 3, based on rotating invariant relations and the reconstructed
received signal vectors, approaches to a solution for DOA and angular spreads are detailed. Section 4
illustrates the simulation results, which are discussed. Section 5 draws the conclusions.

Notations: Scalar variables are denoted by italic letters, and vectors and matrices are denoted
by bold letters. (•)−1, (•)*, (•)T and (•)H means inverse, complex conjugate, transpose and Hermitian
transposition of a matrix. E[•], (./) and (•)+ denote expectation, element-wise division and
pseudo-inverse operations. [•]k is the kth element of a vector. angle(•) is a phase of a complex number.

2. 2D ID Source Model and Double Cross Arrays

The proposed double cross arrays structure is shown in Figure 1. The array is composed of two
pairs of parallel linear arrays X1 and X2, and Z1 and Z2. All subarrays are located on the xoz plane.
Subarrays X1 and Z1 are located on the x axis and z axis, respectively. Subarrays X1 and Z1 share
the sensor located on the origin. Both subarrays X1 and X2 have M sensors on both sides of the z axis,
while both subarrays Z1 and Z2 have M sensors on both sides of the x axis. All linear arrays have 2M + 1
sensors with a spacing of d meters. The intervals between each pair of parallel linear arrays are all δ.

Assuming that k narrow-band 2D ID sources in the far field with nominal angles (θi, ϕi) (i = 1,
2, . . . , k) are impinging on the array. θi and ϕi denote the nominal elevation and nominal azimuth
of the ith source, respectively. θi ∈ [0, π], ϕi ∈ [0, π]. Then, the received vectors of the arrays can be
written as: 

xm(t) =
k∑

i=1

s
αm(θ,ϕ)si(θ,ϕ, t)dθdϕ+ nxm(t)

zm(t) =
k∑

i=1

s
βm(θ,ϕ)si(θ,ϕ, t)dθdϕ+ nzm(t)

, (1)

where m = 1 or 2. x1(t) and x2(t) represent the received vectors of arrays X1 and X2, respectively; z1(t)
and z2(t) are the received vectors of arrays Z1 and Z2. nxm(t) and nzm(t) are additive white Gaussian
noises which are unrelated to the signals. The noise power is σ2

n. α1 (θ, ϕ) and α2 (θ, ϕ) represent
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array manifold vectors of the point source with respect to X1 and X2. β1 (θ, ϕ) and β2 (θ, ϕ) denote
array manifold vectors of the point source with respect to Z1 and Z2. α1(θ,ϕ) = [e j2πd(1−M) cosθ sinϕ/λ, · · · 1, · · · , e j2π(M−1)d cosθ sinϕ/λ

]T

α2(θ,ϕ) = α1(θ,ϕ)e j2πδ cosϕ/λ
, (2)

 β1(θ,ϕ) = [e j2πd(1−M) cosϕ/λ, · · · , 1, · · · , e j2π(M−1)d cosϕ/λ
]T

β2(θ,ϕ) = β1(θ,ϕ)e j2πδ cosθ sinϕ/λ
. (3)
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si(θ,ϕ,t) is the complex random angular signal density of the ith distributed source, representing
the scatterer intensity of the source from the direction (θ, ϕ) at the time t. Unlike a point source,
the signal of a distributed source exists not only in a single direction (θi, ϕi) but in a spatial distribution
around (θi, ϕi). An ID source means that different scatterers from one target generate uncorrelated
signals. Therefore, one direction from si(θ,ϕ,t) is uncorrelated with other directions from si(θ,ϕ,t),
which means that the following relationship exists:

E[si(θ,ϕ, t)s∗i (θ
′,ϕ′, t)] = σ2

i f (θ,ϕ; ui)δ(θ− θ
′)δ(ϕ−ϕ′), (4)

where σ2
i is the power of the ith source, δ(•) is the Kronecker delta function and p(θ,ϕ; ui) is

the normalized angular power density function (APDF). APDF have a parameter set ui= [θi, φi, σθi, σφi]
denoting the nominal azimuth, nominal elevation, azimuth spread and elevation spread, respectively.
p(θ,ϕ; ui) satisfies the following relationship:

x
p(θ,ϕ; ui)dθdϕ = 1. (5)

3. Proposed Method

This part is composed of five sections. First, generalized manifold vectors and the rotating
invariant relations of generalized manifold vectors are derived. Next, the received signal vectors can
be reconstructed as products of generalized signal vectors and generalized manifold vectors. Based
on the reconstructed form of the received signal vectors and rotating invariant relations, nominal
angles can be resolved separately according to an ESPRIT-like framework. Then, in order to pair
the nominal angles, an angle matching approach is proposed under the Capon principle. Afterwards,
angular spreads can be obtained by two-dimensional spectral searching using the Capon estimation.
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Last, the computational procedure is introduced, and the complexity of the proposed approach
in comparison with several existing methods is analyzed.

3.1. Rotating Invariant Relations

The array manifold vectors of arrays X1 and X2 are expanded with a first-order Taylor series at
the point (θi, ϕi) as follows:

α1(θ,ϕ) ≈ α1(θi,ϕi) + [α1(θi,ϕi]
′

θ(θ− θi) + [α1(θi,ϕi]
′

ϕ(ϕ−ϕi), (6)

α2(θ,ϕ) ≈ α2(θi,ϕi) + [α2(θi,ϕi]
′

θ(θ− θi) + [α2(θi,ϕi]
′

ϕ(ϕ−ϕi), (7)

where [•]′θ and [•]′ϕ represent the first partial derivative of the function with respect to θi and ϕi,
respectively. Thus, we have the following relationships:

α2(θi,ϕi) = α1(θi,ϕi)e j2πδ cosϕi/λ

[α2(θi,ϕi]
′

θ = [α1(θi,ϕi)]
′

θe j2πδ cosϕi/λ

[α2(θi,ϕi]
′

ϕ = [α1(θi,ϕi)]
′

ϕe j2πδ cosϕi/λ − ( j2πδ sinϕi/λ)α1(θi,ϕi)e j2πδ cosϕi/λ
. (8)

If δ/λ� 1, the second item on the right side of [α2(θi,ϕi]
′

ϕ is negligible, and thus the following
approximation relationship exists:

[α2(θi,ϕi]
′

ϕ ≈ [a1(θi,ϕi)]
′

ϕe j2πδ cosϕi/λ. (9)

Define the extended signal vectors
¯
s = [

¯
s1,

¯
s2,

¯
s3]

H and
~
s = [

¯
s1,

¯
s3]

H.
¯
s1,

¯
s2 and

¯
s3 can be written

as follows: 
¯
s1 = [ρ10,ρ20, · · · ,ρk0]
¯
s2 = [ρ1θ,ρ2θ, · · · ,ρkθ]
¯
s3 = [ρ1ϕ,ρ2ϕ, · · · ,ρkϕ]

, (10)

where ρi0, ρiθ and ρiϕ can be expressed as follows:
ρi0 =

s
si(θ,ϕ, t)dθdϕ

ρiθ =
s

(θ− θi)si(θ,ϕ, t)dθdϕ
ρiϕ =

s
(ϕ−ϕi)si(θ,ϕ, t)dθdϕ

. (11)

¯
s is a 3k × 1 dimensional vector, and

~
s is a 2k × 1 dimensional vector. It can be proven that

the following relationship exists [37]:

E[ρilρin] =


σ2

i l = n = 0
σ2

i Mθi l = n = θ

σ2
i Mϕi l = n = ϕ

0 l , n

, (12)

where Mθi and Mϕi can be expressed as follows:

Mθi =
x

(θ− θi)
2pi(θ,ϕ, t)dθdϕ, (13)

Mϕi =
x

(ϕ−ϕi)
2pi(θ,ϕ, t)dθdϕ. (14)

Since the sources are unrelated, we have:

E[
¯
s

¯
s

H
] = diag(Λ, MθΛ, MϕΛ), (15)
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E[
~
s

~
s

H
] = diag(Λ, MϕΛ), (16)

where: 
Λ = diag(σ2

1, σ2
2, · · · , σ2

k)

Mθ = diag(Mθ1, Mθ2, · · · , Mθk)

Mϕ = diag(Mϕ1, Mϕ2, · · · , Mϕk)

. (17)

The generalized manifold matrix of the subarray X1 is defined as [A11, A12, A13]. Blocks of
the matrix can be expressed as follows:

A11 = [α1(θ1,ϕ1),α1(θ2,ϕ2), · · · ,α1(θk,ϕk)]

A12 = [[α1(θ1,ϕ1)]
′

θ, [α1(θ2,ϕ2)]
′

θ, · · · , [α1(θk,ϕk)]
′

θ

]
A13 = [[α1(θ1,ϕ1)]

′

ϕ, [α1(θ2,ϕ2)]
′

ϕ, · · · , [α1(θk,ϕk)]
′

ϕ

] . (18)

Apparently, [A11, A12, A13] is a (2M + 1) × 3k dimensional generalized manifold matrix.
The received vector of the X1 array can be written as:

x1(t) = [A11, A12, A13]
¯
s + nx1(t). (19)

The generalized manifold matrix of the subarray X2 is defined as [A21, A22, A23], which is (2M +

1) × 3k dimensional. Blocks of the matrix can be written as follows:
A21 = [α2(θ1,ϕ1),α2(θ2,ϕ2), · · · ,α2(θk,ϕk)]

A22 = [[α2(θ1,ϕ1)]
′

θ, [α2(θ2,ϕ2)]
′

θ, · · · , [α2(θk,ϕk)]
′

θ

]
A23 = [[α2(θ1,ϕ1)]

′

ϕ, [α2(θ2,ϕ2)]
′

ϕ, · · · , [α2(θk,ϕk)]
′

ϕ

] . (20)

The received vector of the X2 array can be written as:

x2(t) = [A21, A22, A23]
¯
s + nx2(t). (21)

According to Equations (8) and (9), the following rotating invariant relation can be obtained:

[A21, A22, A23] ≈ [A11Φ, A12Φ, A13Φ], (22)

where the rotating operator can be written as:

Φ = diag(e j2πδ cosϕ1/λ, e j2πδ cosϕ2/λ, · · · , e j2πδ cosϕk/λ). (23)

The array manifold vectors of arrays Z1 and Z2 are expanded with the first-order Taylor series at
the point (θi, ϕi) as follows:

β1(θ,ϕ) ≈ β1(θi,ϕi) + [β1(θi,ϕi)]
′

ϕ(ϕ−ϕi), (24)

β2(θ,ϕ) ≈ β2(θi,ϕi) + [β2(θi,ϕi)]
′

θ(θ− θi) + [β2(θi,ϕi)]
′

ϕ(ϕ−ϕi), (25)

where:
[β2(θi,ϕi)]

′

θ = β1(θi,ϕi)(− j2πδ sinθi sinϕi/λ)e j2πδ cosθi sinϕi/λ, (26)

[β2(θi,ϕi)]
′

ϕ = [β1(θi,ϕi)]
′

ϕe j2πδ cosθi sinϕi/λ + ( j2πδ cosθi cosϕi/λ)e j2πδ cosθi sinϕi/λβ1(θi,ϕi). (27)
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If δ/λ� 1, the right side of Equation (26) and the second item on the right side of Equation (27)
can be ignored, then we have the following relationships:{

β2(θi,ϕi) = β1(θi,ϕi)e j2πδ cosθi sinϕi/λ

[β2(θi,ϕi)]
′

ϕ ≈ [β1(θi,ϕi)]
′

ϕe j2πδ cosθi sinϕi/λ . (28)

Define the generalized manifold matrix of array Z1 as [B11, B12], which is (2M + 1)× 2k dimensional.
Blocks in the matrix can be written as follows: B11 = [β1(θ1,ϕ1),β1(θ2,ϕ2), · · · ,β1(θk,ϕk)]

B12 = [[β1(θ1,ϕ1)]
′

ϕ, [β1(θ2,ϕ2)]
′

ϕ, · · · , [β1(θk,ϕk)]
′

ϕ

] . (29)

Then, the received vector of the Z1 array can be written as:

z1(t) = [B11, B12]
~
s + nz1(t). (30)

Define the generalized manifold matrix of array Z2 as [B21, B22], which is (2M + 1)× 2k dimensional.
Blocks in the matrix can be written as follows: B21 = [β2(θ1,ϕ1),β2(θ2,ϕ2), · · · ,β2(θk,ϕk)]

B22 = [[β2(θ1,ϕ1)]
′

ϕ, [β2(θ2,ϕ2)]
′

ϕ, · · · , [β2(θk,ϕk)]
′

ϕ

] . (31)

The received vector of subarray Z2 can be written as:

z2(t) = [B21, B22]
~
s + nz2(t). (32)

According to (28), the following rotating invariant relation is obtained:

[B21, B22] ≈ [B11Ψ, B12Ψ], (33)

where the rotating operator can be written as:

Ψ = diag(e j2πδ cosθ1 sinϕ1/λ, e j2πδ cosθ2 sinϕ2/λ, · · · , e j2πδ cosθk sinϕk/λ). (34)

3.2. Estimation of Nominal Angles

Combine the received vectors of subarrays X1 and X2 as follows:

x12(t) =
[

x1(t)
x2(t)

]
= [Ax1, Ax2, Ax3]

¯
s + nx(t), (35)

where [Ax1, Ax2, Ax3] is the generalized manifold matrix of the combined received vectors x12(t), which
can be written as:

[Ax1, Ax2, Ax3] =

[
A11, A12, A13

A21, A22, A23

]
. (36)

The combined noise vector of subarrays X1 and X2 can be written as:

nx(t) =
[

nx1(t)
nx2(t)

]
. (37)

The covariance matrix of the combined receive vectors x12(t) can be written as:

R12
x = E[x12(t)xH

12(t)]. (38)
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The sample covariance matrix R̂12
x can be substituted for R12

x in calculation, having the following
expression:

R̂12
x =

1
N

N∑
t=1

x12(t)xH
12(t). (39)

For ID sources, the rank of the covariance matrix is theoretically larger than the source number.
Define Ex as a subspace formed by the eigenvectors corresponding to the maximum k eigenvalues of
the covariance matrix R12

x . As both Mθi and Mϕi are numbers far below 1 with the condition of a small
angular spread, the subspace Ex is the same as the subspace spanned by Ax1. Then, there exists a k × k
nonsingular matrix T that satisfies the following relationship:

Ex =

[
A11

A11Φ

]
T, (40)

where Φ is the rotating operator described by Equation (23), A11 is the first block of the generalized
manifold matrix of the subarray X1 described by Equation (18).

Define Ex1 and Ex2 as the upper and lower kth rows of Ex, then we have:

Ex1 = A11T. (41)

Ex2 = A21T. (42)

Thus, the following relationship can be obtained:

Ex2 = Ex1T−1ΦT. (43)

Define Ωx = T−1ΦT, we have:
Ωx = E+

x1Ex2. (44)

Therefore, the nominal elevations of the ID sources can be solved as follows:

ϕi = arccos
angle(ηi)

2πδ/λ
i = 1, 2, · · · , k, (45)

where ηi is the ith eigenvalue of Ωx.
Combine the received vectors of subarrays Z1 and Z2 as follows:

z12(t) =
[

z1(t)
z2(t)

]
= [Bz1, Bz2]

~
s + nz(t), (46)

where the generalized manifold matrix of the combined received vectors z12(t) can be written as:

[Bz1, Bz2] =

[
B11, B12

B21, B22

]
. (47)

The combined noise vector of subarrays Z1 and Z2 can be written as:

nz(t) =
[

nz1(t)
nz2(t)

]
. (48)

The covariance matrix of the combined received vectors z12(t) can be expressed as:

R12
z = E[z12(t)zH

12(t)]. (49)
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The sample covariance matrix R̂12
z can be substituted for R12

z in calculation, having the following
expression:

R̂12
z =

1
N

N∑
t=1

z12(t)zH
12(t). (50)

As Mϕi is a number below 1 under the condition of a small angular spread, the subspace Ez

constructed by eigenvectors corresponding to the maximum k eigenvalues of the covariance matrix
R12

z is the same as the subspace spanned by Bz1. Then, there exists a k × k nonsingular matrix Q that
satisfies the following relationship:

Ez =

[
B11

B11Ψ

]
Q, (51)

where Ψ is the rotating operator described by Equation (34), B11 is the first block of the generalized
manifold matrix of the subarray Z1 described by Equation (29).

Define Ez1 and Ez2 as the upper and lower kth rows of Ez:

Ez1 = B11Q, (52)

Ez2 = B21Q. (53)

Thus, we can obtain:
Ez2 = Ez1Q−1ΨQ. (54)

Define Ωz = Q−1ΨQ, we have:
Ωz = E+

z1Ez2. (55)

Then, the nominal azimuths of the ID sources can be obtained as follows:

θi = arccos
angle(µi)

2πδ/λ sinϕi
i = 1, 2, · · · , k, (56)

where µi is the ith eigenvalue of Ωz.

3.3. Angle Matching

Considering the combined generalized manifold matrix [Ax1, Ax2, Ax3] of parallel subarrays X1
and X2, the Capon estimation criterion has the following expression:

min wHR12
x w

s.t. wH [Ax1, Ax2, Ax3] = 1
(57)

where R12
x is the covariance matrix of the combined received vectors x12(t) described by Equation (38),

and w is an unknown coefficient vector.
The above equation can be solved by the Lagrange function. The Capon cost function of subarrays

X1 and X2 can be obtained as:

L(θ,ϕ) =
1

‖ [Ax1, Ax2, Ax3]
H(R̂12

x )
−1

[Ax1, Ax2, Ax3]‖F

. (58)

The steps for angle matching can be summarized as follows:

1. Choose ϕ̂i = ϕi as the estimated nominal elevation from the set
{
ϕ1,ϕ2, · · · ,ϕk

}
, traverse the set{

angle(µ1), angle(µ2), · · · , angle(µk)
}

and solve the paired nominal angles (θ j, ϕ̂i) ( j = 1, 2, · · · , k)
according to Equation (56).

2. Substitute (θ j, ϕ̂i) ( j = 1, 2, · · · , k) into (58) to select the pair that makes the maximum value of
L(θ,ϕ) and denote the pair as (θ̂ j, ϕ̂i).
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3. Remove ϕ̂i from the set
{
ϕ1,ϕ2, · · · ,ϕk

}
and remove 2πδ/λ cos θ̂i sin ϕ̂i from the set{

angle(µ1), angle(µ2), · · · , angle(µk)
}
.

4. Repeat steps 1–3.

All nominal angles can be paired by (k + 2)(k − 1)/2 calculations.

3.4. Estimation of Angular Spread

Considering subarray X1, the covariance matrix of the received vector has the following expression:

R(θ,ϕ; ui) =
x

p(θ,ϕ; ui)α1(θ,ϕ)αH
1 (θ,ϕ)dθdϕ. (59)

For Gaussian 2D ID sources, APDF has the following expression:

p(θ,ϕ; ui) =
1

2πσθiσϕi
exp

−0.5

(θ− θi
σθi

)2

+

(
ϕ−ϕi

σϕi

)2
. (60)

Assuming d/λ = 0.5, and within the premise of small angular spreads, the elements of R(θ,ϕ; ui)

can be expressed as follows:

[R(θ,ϕ; ui)]lh = e jπ(l−h) cosθi sinϕie−0.5{[πσθi(l−h) sinθk sinϕi]
2+[πσϕi(l−h) cosθi cosϕi]

2
}, (61)

where [•]lh represents the element of the lth row and hth column of a matrix.
For uniform 2D ID sources, APDF has the following expression:

p(θ,ϕ; ui) =

 1
4σθiσϕi

|θ− θi| ≤ σθi and
∣∣∣ϕ−ϕi

∣∣∣ ≤ σϕi

0 |θ− θi| ≥ σθior
∣∣∣ϕ−ϕi

∣∣∣ ≥ σϕi
. (62)

R(θ,ϕ; ui) has the following expression:

[R(θ,ϕ; ui)]lh = e jπ(l−h) cosθi sinϕi
sin[πσϕi(l− h) cosθi cosϕi]· sin[πσθi(l− h) sinθi sinϕi]

πσϕi(l− h) cosθi cosϕi·πσθi(l− h) sinθi sinϕi
. (63)

Azimuth spreads as well as elevation spreads can be obtained by two-dimensional spectral
searching using the Capon estimation:

(σ̂θ, σ̂ϕ) = argmax
1

σmax{(R̂
1
x)
−1

R(θ,ϕ; ui)}
, (64)

where σmax{•} represents the maximum eigenvalue of the matrix. R̂1
x is the sample covariance matrix

of arrays X1, having the following expression:

R̂1
x =

1
N

N∑
t=1

x1(t)xH
1 (t). (65)

3.5. Algorithm Procedure and Complexity Analysis

According to the above analysis, the algorithm steps are summarized as follows:

1. Calculate the sample covariance matrix R̂12
x and R̂12

z .

2. Obtain Ex and Ez by decomposition of R̂12
x and R̂12

z . Calculate Ωx and Ωz according to (44) and (55).
3. Conduct the decomposition of Ωx and Ωz to obtain the eigenvalues ηi and µi, and then calculate

the nominal elevations ϕi and nominal azimuths θi from (45) and (56).
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4. Determine the nominal angles (θ̂i, ϕ̂i) ( j= 1, 2, · · · , k) according to the angle matching method.
5. Substitute (θ̂i, ϕ̂i) ( j= 1, 2, · · · , k) into R(θ,ϕ; ui) according to Equation (61) or (63). Solve

the angular spreads parameters σ̂θi and σ̂ϕi from (64).

The flow of the algorithm is shown in Figure 2.
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The complexity of the algorithm proposed in this paper with respect to nominal angles contains
four parts. First, calculating the covariance matrix R̂12

x and R̂12
z is O(NK2), where N is the snapshots

number and K is the total sensor number. The second part is the eigendecomposition of R̂12
x and R̂12

z ,
which is O(K3). The third is the eigendecomposition of Ωx and Ωz, which is O(k3). The fourth is angle
matching, which is O(k2). The computational cost of reference [36] mainly contains calculating sample
covariance matrices O(NK2) and the alternating projection technique, which require four-dimensional
optimizations: O(K4). The complexity of the estimation method of double parallel arrays proposed
in reference [37] includes three parts. First, calculating the covariance matrix is O(NK2). The second part
is the eigendecomposition of the covariance matrix, which is O(K3). Third, the 1D search is O(kLϕK2),
where Lϕ constitutes the search points of the nominal azimuth. The computational complexity of
the angular spread parameters is mainly divided into two parts: the inversion of the covariance
matrix R̂1

x, which is O[(K/4)3], and the 2D search to obtain the angular spread parameters, which is
O[(K/4)3kLσθLσϕ], where Lσθ and Lσϕ are the search points of the elevation spread and azimuth spread,
respectively. As reference [37], which deals with the problem of DOA estimation, does not involve
the estimation of angular spreads, Table 1 shows the main computational costs of three methods
for DOA estimation. From Table 1, we can clearly obtain that the computational cost for the DOA
estimation of the proposed algorithm is lower than for the algorithms in refs. [36,37].

Table 1. Computational complexity of different methods for DOA estimation.

Method Sample
Covariance Matrix

Eigendecomposition/
Alternating

Projection Technique
Searching Total

Proposed O(NK2) O(K3) + O(k3) O(NK2) + O(K3) + O(k3)
Reference [36] O(NK2) O(K4) O(NK2) + O(K4)
Reference [37] O(NK2) O(K3) O(kLϕK2) O(NK2) + O(K3) + O(kLϕK2)

It should be noted that reference [36] also deals with the estimation of angular spreads, where
the computational cost for angular spreads is involved in a four-dimensional optimization, O(K4).
From a previous analysis, the computational cost of the proposed method for angular spreads is
O[(K/4)3kLσθLσϕ]. Generally speaking, angular spreads are within a few degrees for 2D ID sources.
Supposing both Lσθ and Lσϕ are set with 20 search points, which means that the search range is 2◦ with
a step size 0.1◦, when K > 6.25k the computational cost for angular spreads in reference [36] is larger
than the proposed one. To summarize, the proposed DOA estimation has a significant advantage
in terms of computational cost, whereas the angular spreads are not obvious.
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4. Results and Discussions

The arrays structure is set with each linear array containing five sensors, which means that the total
sensor number of the double cross arrays is 19. The array element spacing is set as d = λ/2 and
the parallel array interval is δ = λ/10. The root mean square error (RMSE) of the DOA is defined as
RMSEa with following expression:

RMSEa =

√√√
1

Mc

Mc∑
ς

(θ̂ς − θ)
2
+

1
Mc

Mc∑
ς

(ϕ̂ς −ϕ)2. (66)

MC represents the Monte Carlo simulation times, while the superscript ˆ and variable ς of θ̂ς and
ϕ̂ς represent the estimated value in the ςth Monte Carlo simulation. RMSE of the angular spread is
defined as RMSEs with following expression:

RMSEs =

√√√
1

Mc

Mc∑
ς

(σ̂ς
θ
− σθ)

2
+

1
Mc

Mc∑
ς

(σ̂ςϕ − σϕ)
2, (67)

where σ̂ς
θ

and σ̂ςϕ represent the estimated azimuth spread and elevation spread in the ςth Monte Carlo
simulation. RMSEa denotes the estimation errors of DOA, while RMSEs denotes the estimation errors
of the angular spreads. The signal-to-noise ratio (SNR) is defined as 10log(1/σ2

n), where the noise is
assumed to be the Gaussian white zero mean with a variance of σ2

n.
In the first experiment, we investigate the influence of SNR and the snapshots number

on the estimation. A 2D ID Gaussian source with parameters of [30◦, 45◦, 2◦, 3◦] is set to be
estimated. The experiment is completed by 100 independent Monte Carlo simulations. Figure 3
shows the estimated RMSEa and RMSEs with SNR from 0 to 30 db when the snapshots number is
equal to 200. Figure 4 shows the estimated RMSEa and RMSEs when changing the snapshots number
when SNR is equal to 20 db. Figures 3 and 4 also show the estimation results by the method used
in refs. [36,37], using 20 sensors based on a uniform rectangular array (URA) and double parallel
linear arrays (DPLA), respectively, as well as the Cramer–Rao bound (CRB) [36]. It can be seen that
with the improvement of SNR or the snapshots number, the estimation accuracy of the proposed
algorithm in this paper is better than that of the algorithm proposed in refs. [36,37] under the same
experimental conditions. The method used in reference [37] unitizes double parallel arrays X1and
X2 with sensor spacing in the elevation dimension of less than one tenth of the impinging signal
wavelength and sensor spacing in the azimuth dimension of less than half of the impinging signal
wavelength; consequently, the physical aperture of the array in the elevation dimension is far less
than that of the azimuth dimension. Therefore, during the iterative estimation, the estimation of
the nominal elevation will produce larger errors, which will also be transmitted to the solution of
the nominal azimuth. Though the URA of the method used in reference [36] has a structural balance
in the elevation and azimuth dimensions, the spacing of sensors of the double cross array proposed
in both the elevation and azimuth dimensions is less than half of the impinging wavelength when
the number of elements is constant; the aperture of the array proposed in this paper is larger than
the URA in the two dimensions, exhibiting a higher estimation accuracy. To summarize, the advantage
of the proposed double cross arrays is that they satisfy both the premise of a small interval of parallel
linear arrays and the aperture equalization in the elevation and azimuth dimensions when compared
with URA and DPLA.
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In the second experiment, we examine the influence of the angular spread on estimation. For a 2D
ID source with nominal angles (60◦, 35◦), two kinds of APDF (Gaussian and uniform) are considered,
respectively. The azimuth spreads and elevation spreads are supposed to be equivalent in both kinds of
sources. The estimated RMSEa with an angular spread from 0◦ to 10◦ is investigated. The experiment is
completed by 100 independent Monte Carlo simulations with the SNR at 20 db and snapshots number
at 200. Figure 5 shows that the estimation accuracy decreases with an increase of the angular spreads.
For the Gaussian source, when the angular spreads are 5◦, RMSEa is 0.03. As the angular spreads reach
10◦, RMSEa is 0.4. For the uniform source, RMSEa is 0.04 and 0.7 when the angular spreads are 5◦ and
10◦, respectively. These experimental results show that the estimation performance decreases with
the increase of the angular spreads, but that it is still satisfactorily within 10◦. The proposed algorithm
is robust in the case of small angular spreads.
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As can be seen from Figure 5, the DOA estimation accuracy is highest when the angular spreads
are 0◦. As a matter of fact, whether it is a Gaussian or uniform distributed source or any other
distributed sources, when the angular spreads are 0◦, the parameters describing the ID source only
include the DOA parameters, which means that the distributed source can be equal to the point source.
This experiment also shows that the method proposed in this paper is not only suitable for the DOA
estimation of the ID source but also suitable for the DOA estimation of the point source. In the case of
a mismatch between the point source and ID source model, it also has good robustness.

In the third experiment, we investigate the ability of the algorithm to estimate multiple distributed
sources. Three ID sources, A, B and C, are set to be estimated. A and B are ID sources with a Gaussian
APDF, C is an ID source with a uniform APDF. The three sources have the following parameters:
[55◦, 80◦, 1.5◦, 2◦], [25◦, 70◦, 2◦, 3◦] and [35◦, 40◦, 3.5◦, 4.5◦]. SNR is set at 20 db, and the snapshots
number is 200. The experiment is completed by 100 independent Monte Carlo simulations. Figure 6
shows the 100 results of the estimated DOAs of the three sources. Figure 5 illustrates that the proposed
method can estimate nominal angles of multiple 2D ID source simultaneously without prior knowledge
of APDF. Figure 7 shows the 100 results of the estimated angular spreads of the three sources,
respectively. From the derivation process in Parts 3.2 and 3.3, as well as from the experimental results,
we can see that the method proposed in this paper does not require knowledge of the specific form
of APDF in the DOA estimation. As the angular spreads are parameters of the APDF function, it is
impossible to discuss the angular spreads parameter without the APDF function. The method proposed
in this paper does not need to know the APDF in the DOA estimation, but solving the angular spreads
parameters requires prior information on the APDF form first, followed by searching and optimizing.
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It should be noted that the rotating invariant relations in this paper are based on the assumption
that the interval of the parallel linear array satisfies a small spacing. In practice, if the spacing of sensors
is small, on the one hand, when taking into account the characteristics of the sensors, the mutual
coupling effect between the sensors cannot be ignored. On the other hand, the installation error of
sensors will also affect the estimation effect. Therefore, this is difficult to apply in some high frequency
signal fields such as mobile communication, as the frequency of mobile communication rises from
800 MHz to 2.5 GHz. However, in the low-frequency sonic detection of the underwater background,
the sonar frequency can be reduced to 100 HZ, and the signal wavelength can reach approximately
14.5 m. Similarly, with respect to a very high frequency (VHF) radar, the general working wavelength
is selected to be within 1–3 m. In these cases, the interval of the parallel linear array can actually reach
a value that satisfies the hypothesis.

5. Conclusions

In this paper, an estimation of the parameters of a 2D ID source is presented based on a double
cross array that satisfies both the small interval of parallel linear arrays and the aperture equalization
in the elevation and azimuth dimensions. The rotating invariant relations of the generalized manifold
vectors with respect to nominal angles are derived under the proposed array. Received vectors are
reconstructed as products of generalized manifold matrices and extended signal vectors by taking
the first-order Taylor expansion of the array manifold vector. DOAs are calculated on the basis
of the covariance matrix of the received vectors according to a proposed ESPRIT-like framework.
Angular spreads are obtained by a two-dimensional search. Numerical simulations are conducted to
verify the proposed method while considering different experimental conditions, angular spreads and
multiple sources. The outcomes show that the proposed method shows a better estimation performance
under the same experimental condition and sensor number when compared with existing methods.
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