ﬂ SCNSors m\py

Article

In Vivo Optogenetic Modulation with Simultaneous
Neural Detection Using Microelectrode Array
Integrated with Optical Fiber

Penghui Fan 12, Yilin Song 12, Shengwei Xu 12, Yuchuan Dai 12, Yiding Wang 12, Botao Lu 1.2,
Jingyu Xie 12, Hao Wang "2 and Xinxia Cai -2-*

1 Aerospace Information Research Institute Chinese Academy of Sciences, Beijing 100190, China;

fan_ph@163.com (PE); ylsong@mail.ie.ac.cn (Y.S.); swxu@mail.ie.ac.cn (5.X.); hongril991@126.com (Y.D.);
wangyiding18@mails.ucas.ac.cn (Y.W.); IsIbt96@163.com (B.L.); xiejingyul6@mails.ucas.ac.cn (J.X.);
wanghaol6l@mails.ucas.ac.cn (H.W.)

University of the Chinese Academy of Sciences, Beijing 100049, China

*  Correspondence: xxcai@mail.ie.ac.cn; Tel.: +86-10-5888-7193

check for
Received: 16 July 2020; Accepted: 6 August 2020; Published: 13 August 2020 updates

Abstract: The detection of neuroelectrophysiology while performing optogenetic modulation can
provide more reliable and useful information for neural research. In this study, an optical fiber
and a microelectrode array were integrated through hot-melt adhesive bonding, which combined
optogenetics and electrophysiological detection technology to achieve neuromodulation and neuronal
activity recording. We carried out the experiments on the activation and electrophysiological detection
of infected neurons at the depth range of 900-1250 um in the brain which covers hippocampal CA1 and
a part of the upper cortical area, analyzed a possible local inhibition circuit by combining opotogenetic
modulation and electrophysiological characteristics and explored the effects of different optical
patterns and light powers on the neuromodulation. It was found that optogenetics, combined with
neural recording technology, could provide more information and ideas for neural circuit recognition.
In this study, the optical stimulation with low frequency and large duty cycle induces more intense
neuronal activity and larger light power induced more action potentials of neurons within a certain
power range (1.032 mW-1.584 mW). The present study provided an efficient method for the detection
and modulation of neurons in vivo and an effective tool to study neural circuit in the brain.

Keywords: optogenetics; micro-electrode array; in situ detection; electrophysiology; neural
circuit recognition

1. Introduction

Optogenetic technology has been widely used in the research of behavior, diseases and other
aspects of neural mechanism since it was put forward in 2005 [1], and not only on the central nervous
system; it also had effects on the peripheral nervous system [2,3]. Optogenetic technology can modulate
the activities of target neuron cells with high spatial-temporal resolution by combining photonics and
genetic techniques and has been one of the most important neuroscience research tools [4-6]. The core
of optogenetics is light-sensitive protein, also called opsins, which are mainly found in micro-organisms.
The opsin gene is introduced into the subject’s brain through viral vectors, and is eventually expressed
in targeted cells after transcription [7,8]. The light-sensitive protein expressed in the cell membrane
acts as an ion channel or pump controlled by light in a specific wavelength range. Channelrhodopsin-2
(ChR?2) is one of the most commonly used opsin tools, which promotes cell depolarization when
exposed to blue light.
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When optogenetic technology was used to modulate neural activity, a large amount of neuronal
activity needed to be recorded, mined and utilized to help us better understand the neurophysiology
of the nervous system. Optogenetics combined neuronal recording can also help to identify neuronal
subtypes and circuit [9]. Therefore, a tool that can simultaneously transmit light to targeted cells
and detect electrophysiological information is particularly important. Microelectrode array (MEA),
based on the Micro-Electro-Mechanical System (MEMS) method, is considered to be an ideal platform
to detect the neural activity of a single neuron, which also has the potential of electrochemical detection.
At present, the integrated device combining optical interface and MEA, also called optrode, which can
be classified according to integrated optical fiber, waveguide and micro light emitting diode (u-LED),
has attracted attention [10,11]. The optrode integrating optical fiber is a kind of mature and effective
optogenetic tool [12,13]. HyungDal Park formed the V-groove on the MEA by KOH wet etching
process to assist the alignment of the optical fiber and electrode [14]. Wang and colleagues bonded
a cannula to the open hole on the backside of the MEA to guide the fiber [15]. This method can be
successfully applied to the field of optogenetics, but requires considerable time and effort to develop.
The optrode based on waveguide is completed by directly depositing the waveguide material (usually
SU-8) on the MEA through the MEMS technology. Since the optical waveguide only act as optical
transmission medium, it is difficult to couple the light source and the optical waveguide, which usually
generates a large light loss and increases cost [16-18]. The p-LED itself is a low-power light source,
and can directly stimulate tissues with minimal light loss, so it is often integrated on MEA [19,20].
Furthermore, the manufacturing technology is usually forming the u-LED structure on silicon probe
through metalorganic vapor phase epitaxy (MOVPE) or directly bonding the commercial pu-LED to the
MEA. However, this method is complicated and even cause tissue damage due to overheating of the
light source [21,22].

Considering the cost and operability, we produced an optrode that combines optical fiber and
MEA through hot-melt adhesive. We used a homemade MEA that has been connected to Printed
Circuit Board (PCB) which increased the operable space and provided a larger and harder contact
area for fiber bonding. The device had the characteristics of low cost, easy operation and reusability
for acute in vivo experiment. Here, we verified the performance of the integrated device, analyzed a
possible circuit based on the performance of neurons under the optogenetic control and explored the
effect of optical patterns and light powers on neuronal activity. This study provided an efficient tool
for optogenetic neuromodulation and simultaneous in vivo electrophysiological detection.

2. Materials and Methods

2.1. Fabrication and Preparation of MEA Integrated with Optical Fiber

The Silicon-based MEA was fabricated based on MEMS technology as previously reported [23],
which consisted of four 6 mm shanks. Each shank was 100 um in width, 30 um in thickness and 80 pm
spacing. There were four electrode sites (16 pm in diameter) on the tip of every shank forming a
4 x 4 array. The fabrication process is shown as Figure 1a: (1) the SiO, layer was deposited on the
silicon-on-insulator (SOI, 30 pm Si/2 um SiO,/450 um Si) substrate to insulate the microelectrode from
the substrate; (2) then, the Pt/Ti conductive layer pattern (including recording sites, bonding pads and
conductive lines) was formed by photolithography, sputtering and lift-off process; (3) the SiO,/Si3Ny
insulating layer was deposited via plasma enhanced chemical vapor deposition (PECVD) and the
recording sites and bonding pads were exposed by the second photolithography and CHF; reactive ion
etching (RIE); (4) the shape of the MEA was established by the third photolithography and inductively
coupled plasma deep reactive ion etching (ICP DRIE); (5) the backside silicon was wet etched and
the silicon probes were released by self-stop etching in KOH solution. Then, the pads of individual
probe were connected to the printed circuit board (PCB) through wire bonding and embedded in
silicone rubber (Nanda 705#, Liyang Kangda Chemical Co. Ltd., Liyang, China) to isolate electrical
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connection. Finally, the assembled MEA was electroplated with platinum nanoparticles to improve
recording performance.
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Figure 1. (a) Microelectrode array (MEA) manufacturing process: (1) Deposition of a layer of SiO,
on silicon-on-insulator (SOI). (2) Photolithography, sputtering and lift-off to form conductive layer.
(3) Deposition of the insulating layer and exposure of recording sites and bonding pads. (4) Formation
of the shape of the MEA. (5) Release of the MEA from the substrate. (b) Schematic diagram of the
integrated device inserted into hippocampal CA1 of brain. (c) The fluorescence image of brain area
infected by rAAV.

In order to integrate with the optical interface, a 20 mm optical fiber (200 pm in diameter, NA = 0.39,
CFMLC12L20, Thorlabs, USA) was closely attached to the PCB of the assembled MEA. Then the fiber
was adjusted to be as parallel as possible with probes, and the fiber tip was about 200 um above the
recording sites. Finally, hot-melt adhesive was used to bond the optical fiber and MEA to ensure
mechanical stability (Figure 1b). This method was simple in operation, short in time and low in light
loss. The fiber and MEA could even be separated under heating, which undoubtedly improved their
utilization rates. At the same time, the integrated device could be reused for acute experiments.

2.2. ChR2 Transduction and Optrode Implantation

The experimental procedures were conducted with the permission of Beijing Association on
Laboratory Animal Care. The C57 mouse (7-week-old, 25 g) was anesthetized by the isoflurane
anesthesia apparatus (RWD520, RWD Life Science, Shenzhen, China) and fixed in the stereotaxic
frame (51, 600, Stenting, Wood Dale, IL, USA). The craniotomy was centered at AP = —2.3 mm
and ML = 1.5 mm for targeting the mouse hippocampus. Then 0.5 uL adeno-associated viruses
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(rAAV-hSyn-hChR2(H134R) -mCherry-WPRE-hGH PolyA, BrainVTA, Wuhan, China) were injected
into the mouse brain at a depth of 1 mm (Corresponding to the pyramidal cell layer of hippocampal
CAl). After the injection, the scalp was sutured, and penicillin was applied to the wound to prevent
infection. Then the mouse was placed on a soft cotton pad and returned to the rearing cage after being
fully awake.

After 4 weeks, the integrated device was implanted into the target brain area at the same site for
virus injection under anesthesia using a micropositioner (model 2662, David KOPF instrument, USA)
for testing. The depth of electrophysiological signal recording is mainly concentrated from 800 pm to
1250 pm. The schematic diagram of device implantation is shown in Figure 1b.

2.3. Electrophysiological Recording and Optical Stimulation

For real-time electrophysiological recordings, the MEA was connected to the recordings system
(USB-ME16-FAI-System, MultiChannel Systems, Reutlingen, Germany) via a 16-channel headstage.
The electrophysiological signals were sampled at the rate of 25 kHz. A high pass filter (200 Hz) was
used to obtain action potentials (spikes), and a low pass filter (200 Hz) was applied to obtain local field
potentials (LFPs). During recording, the background noise was about +13 1V, and the action potentials
trigger threshold was set to —40 1V to ensure that the signal-to-noise ratio of the signal was greater
than 3.

For optical stimulation, the light was applied by fiber-coupled LED (M450F, 450 nm, Throlabs,
Newton, NJ, USA), and the optical fiber on the optrode was coupled to the light source through a
ceramic mating sleeve. We used the Labview program to drive the LED light source, and change
the output power of the LED by setting the driving voltage. The maximum driving voltage was
5000 mV, which corresponded to the maximum output power of the LED. The schematic diagram of
the experiment is shown in Figure Sla.

2.4. Histology

Following completion of test, the mouse was injected with 10% chloral hydrate into deep anesthesia
and perfused through the heart with 0.9% NaCl and 4% paraformaldehyde in sequence. After perfusion,
the brain was removed and put into 20% sucrose solution for 24 h followed by 30% sucrose solution
for 48 h for postfication. Then 40 um thick sections were prepared with a freezing microtome and
mounted on glass slides, and sections were viewed and photographed under the confocal fluorescence
microscopy. The fluorescence image is shown as Figure 1c, due to the spread of the virus, the infection
area covers the hippocampal CA1 and part of the cortex above CA1. The estimated spread of ChR2
was 400 um in the vertical plane.

2.5. Statistics

We used a mouse in this article to verify the device performance and made repeated experiments
to ensure the accuracy of the conclusion. There is enough blank time between different experiments
to eliminate the interference between them. Therefore, all tests were administrated independently.
Spike data were sent to Offline Sorter for sorting and clustering analyses. Spike waveforms were
purified and extracted by principal component analysis (PCA). Then sorted spike data and LFP data
were further analyzed by NeuroExplorer as the following;:

(1)  Spike firing rate analysis was defined as the mean number of spikes per second each bin. Here we
took the average of multiple recording channels.

(2) Interspike interval (ISI) analysis was defined as the number of spikes each bin of the discharge
interval (from 0-100 ms).

(3) Auto-correlation analysis was defined as the number of neuron firing time differences (from —50
to 50 ms) in each time window.
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(4) LFP power was defined as the integral of the mean squared LFP. Here we took the average of
multiple recording channels.

Statistical analyses and graphs were administrated by Origin Software and all results were
expressed as mean + SD unless otherwise specified.

3. Results

3.1. Optical Stimulation Enhances Neuronal Activity

We conducted in vivo experiments with the integrated devices, first tested the response of neurons
under optical stimulation and proved the performance of the MEA. In the region where the neurons
successfully expressed ChR2, optical stimulation induced more neuronal activity. As shown in
Figure 2a, the background noise of the electrode hardly changed before and during the illumination
period. However, the spike firing rate significantly increased during the illumination period (Figure 2b).
The LFP power also increased in the during-light period (Figure 2c). We also tested in non-viral
transfection areas (as shown in Figure S2). It could be seen that the background noise had almost no
change before and during the illumination, and the optical stimulation did not induce more spikes and
increase lager LFP power, which proved that the application of light alone did not enhance neuronal
activity. This indicated that the device successfully modulated the neuronal activity and measured
the electrophysiology information, and these two experiments together illustrated the authenticity of
optical stimulation-induced neuronal activity in the virus-infected area.
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Figure 2. (a) The real-time recordings of electrophysiological signals before and during light illumination
in viral transfection areas; (b) the average spike firing rate of neurons before and during optical
stimulation; (c) the mean LFP power (0-30 Hz) of neurons before and during optical stimulation.
Error bars indicate standard deviation of 3 channels.

The experiment verified that at least in the range of brain depth 900-1250 um, optical stimulation
enhanced neuronal activity, indicating the excellent performance of the device in modulation and
detection. As shown in Figure 3a, spikes significantly increased during optical stimulation at different
test depths. Figure 3b shows the spike waveform extracted from the recording channels, and the
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results indicated that the spike waveforms measured at different depths were different. Due to the
different optical stimulation pattern and opsin expression level at different test depths, the neuronal
activity during illumination is not the same, but their neuronal activity was all significantly enhanced
compared to before light illumination.
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Figure 3. (a) The real-time recordings of spikes before and during blue light illumination at different
depths (here we only selected one channel for each group of experiments as a display); (b) the spike
waveform of neurons at different depths.

3.2. Optical Stimulation Activates a Possible Local Inhibitory Circuit

During the experiment, we attempted to analyze and study a local circuit combining optogenetics
and electrophysiological recording. As shown in Figure 4a, the data was first recorded for 3 min
without light, and then illumination (30 s light-on, 30 s light-off) lasting 6 min. Four neuron units were
obtained (unit-a and unit-b were separated from the same recording channel) by principal component
analysis and clustering from three recording channels. It can be seen from the figure that the spikes
generated by unit-b,c,d increased significantly during optical stimulation. The spike firing rate of
unit-b,c,d during optical stimulation was much greater than before optical stimulation (Figure 4b),
which indicated that the neurons expressing ChR2 were successfully activated.
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Figure 4. (a) The real-time recordings of spikes of 4 units separated from three recording channels

Before-Light During-Light

(the shaded area is the period of during-light, 30sm) and inferred local circuit (the green circle represents
the interneuron, the red triangle represents pyramidal neuron, the purple rectangles represent unknown
type of neurons and dotted lines between neurons indicate uncertain connections); (b) the average
spike firing rate of neurons before and during optical stimulation; (c) spike waveform of unit-a and
unit-b; (d) the mean LFP power (0-8 Hz) of neurons before, during and after optical stimulation. Error
bars indicate standard deviation of 3 channels and N = 6 (N is the number of experiments).

It was also found that the neuronal activity did not increase for unit-a, and even weakened
during optical stimulation. In order to explore the reasons, we did a further analysis. Figure S3
shows the auto-correlograms and ISI histograms of unit-a (Figure S3a,c) and unit-b (Figure S3b,d).
The ISI histogram of unit-a (yellow) showed a short and sharp peak, and its auto-correlation analysis
showed a decreasing trend, indicating that it had obvious cluster-like spike characteristics. For the
unit-b (green) auto-correlation analysis, several equally spaced peaks appeared, indicating that it has
periodic spike characteristics under optical stimulation. In terms of spike waveform, the amplitude of
unit-a was almost twice that of unit-b (Figure 4c). Combined with their respective auto-correlation
analysis, we speculated that unit-a may be a putative pyramidal neuron, while unit-b may be a putative
interneuron [24]. Furthermore, we speculated that they were in a local circuit (dotted box in the
Figure 4a), and the direction of synaptic transmission was from interneuron to pyramidal neuron, i.e.,
unit-b was the upstream neuron. The types of unit-c and unit-d were unclassified and their connection
with others was not clear. When optical stimulation activated unit-b interneurons, its neuronal activity
increased and its inhibitory effect on unit-a also enhanced. Therefore, spikes of unit-a were reduced
during light. The LFP power (0-8 Hz) during illumination was lower than before and after illumination
(Figure 4d), which also seems to prove our speculation. Figure S3e showed the LFP power (0-30 Hz)
before, during and after optical stimulation, which had the same trend as 0-8 Hz. Figure S3f showed
the power of LFP in different frequency bands. It was found that LFP was mainly concentrated in
0-8 Hz, so the subsequent LFP analysis was mainly concentrated at 0-8 Hz.

3.3. Effects of Different Optical Stimulation Patterns on Optogenetic Neuromodulation

The spikes of the three channels in different optical stimulation patterns were recorded
(see Figure S4a). According to the statistical average spike firing rate during optical stimulation, it
was found that under the same duration, the spikes induced by s1 optical stimulation pattern were
more than s2 optical stimulation pattern, the spikes induced by s2 optical stimulation pattern were
more than s3 optical stimulation pattern (as shown in Figure 5a), the spike firing rate of the three
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channels had the same trend (Figure S4b). On the whole, within a certain range, the lower the light
frequency and the greater the duty cycle, the stronger the neuronal activity were caused. At the same
time, we calculated the LFP power (0-8 Hz) under different optical stimulation patterns. The power
under s1 was greater than that of s2 and s3, but there was no significant difference between s2 and s3
(Figure 5b). This may be due to the fact that LFP depended on thousands of neurons in a wide range,
and there may be inhibition or excitation circuits in this area, which had complex effects on neuronal
activity. In short, we believed that different optical stimulation patterns had an effect on the intensity
of induced neuronal activity.
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Figure 5. (a) The average spike firing rate of neurons under different optical stimulation patterns
(s1: 10 Hz, duty ratio = 50%, 2 min; s2: 10 Hz, duty ratio = 25%, 2 min; s3: 16.6 Hz, duty ratio = 25%,
2 min); (b) The mean LFP power (0-8 Hz) of neurons under different optical stimulation patterns.
Error bars indicate standard deviation of 3 channels.

3.4. Effects of Different Light Powers on Optogenetic Neuromodulation

The output power of LED light source (Ps) and the tip of optrode (P;) under different driving
voltages is shown in Figure S5a (unless otherwise specified, the output power refers to the output
power of the optrode tip P;). We could see the maximum tip output power was 1.7 mW. We also
simulated the power density at a certain distance from the fiber tip of the integrated device [13,25,26],
see supplementary materials and Figure S5b for detailed process. Since the distance between the optical
fiber tip and the recording site was 200 pum, the neurons were exposed to less than 10 mW/mm? and the
light would not cause great damage to the recorded neurons from the perspective of power density.

Then, the effect of different light power on neural activity was explored. We used 5000 mV,
4000 mV, 3000 mV, 2000 mV and 2500 mV to drive the laser one by one. The time of each stage was
2 min (after 40 s of illumination, the light was closed for 20 s, and the cycle was twice). According to
the statistics of spike firing rate under different light power (Figure 6a), it was found that when the
driving voltage of 2500 mV (corresponding to 1.032 mW output power) or above was used, the optical
stimulation produced the effect of enhancing the activities of neurons; when the driving voltage of
2000 mV was used for optogenetic control, there was almost no obvious modulation effect. This showed
that optogenetics required the light intensity to reach a certain threshold (1.032 mW in this study).
At the same time, it was found that within a certain power range (1.032 mW-1.584 mW), the firing rate
increased as the light power increased. When the driving voltage exceeds 4000 mV (corresponding to
1.584 mW), the firing rate decreased instead. On the one hand, it might be related to the switching
property of photoreceptor itself, on the other hand, it might be due to the heat generated by light,
resulting in the increase of neurons’ temperature, which might have a inhibition effect on the activity
of neurons. There was also no obvious relationship between LFP power and light power (Figure 6b).



Sensors 2020, 20, 4526 90f12

35 20- . <
= .
3.0 <
= S 1.5
= 2.5 =
z H
3 )
& 2.0 2
L [ S 1.0
21,51 A
g | =
= 1.0 T — 0.5
0.51
0.0 E3  — | 0.0 T T T T T
0 2000 2500 3000 4000 5000 2000 2500 3000 4000 5000
. . Drivin 1 mV
Driving voltage(mV) ving voltage(mV)
(a) (b)

Figure 6. (a) The average spike firing rate of neurons under different driving voltages; (b) The mean
LFP power (0-8 Hz) of neurons under different driving voltages. Error bars indicate standard deviation
of 3 channels and N = 2 (N is the number of experiments).

4. Conclusions

In this paper, we employed a physical bonding method to integrate an optical fiber onto an
MEA. This allowed us to characterize the activity of neural circuits in vivo, using optogenetic light
delivery, and hence quantifying neural firing patterns. The changes of neuronal activity in a large range
(depth from 900 to 1250 pm in the brain) under optogenetic control were detected and the infected
neurons were successfully activated by optical stimulation, which proved the excellent performance
of the integrated device. Furthermore, a possible circuit is analyzed by optogenetic modulation and
electrophysiological detection, which provided a new method for circuit research. At the same time,
we also studied the effect of different optical stimulation patterns and different light powers on the
neuromodulation. We found that the optical stimulation patterns with lower frequency and larger
duty cycle induced more intense neuronal activity. The light power needed to reach a certain response
threshold (1.032 mW in this study), and greater optical power induced more intense neuronal activity
within a certain power range.

In our work, the optical fibers are only used to transmit light. However, as far as we know,
some new sensors based on optical fiber have great application potential in neuroscience research
and attract many people’s attention. For example, researchers integrate high-resolution twist/torsion
optical fiber sensors to monitor eventual movements of the patients utilizing the electromagnetic
interference independency (EMI) of optical fibers [27]. Furthermore, some optical fiber-based sensors
also are studied for MRI (Magnetic Resonance Imaging) interventions [28]. The optical fiber force
sensors can help to provide force sensing in the MRI interventions, which increases the safety or
accuracy of interventions. If the optical fiber on our integrated device is combined with photo sensor
and customized circuit, it will have the potential to become an optical fiber force sensor. However,
there are many other issues to consider in order to make it MRI-compatible. First of all, small fiber
diameter and small footprint should be used to meet the requirement of sensor miniaturization.
Secondly, we should choose the materials carefully. Polymer optical fiber can be considered for
better flexibility and compatibility and the electrode can be based on polyimide, which matches brain
tissue well in magnetic susceptibility. Finally, due to the potential of the electric current inducing
imaging artifacts, some measures should be taken to prevent the interference of electrophysiology
detection on MRI. In summary, our devices have the potential to be compatible with MRI. At the
same time, we can also add in vivo electrochemical analysis function of neurotransmitters to the
MEA. Many events in the nervous system are accompanied by the release of neurotransmitters, so the
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detection of neurotransmitters is particularly important. Electrochemical analysis need to modify
multilayer polymers and enzymes at the electrode sites and the measurement is carried out in the
three electrodes system, which are compatible with our devices [29]. Furthermore, it is also possible to
measure the concentration of different neurotransmitters on an MEA by using different polymers or
enzymes. These ideas will make it possible to simultaneously detect electrophysiological signals and
neurotransmitters under the neuromodulation of optogenetics, which will undoubtedly promote the
development of neuroscience.

With the development of materials science, flexible electrodes have great advantages in the field
of biosensors due to their close contact with brain tissue, many microelectrodes or optical devices
based on flexible substrates have been studied [30,31]. The pu-LED array based on flexible substrate
can accurately stimulate the brain at multiple points. Mccall and colleagues have made cellular-scale
microscale, inorganic light-emitting diodes (u-ILED, 6.45 pm thick, 50 x 50 um?), and the u-ILED is
transferred to Polyethylene terephthalate (PET, polyester film) substrate for long-term implantation [32].
The thickness of organic light-emitting diodes (OLED) can even be less than 1 um, which is more
suitable for implantation in the brain [33]. Therefore, we can combine flexible electrode and optical
interface to explore long-term optogenetic modulation and multi-mode sensor integration in the
future [34,35]. In a word, the method proposed in this paper was an effective and feasible way of
optogenetic neuromodulation and simultaneous neural detection, which can be applied to the study of
neuroscience mechanism.
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