
sensors

Letter

A Novel Approach to Condition Monitoring of the
Cutting Process Using Recurrent Neural Networks

Rui Silva * and António Araújo

COMEGI, Campus de Vila Nova de Famalicão, Universidade Lusíada–Norte, Edifício da Lapa-Largo
Tinoco de Sousa, 4760-108 Vila Nova de Famalicão, Portugal; antonio.araujo@hotmail.com
* Correspondence: rgasilva@gmail.com; Tel.: +351-252-309-200

Received: 1 July 2020; Accepted: 6 August 2020; Published: 11 August 2020
����������
�������

Abstract: Condition monitoring is a fundamental part of machining, as well as other manufacturing
processes where, generally, there are parts that wear out and have to be replaced. Devising proper
condition monitoring has been a concern of many researchers, but there is still a lack of robustness
and efficiency, most often hindered by the system’s complexity or otherwise limited by the inherent
noisy signals, a characteristic of industrial processes. The vast majority of condition monitoring
approaches do not take into account the temporal sequence when modelling and hence lose an
intrinsic part of the context of an actual time-dependent process, fundamental to processes such as
cutting. The proposed system uses a multisensory approach to gather information from the cutting
process, which is then modelled by a recurrent neural network, capturing the evolutive pattern
of wear over time. The system was tested with realistic cutting conditions, and the results show
great effectiveness and accuracy with just a few cutting tests. The use of recurrent neural networks
demonstrates the potential of such an approach for other time-dependent industrial processes under
noisy conditions.
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1. Introduction

Condition monitoring is present throughout all industry activities and plays a major role in process
efficiency, being increasingly integrated in machine tools in an effort towards unmanned machining.
Suitable condition monitoring of manufacturing processes is fundamental to the success of other
prominent activities, such as tool change policies, production control and operations management
in general. Among all manufacturing activities, the ones where materials are shaped by material
removal, such as turning or milling operations, require special attention, since it is a complex process
conditioned by a significant number of variables such as cutting parameters, tool and machined
part materials and machine characteristics, to name a few [1–3]. A key strategy to support the goal
of unmanned machining is to develop sensor-based, real-time monitoring systems that can aid in
classifying tool wear levels and promote adequate tool change policies.

Condition monitoring can be subdivided into several stages: sensor selection and deployment,
generation of a feature indicative of tool condition and, finally, classification (i.e., assessing the collected
and processed information to determine the level of wear on the tool). This process is often perceived
as an attempt to mimic human sensory behavior in that it resembles the processing of different sensed
information into an intelligent decision-making process. In tool wear monitoring, many sensors and
features have been considered so far (e.g., vibration, sound, temperature, force and many other sources
of information) [4–7]. Supported by previous research results [7–9] and the literature [1,2], it was
found that the best candidates for condition monitoring of the cutting process were force, vibration
and sound, being the most feasible and least intrusive sensors that relate more accurately to the wear
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process of tools. In addition, the use of multiple sensors should prove to be of great value towards tool
wear evaluation, since the noisy characteristics of data captured by each sensor alone would lead to
certain failure of the monitoring system [5,6,9]. Although condition monitoring has been extensively
studied, some limitations persist concerning the performance of monitoring systems under realistic
machining conditions [10]. Condition monitoring systems have been proposed using many different
approaches, some with different success rates and limitations, such as neural networks [3,7,11–14],
fuzzy logic [15,16], Markov chains [17–19], expert systems [20] and many others [10]. Neural networks
present some of the most attractive features, such as the capability of abstraction of hardly accessible
knowledge and generalization from distorted sensor signals when applied to sensor fusion and
classification in tool wear monitoring. The use of artificial intelligence is common, given its flexibility
and the fact that there are universal nonlinear approximators outperforming direct modelling through
mechanistic approaches [21].

Computational models for neural systems have often concentrated on the processing of static
stimuli using typical feedforward neural networks, as reported in the vast majority of research on
condition monitoring using artificial intelligence [11,14]. However, numerous biologically relevant
signals have a rich temporal structure, and neural circuits must process these signals in real time
and hence give context to temporal sequences, such as in audition, where almost all information
is embedded in the temporal structure. Furthermore, in the visual domain, movement represents
one of the fundamental features extracted by the nervous system; hence, it is not surprising that,
in the last few years, there has been an increased interest in the dynamic aspects of neural processing.
The processing of real-world, time-varying stimuli is a difficult problem and represents a challenge for
artificial models of neural functions [11,22]. This paper explores the feasibility of using recurrent neural
networks (RNNs) in condition monitoring of the cutting process. This novel approach takes advantage
of the underlying characteristics of RNNs that demonstrate unique capacities in modelling dynamic
complex systems and sequenced information [23–25]. A brief introduction to RNNs is provided,
highlighting major aspects concerning the base algorithm, architecture and proposed learning policy
that supports the monitoring strategy and justifies its feasibility and suitability. Experimental work is
detailed afterwards to support the evaluation of the current approach. Finally, simulation results are
presented that demonstrate the flexibility and feasibility of RNNs for tool condition monitoring of the
cutting process.

2. Recurrent Neural Networks

Recurrent neural networks possess a certain number of characteristics that make them unique,
namely the capabilities associated with traditional neural networks, as well as inherent sequence
capturing capabilities, making them especially suited to dealing with time series and time-dependent
problems [26]. In theory, an RNN can capture information pertaining to arbitrarily long sequences
and hence incorporate information pertaining to time-dependent events in its memory or model.
Recurrent neural network principles were first proposed in the 1980s [27–29] and set the background
for the development of recent frameworks and variations [30]. It should be noticed that, as in Figure 1,
the initial network topology is unfolded through time, with the different weighted connections being
shared at all times. The distinctive feature of this neural network is that hidden weights between
time steps propagate forward past information, therefore conditioning future results while building a
temporal structure.

A recurrent neural network (RNN) computes the hidden vector sequence activation
H = {H0, H1, . . . , HT} and the output sequence O = {O0, O1, . . . , OT}, given the input sequence
X = {X0, X1, . . . , XT}. Xi represents the input feature vector at a given time step, extracted from acquired
sensor data; W represents the hidden weight matrix; U is the forward weight from the X inputs; and V
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is the weight matrix from the hidden units to the output nodes. Both the hidden and output sequences
are related through the following equations, for each time step:

Ht = tanh(U ·Xt + W ·Ht−1) (1)

Ot = V ·Ht (2)Sensors 2020, 20, x FOR PEER REVIEW 3 of 13 
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These problems are more likely to occur when deeper unfolding is required, such as in learning long 
time sequences, but can be superseded through second-order optimization techniques such as 
Hessian-free optimization [33] or modifying the network structure, giving rise to solutions 
resembling a long short-term memory (LSTM) network, featuring multiplicative gates so that values 
can be retained over time [30,34]. Weight adjustments are performed in all weight matrices (U, V and 
W) using the backpropagation algorithm and calculated using the chain rule of differentiation. Since 
the weights W are used at every time step, it is necessary to backpropagate all gradients and, finally, 
update these weights, as in the traditional backpropagation algorithm. As errors are summed up, so 
too are error gradients added up for each training set while unfolding the RNN. 

Architecture and Learning Strategy 

The success of applying recurrent neural networks depends on many factors, such as network 
structure, learning strategy and the ability to overcome the vanishing and exploding gradients 
problem [31]. The choice of a given architecture depends on the problem that is being dealt with and 
may vary depending on the adopted approach. For instance, when learning to model a time series, 
the network can be fed with successive inputs that can go as deep as one expects it to capture 
information, depending upon its behavior, while the output can be set to a single neuron, being a one 
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As in traditional neuronal networks, weights must be adjusted to perform adequate classifications
and hence learn from examples. One of the most used algorithms to gradually adjust weights in
an RNN resembles the backpropagation algorithm and was named backpropagation through time
(BPTT) [31]. As in traditional backpropagation algorithms, there is a need to determine the gradient of
errors to enable gradual adjustments on the different weights [27]. Upon the presentation of a given
time-sequenced input and output, learning is performed at each time step layer of the unfolded network,
starting from the last time step. The fundamental difference from the backpropagation algorithm is
related to the fact that hidden weights are also responsible for the unfolding of the network and must be
adjusted at every iteration of the unfolded network structure. Given the need to repeatedly recalculate
error gradients over time, it causes gradient error values to expand or shrink exponentially, leading
to the problem of vanishing and exploding gradients [32]. These problems are more likely to occur
when deeper unfolding is required, such as in learning long time sequences, but can be superseded
through second-order optimization techniques such as Hessian-free optimization [33] or modifying
the network structure, giving rise to solutions resembling a long short-term memory (LSTM) network,
featuring multiplicative gates so that values can be retained over time [30,34]. Weight adjustments are
performed in all weight matrices (U, V and W) using the backpropagation algorithm and calculated
using the chain rule of differentiation. Since the weights W are used at every time step, it is necessary
to backpropagate all gradients and, finally, update these weights, as in the traditional backpropagation
algorithm. As errors are summed up, so too are error gradients added up for each training set while
unfolding the RNN.

Architecture and Learning Strategy

The success of applying recurrent neural networks depends on many factors, such as network
structure, learning strategy and the ability to overcome the vanishing and exploding gradients
problem [31]. The choice of a given architecture depends on the problem that is being dealt with
and may vary depending on the adopted approach. For instance, when learning to model a time
series, the network can be fed with successive inputs that can go as deep as one expects it to capture
information, depending upon its behavior, while the output can be set to a single neuron, being a one
step ahead or multiple steps ahead prediction. This same problem could be handled with time-differed
paired input–output samples unfolding as deep as required, giving rise to one or multiple steps
ahead predictions. Tool wear in cutting is inherently a time-dependent process and hence a suitable
problem to be dealt with using recurrent neural networks. The information captured from the sensors
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at each time step should be fed to the unfolding network and, as a result, an estimate for tool wear
level should be provided by the network at each time step. Tool wear monitoring demands that
classification is performed gradually at each time step, meaning that the unfolding of the recurrent
neural network should be performed, and learning carried out, in a different fashion from traditional
recurrent neural networks. The unfolding depth remains small for the limited number of tool wear
sampled data for each cutting insert, and hence vanilla recurrent neural networks can be used without
any extra precaution regarding vanishing and exploding gradients.

The recurrent neural network developed to support the presented results was coded based on
the principles introduced by Hopfield (1982) [29] and Rumelhart et al. (1986) [27]. Considerations
regarding the used architecture and learning strategy were inspired by past research, mainly in
the review by Schmidhuber [31]. The network consists of three layers: an input layer of 14 inputs
corresponding to the different features extracted from the sensor data, a hidden layer and one output
neuron, corresponding to the tool wear level of a given set of features from the sampled sensor data.
While performing classification, the network unfolds to a given depth, corresponding to the sequence
of sampled data, from new tools to the current wear stage. While monitoring the cutting process,
the network progressively unfolds, providing a classification of tool wear for each new data set while
retaining previously sensed data, cumulatively contributing to each new wear level classification.
The importance of past data is intuitively important because the wear process is a progressive
mechanism that builds upon past events. Input feature vectors are normalized so that different feature
scales do not interfere with meaningful results, and weights are initialized to small random values so
that map unfolding occurs smoothly, allowing the vanishing and exploding gradient effects to occur.
In the early stages of training, feature vectors are presented for each cutting tool, limiting the temporal
sequence; hence, only a few wear levels are initially shown to the network so that it starts to encode
the temporal signature of the cutting process. During the last stages of training, the full temporal
sequence of cutting tools is presented to refine learning and further encode all stages of a worn tool.
This learning strategy allows for a gradual capture of the temporal structure inherent to tool wear
progression, as well as limiting any threatening exponential degradation of weight gradients.

3. Materials and Methods

To test the feasibility of the proposed method, experiments were conducted in a test stand, based
on a lathe equipped with force sensors; feed and tangential force measurements, through strain gauges
placed in the tool holder; sound emission, with a microphone placed near the cutting tip; and an
accelerometer, placed on the base of the machine. Figure 2 depicts the overall layout.
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3.1. Experimental Procedure

Data were acquired while machining a block of mild steel with a coated, cemented carbide tip
under the following cutting conditions: cutting speed of 350 m/min; feed rate of 0.25 mm/rev; and a
depth of cut of 1 mm. Sampling of raw sensor data was conducted at a sampling frequency of 20 kHz
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on all sensors, with analogue prefiltering at 10 kHz to avoid aliasing. Data were acquired every 2 min,
considering an expected tool life of approximately 15 min, with the tool flank wear being measured
each time. Each sample consisted of 512 points for each sensor. Test data were collected from 6 tool tips
at approximately 80 mm from both ends, in the middle of the workpiece. The workpiece, a bar initially
75 mm in diameter and 173 mm long, was held at one end by a special 250 mm diameter, 3-jaw, type 87
international power chuck and supported at the other end by a motorized programmable tailstock unit.

3.2. Experimental Results and Feature Extraction

A total of 14 features were extracted for each record at each of the tool wear levels. The extracted
features for both sound and vibration, each of these sensors accounting for 6 features, were as follows:
mean value, standard deviation, kurtosis, skewness and the power in the frequency bands 2.2–2.4 kHz
and 4.4–4.6 kHz. Additionally, two more features were obtained from the mean value of the tangential
and feed forces. All features exhibited a strong noise influence that could be associated with different
factors, such as magnetic interference, tool and material impurities and machine dynamics. The data
presented in Figure 3, relative to the evolution of tool wear in 6 different tool tips, are elucidative of the
variability and unpredictability associated with monitoring tool wear, having different tools follow
slightly different tool wear trajectories. Typically, tool wear takes place in three stages. The first stage
is a short period of rapid wear. The wear then progresses at a slower rate over a period in which
most of the useful tool life lies. The last stage is a rapid period of accelerated wear, and it is usually
recommended that the tool be replaced before this stage, at about a value of flank wear (Vb) of 0.3 mm.
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The tangential force (Figure 4) showed an overall consistent correlation with time, although
different tools behaved differently. In addition, it can be seen that for most tools, the recorded value
of the tangential force did not increase at every time step. In some cases, the recorded values of
the average tangential force dropped slightly, which might be due to the complexity of the cutting
process and noise induced by the industrial-like environment. Figure 5 shows the evolution of the
skewness of sound against time, and a random-like behavior can be observed. The mean value,
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standard deviation, skewness and kurtosis of sound and vibration signals, the remaining features,
also showed little correlation to tool wear when considered one at a time. Despite the random-like
behavior, these features carry valuable information pertaining to the evolution of cutting dynamics
due to tool wear, and they are not transparent to traditional mathematical modelling techniques [9,35].
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As such, these sensors and features must be combined to take advantage of their embedded
information, since each of the sensors alone carries a lot of noise and depicts a complex behavior.
The complex relationship between different features, as well as the underlining noise, does not
encourage the use of traditional mechanistic approaches. Hence, the use of neural networks, given
their generalization and modelling capabilities, adds up to the unique characteristics of recurrent
neural networks in capturing sequences.

4. Simulation Results and Discussion

The simulation was conducted with different hidden layer sizes, training lengths and learning rates.
All weights were initialized to small values, between 0 and 0.01, to avoid vanishing or exploding
gradients, although these were unlikely to happen given the short time sequence. The data from the
first five cutting tools were used to train the recurrent neural network, and the last tool tip was used to
assess the ability of the network to classify unseen data. During training, data pertaining to one of the
tools were taken randomly from the training set and fully presented in the correct time sequence to the
network, letting it unfold until the last tool wear level, as shown in Figure 6. Training was performed
upon full unfolding in order to update the weights at all different levels. The present approach copes
automatically with different sample sizes, since it unfolds recursively until the last acquired tool wear
state (N). This network’s fitness for online condition monitoring is hence an intrinsic ability and suitable
for all kinds of time-sequenced events.
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The classification average mean error for the tip of Tool 4 (the dataset used for training) was
0.0007 mm, and the classification average mean error for the tip of Tool 6 (the unseen dataset) was
0.014 mm, with results presented in Figure 7. The average mean error of 0.0007 mm for the training
set (previously learned information) was obtained from the difference between the measured and
classification values. The average mean error of 0.014 mm for the unseen dataset was obtained from
the measured and predicted values. Hence, the classification performance on the training data stays
within 0.2% of the maximum value for the tool wear, and the unseen tool tip was, on average, classified
to a precision of 3.5% of the maximum value. The classification of previously seen data was accurate,
recalling to a high precision what had been learned. The unseen data also achieved a very good
performance, considering that they had not been previously seen by the network and, therefore,
the network proved to be able to capture the underlying behavior of the wearing process and still
retain its generalization capabilities.

The best performance results were attained with a learning rate coefficient of 0.2, 5 × 104 batch
training cycles and a size of 8 neurons in the hidden layer. Figure 8 shows the effect of the learning
rate upon classification of unseen data, depicting an optimum value of 0.2 around which learning
takes place more efficiently, giving rise to a smaller average classification mean error. Increasingly
smaller learning rates tended to degrade the learning capacity of the network. Learning rates above
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0.6 disabled the network’s capacity to learn. For learning rates above 0.6, the error gradients within
the network exploded and hence weights tended towards zero, leading to an average mean error
corresponding to the mean of all tool wear classification. Figures 8 and 9 outline the performance of
the network with regards to different learning rates and different hidden layer size.Sensors 2020, 20, x FOR PEER REVIEW 9 of 13 
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From Figure 9, it can be seen that the best performance upon classification of unseen data was
achieved with a hidden layer size between 6 and 9 neurons. With a lower number of neurons,
the network showed difficulties in capturing the overall system’s dynamics and hence classification
degenerated, giving a higher average mean error. With a higher number of neurons in the hidden layer,
classification degraded, probably due to difficulties in generalizing from the presented data and most
certainly overfitting the learned patterns. Figure 10 further explores the performance of the network
concerning the sensitivity to the number of training cycles.
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Figure 10 shows the performance of the network when the number of training cycles is increased.
It can be seen that with only 5000 cycles, the network converged rapidly to lower average mean
errors, and further training had a small impact on performance. Learning was not disrupted with
further training, and hence the captured relationship was preserved and performance was held with
no overfitting.

5. Conclusions

This paper describes the design, implementation and training strategy of a prototype tool
wear monitoring system based on recurrent neural networks. The design takes advantage of the
inherent capabilities of these neural networks to capture sequences and thus reveals itself as a perfect
modelling candidate for the characteristic progressive wear of tools. The results are very promising,
since classification of unseen data is performed with a very low average mean error. This seemingly
simple approach can be extended to other monitoring processes apart from machining, since it reveals
flexibility and good generalization capabilities. Further work should be developed to test the network’s
ability to perform one step ahead predictions, using an additional neuron in the unfolded output layer.
In addition, further experiments should be conducted using smaller time intervals between sampling
in order to assess the impact on performance and robustness of the proposed approach.
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