Supplementary Material

One-Step Assembly of Fluorescence-Based Cyanide Sensors from Inexpensive, Off-The-Shelf Materials

Gregory E. Fernandes *, Ya-Wen Chang, Akash Sharma and Sarah Tutt

Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409-3121, USA; ya-wen.chang@ttu.edu (Y.-W.C.); akash.sharma@ttu.edu (A.S.); sarah.tutt@ttu.edu (S.T.)

* Correspondence: gregory.fernandes@ttu.edu

Estimating the quenching constant of 1 + 3 + Cu²⁺ complexes

Figure S1. (a) Normalized fluorescence response (I/I₀) of a 0.2 mM **1** + 0.1 mM **3** mixture as a function of increasing Cu²⁺ levels. Excitation wavelength = 350nm. (b) Normalized fluorescence response (I/I₀) of a 0.2 mM **1** + 0.1 mM **3** mixture as a function of Cu²⁺ bound within the **1** + **3** complex. Excitation wavelength = 350nm. The dashed curve is the best fit to the Stern–Volmer equation (I/I₀ = (1+K_{sv} [Cu²⁺])⁻¹).

To estimate the quenching constant (K_{sv}) for $1 + 3 + Cu^{2+}$ complexes, we collect dose response data for 1 + 3 mixtures in the presence of increasing Cu²⁺ levels (Figure S1a). Next, we transform the xaxis from "Total Cu²⁺" to "Complex-bound Cu²⁺" (Figure S1b). We can do this because, in previous studies, we have shown that each 1 + 3 complex is able to bind a maximum of 30 Cu²⁺ ions [1], a number that is directly corroborated by the data in Figure S1, which clearly shows that Cu^{2+} levels > 3 mM cause no additional quenching in 0.1 mM **1 + 3** mixtures. Finally, we fit the data in Figure S1 (**b**) to the Stern–Volmer equation to obtain the K_{sv} ~ 1.68 mM.

Figure S2. Normalized fluorescence recovery (I/I_b) of a 0.2 μ M **1** + 0.1 μ M **3** + 2.4 μ M Cu²⁺ mixture upon addition of CN⁻. Excitation wavelength = 350nm; slope m = 0.5 μ M⁻¹ CN⁻; standard deviation of blank δ = 0.4; analytical detection limit = 3 δ /m = 2.5 μ M CN⁻.

References

1. Fernandes, G. E.; Ugwu, C., Cu²⁺ sensing via noncovalent complexes of fluorescent whitening agents and imidazole-based polymeric dye transfer inhibitors. *J. Appl. Polym. Science* **2020**, 137, 48915.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).