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Abstract: In this work, we propose an online method to detect and approximately locate
an external load induced on the body of a person interacting with the environment. The method
is based on a torque equilibrium condition on the human sagittal plane, which takes into account
a reduced-complexity model of the whole-body centre of pressure (CoP) along with the measured
one, and the vertical component of the ground reaction forces (vGRFs). The latter is combined
with a statistical analysis approach to improve the localisation accuracy, (which is subject to
uncertainties) to the extent of the industrial applications we target. The proposed technique eliminates
the assumption of known contact position of an external load on the human limbs, allowing a more
flexible online body-state tracking. The accuracy of the proposed method is first evaluated via
a simulation study in which various contact points on different body postures are considered. Next,
experiments on human subjects with three different contact locations applied to the human body are
presented, revealing the validity of the proposed methodology. Lastly, its benefit in the estimation
of human dynamic states is demonstrated. These results add another layer to the online human
ergonomics assessment framework developed in our laboratory, extending it to more realistic and
varying interaction conditions.

Keywords: novel methods and systems for integrated ergonomic assessment; monitoring
human-environment interaction; health monitoring in working environments

1. Introduction

In recent years, an ever-growing number of small- and medium-sized companies are adapting
their industrial processes to the demands of the contemporary market with high-mix and low-volume
production [1]. In such processes, human workers have to operate in, and interact with environments
which vary continuously and dynamically. These new working conditions make the traditional view
of occupational ergonomics in the design of the static workplaces less valid and hardly applicable [2].

The tools to assess human factors in the brand-new industrial background should provide
quantitative evaluation and anticipation of the human psycho-physical conditions and delivered
effort throughout the working activity. This entails the development of modular sensory systems
and human kinodynamic states estimation algorithms, which can adapt to the varying tasks involved
in the working process and to the ever-changing interactions of humans with the environment.
Previous works to address this focused on the development of human dynamic models [3–6], to detect
internal body states (e.g., joint torques) under known body postures and external forces. However,
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from a practical standpoint, one of the open challenges is the ability to identify the application
point of an external force such as the weight of a load on the workers’ body using wearable or
suitable-for-industry sensory systems.

Several approaches can be found in literature for detecting the contact point location of an external
force acting on a body. Drawing inspiration from the robotics community, in [7], the total energy
and the generalized momentum of the robot manipulator are used to develop a collision detection
method that uses only proprioceptive robot sensors and provides even directional information to make
the robot safely react after the collision. On the basis of the same principles, in [8] a physical collision
detection/reaction technique is presented, based on a residual signal which needs only joint position
measures, which can be given by the encoders. However, certain quantities cannot just be obtained for
humans thus none of these solutions are practically feasible. On the other hand, some researches [9,10]
show that a possible approach consists in employing additional sensors acting as a skin on the robot
body. Nevertheless, this solution is not feasible for humans since it may limit mobility and cause
frustration. In fact, when dealing with humans, alternative approaches involving more practical and
less invasive systems need to be used.

A physics-based optimization procedure, merged with a machine learning technique is proposed
in [11] to estimate forces exerted by human participants in multi-contact interaction with rigid
environments. The method uses motion-capture only, but it can just be implemented in an off-line
phase. Other approaches explore the use of computer vision technology [12,13] to infer interaction
forces. In this direction, the contact points are observed from the image data alone and but this is often
too ambiguous and noisy to reconstruct subtle interactions and contact phenomena between the hand
and an object. In [14], a technique to directly estimate the external forces in real-time by combining
inverse dynamics computation and a physiological muscle model is developed. Nevertheless, this
approach requires the use of electromyography (EMG) sensors, which besides being unpractical
in the industrial settings we target, present several drawbacks [15] considering the correct placement
of the sensors, noise signals or artifacts, movement of the electrodes in dynamic conditions, etc.

Accordingly, the main objective of this work is to fill in the gap between the current insufficient
human ergonomics monitoring systems in industry, which are pen-and-paper-based observational
methods (e.g., Ergonomic Assessment Work-Sheet (EAWS)), and the complex, hardly personalisable
laboratory models, which exploit less reliable bio-signal measurements such as EMGs. In this direction,
we propose a novel method for contact point detection and localisation which can be successfully
applied to humans using solely practical and light-weight sensory systems. The method is
based on a torque equilibrium condition on the human sagittal plane, which takes into account
a reduced-complexity model of the whole-body centre of pressure (CoP), identified in an off-line phase,
along with the measured CoP, and the vertical component of the ground reaction forces (vGRFs).
The latter is combined with a statistical analysis approach to improve the localisation accuracy (which
is subject to sensor noise and uncertainties in the model) to the extent of the industrial applications
we target.

The second objective of this work is to extend the online estimation algorithm we proposed
in [16] to account for the overloading torques induced into the human body joints by an external load.
This eliminates the assumption of a fixed and predefined contact point (i.e., the human hand/s holding
an object) that was made so far within the procedure. Hence, this extension increases the potential
of the ergonomics assessment method (e.g., monitoring of the physical loading induced on human
joints by an external object/tool) presented in [16] while improving its flexibility to varying interaction
conditions in realistic industrial settings.

Subsequent to these advancements, an optimisation of the human posture by minimising such
overloading torques is presented. As a result, human workers can achieve more ergonomic and
comfortable body configurations where the risk of human joint injuries can be significantly reduced.
The whole framework is represented in Figure 1.
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Figure 1. In this work we propose a contact point detection and localisation method which can be
applied in the estimation of the torques induced on human joints by an external load. By minimising
such torques, the human body posture can be optimised, leading to a more ergonomic behaviour.

The capability of the contact point detection technique to localise the application point
of an external load is tested through a simulation study using Simscape Multibody™. Then,
an experimental analysis on two human subjects is made to understand its potential in realistic
settings. First, a validation of the proposed method is performed considering three different locations
of a load on the body. Then, its application to the estimation of human dynamic states is presented.
In this work, “human dynamic states” refer to those variables, measurable on the humans, that are
determined by the intervention of a force as the loading induced on the human joints by an external
force. The contact point position is first detected and the overloading torques induced by the external
load are computed accordingly. The latter can then be used for the assessment and optimisation of
the human body posture.

2. Contact Point Detection and Localisation

In this section, we introduce a novel approach to detect and locate the contact point of an external
load applied to the human body. First, we provide an analytical method to compute it by means of
the measured and the estimated human CoP and GRFs. Next, we present the human model employed
in this work to obtain the CoP estimation, which is based on the statically equivalent serial chain
(SESC) technique [17].

2.1. Estimation of the Contact Point Position

A floating base model of the human body is developed in this work. The human pelvis frame
is set as the base frame Σ0 attached to the inertial frame ΣW through six virtual degrees of freedom

(DoFs). The generalised coordinates of the system are defined by q = [xT
0 θT

0 qT
h ]

T ∈ R6+n. xT
0 and

θT
0 represent the position and the orientation of Σ0, respectively. qh ∈ Rn denotes the angular position
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of human joints and n is the number of joints. Assuming nc contact forces vector fi ∈ R6 applied
on the segments, the equation of motion in the joints space can be written as

STτ = τb −
nc

∑
i=1

JT
pi

fi, (1)

where τb = Mq̈+Cq̇+G ∈ Rn+6 and M, C and G represent the inertia matrix, the vector of centrifugal
and Coriolis forces, and the vector of the gravity force, respectively. S = [0n×6 In×n] ∈ Rn×(n+6) is
the actuation matrix, τ ∈ Rn is the vector of applied joint torques, and Jpi ∈ R

6×(n+6) is the contact
Jacobian at the point pi with respect to ΣW . By employing Equation (1), given Jpi and fi, it is possible
to address the overloading effect induced on the joints of a human which is performing a manipulation
task interacting with a tool or an object [16].

To obtain the contact point position in the human body link, a torque equilibrium condition can
be considered, which is approximated by an equivalent mechanical system performing quasi-static
movements (naturally arising when executing heavy manipulation tasks). In general, an interaction
force vector F that acts on a rigid body system results in the joint torques vector T as

T = xp × F, (2)

where xp represents the contact point vector on the body. Due to the multiple interaction forces,
several torques are acting on the body at the same time but the body stays at rest. It means that there
is no net torque (Tnet = 0) acting on the object, which is hence in an equilibrium condition. Similarly,
let us consider the interaction forces acting on the body on the left side of Figure 2.
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Figure 2. The overall procedure to detect the contact point starting from a torque equilibrium condition.

The torques are generated by the weight of an external object, thus, the equilibrium condition is

CPwt × fwt = CPwo × fwo − xah × fh, (3)

where CPwt and CPwo are the body CoP in the loaded and not loaded condition, respectively. fwt is
the vGRF vector applied at CPwt , which is obtained from the combined mass of the human body and
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the external object/tool, while fwo depends only on the human body. fh represents the weight of
the object/tool that is applied at the contact point xah . By introducing the assumption of single contact
point, the weight of the object/tool can be defined as fh = −(fwt − fwo). Since the vGRF on a flat surface
(typical condition within industrial work spaces) is much larger than the tangential components of
the ground reaction force, the latter can be neglected and the vGRF can be represented by the human
body weight, which is acting on the projected CoP position [18].

Hence, considering the forces and points projected onto the ground, for the human in the sagittal
plane, the moment equilibrium equation about a pivot (i.e., ankle joint) can be written as

xah ∣x =
CPwt ∣xfwt −CPwo ∣xfwo

(fwt − fwo)
, (4)

where xah ∣x is the x-coordinate of the load application point (i.e., contact point). The whole-body CoP
vector CPwo is achieved by a human-body model, which will be explained in Section 2.2. On the other
hand, the CoP vector CPwt can be measured by a sensor system.

The link, which includes the contact point, must now be identified. The procedure employed
in this work is explained below and the corresponding pseudocode is presented in Algorithm 1.

Algorithm 1 Detection of contact point position.

1: procedure CONTACTPOINT(xah ∣x)
2: Initialize: nj ← 0, j = 1, . . . , k

N ← 0
3: while true do
4: for j = 1→ k do
5: xj

ah ∣y ← π�(xah ∣x)∩
zÐx
linkj ▷ compute the intersection

6: if xj
ah ∣y ≠ 0 then

7: Xj
ah
[nj]← linkxj

ah ,i
8: nj ← nj + 1

9: µ̂j ← MEAN(Xj
ah
) ▷ compute the sample mean

10: σ̂j ← STD(Xj
ah
) ▷ compute the sample standard deviation

11: if nj > 50 then
12: A2,j ← using (7)
13: if A2,j < A2

critical then ▷ contact point link found
14: N ← j
15: if N ≠ 0 then
16: δN

m ← using (8)
17: if δN

m < δm,threshold then ▷ contact point position found
18: break
19: return µ̂N

First, the algorithm starts to determine whether the point of intersection between a j-th link

segment
zÐx
linkj (with link index j ∈ [1 ⋯ k]) and π�(xah ∣x), which is the perpendicular line passing

through xah ∣x, exists. In fact, it is possible to obtain multiple values for the load application point on
y-axis (xah ∣y) when the perpendicular line π�(xah ∣x) intersects more than one link along its path. Every

time the intersection point linkxj
ah

w.r.t. Σlink is computed for the j-th link, its measurement is collected

and stored in the vector Xj
ah

.
Next, to calculate the contact point which comes closer to the most likely value, by considering

the mean value of the data set in Xj
ah

, we use a statistical hypothesis test for normality. It should be
noted that the estimation of the load application point, made by using (4), is based on the measurements
collected with a motion-capture system and a force sensor. Hence, some disturbances due to sensors
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noise are inevitably introduced during the estimation process. Furthermore, when dealing with
humans, the artifacts generated by their natural ever-present movement must be taken into account.
To model the resulting error, the Gaussian model is widely used in inertial body tracking [19,20],
but also in the characterisation of the human movement [21]. Similarly, the data set that we build can
be described as [22,23]

Xj
ah
∼N (µ̂j, σ̂2,j), (5)

where µ̂j and σ̂j are the mean value and the standard deviation of Xj
ah

, respectively, and N denotes
the normal (i.e., Gaussian) distribution. Thus, we can assume that the approach to find a contact point
from an approximate probability distribution is relying on the normality assumption. The one-sided
Anderson-Darling test [24] is implemented online for this purpose. Prior to the test, the element xj

ah ,i

of Xj
ah

for i = 1, . . . , nj must be sorted such that xj
ah ,1 ≤ xj

ah ,2 ≤ . . . ≤ xj
ah ,nj and standardised as

sj
i =

xj
ah ,i − µ̂j

σ̂j . (6)

First, a sufficient number of samples must be collected such that the condition nj > 50 is satisfied.
Then, test statistic A2,j for the j-th link can be defined as

A2,j = −nj −
nj

∑
i=1

2i − 1
nj [ln(F(sj

i))+ ln(1− F(sj
nj+1−i

))] . (7)

where F is the standard normal cumulative distribution function and ln is the natural logarithm. If A2,j

exceeds a given critical value, the hypothesis of normality is rejected with some significance level.
The critical values, which depends on the number of samples and the significance level, can be found
in [25]. Hence, the first link whose sample of contact points presents a value of A2,j under the critical
value A2

critical , is selected as the contact point link N (see Figure 2). This is because we expect the data
set underlying the estimated contact point to be normally distributed.

Once the contact point link is detected, the contact point position linkxN
ah

w.r.t. Σlink must be
calculated. At this point, to decide, whether or not, enough accuracy is reached by the collected
sample, a method to monitor the estimated range of the desired parameter (i.e., contact point) is
required. Due to the normality assumption previously made, the confidence interval of the sample
mean can be employed to this aim. A confidence interval gives an estimated range of values which
is likely to include an unknown population parameter, the estimated range being calculated from
a given sample [26]. Since we consider the mean of the sample of the contact point link µ̂N to be
equal to the estimated contact point position linkxN

ah
, the magnitude of its confidence interval provides

an estimate of the accuracy of the contact point computation. As soon as this confidence interval falls
below a predefined threshold δm,threshold, the sample mean µ̂N is selected as the contact point position.
The confidence interval of the mean δN

m is computed as

δN
m = ±z* σ̂N

√
nN

such as − z* σ̂N
√

nN
≤ µ̂N ≤ +z* σ̂N

√
nN

, (8)

where z* is a critical value which expresses the confidence level of the interval, which depends
on the significance level, and can be found in [27].
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2.2. Whole-Body Centre of Pressure Model

As proposed in the SESC technique [17], the whole-body centre of mass (CoM), CM =
[CM∣x CM∣y CM∣z]T ∈ R3 of any branched chain (as our human model) can be modeled by
the geometric parameters (i.e., CoM, mass and length of each link) of the original whole-body structure

CM = x0 +BΦ, (9)

where x0 is the position of Σ0, matrix B = [A0 ⋯ An] ∈ R3×3(n+1) includes the i-th link rotation

matrices Ai ∈ SO(3) with respect to ΣW . Matrix Φ = [φT
0 ⋯ φT

n ]
T ∈ R3(n+1) contains the vector of

SESC parameters φi ∈ R3, which represents the mass distribution of the human model.
To identify the unknown parameters, the whole-body CoM can be written in regressor form as

0CM = CM − x0 = BΦ, (10)

where 0CM is the CoM represented in Σ0. The identification of the parameter vector Φ in such
a form can be considered as a classical least-squares problem. In this work, the rotation matrices in B
and the human base frame position vector x0 are obtained from the measurements of an external
motion-capture system. On the other hand, the CoM vector cannot be measured directly from
the sensors but it is possible to achieve the ground-projected CoM, which corresponds to the CoP
in the static condition. The whole-body CoP vector CP = [CP∣x CP∣y]T ∈ R2 with respect to the ΣW can
thus be collected using an external force platform.

Accordingly, the least-squares problem can be solved using the stacked matrices B∗

(the superscript (.)∗ symbolises the pre-multiplication of the projection onto the ground plane) and
vectors 0CP (the CoP represented in Σ0) for a set of p human poses defined as W ∈ R2p×3(n+1) and
Ω ∈ R2p×1, respectively. The vector of the identified SESC parameters Φ̂ ∈ R3(n+1) can then be
computed as

Φ̂ = W+Ω, (11)

where W+ = (WTW)−1
WT is the Moore-Penrose generalised inverse. In static conditions, we can

obtain the CoP by projecting the whole-body CoM estimated by (9) with the identified SESC
parameters (11) onto the ground. Then, the x-coordinate of such CoP can be used in (4) to obtain xah ∣x.

3. Overloading Joint Torque

We recently proposed an algorithm to estimate the overloading torques induced into the human
body joints by an external load [16]. In this work and in subsequent ones, the technique was utilised
with the assumption of a known and fixed load application point. However, by employing the contact
point detection method proposed in this paper, the overloading torques can be computed with much
more flexibility. A brief summary of the method, with extension to the case of varying load application
point, is presented in this section.

The method is based on the displacement of the CoP, computed from the difference between
an estimated one, ĈPwo (using the procedure explained in Section 2.1), and a measured one, CPwt ,
employing an external sensor system. If no external interactions of the human with the environment
(or with an object) occur, the estimation of the CoP vector ĈPwo obtained by the human body
model is almost equal to the measured one CPwt . Otherwise, if any external load is applied
on the human body, the estimated and the measured CoP vectors differ and the overloading torque
vector varies accordingly.
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By employing Equation (1), the overloading torque vector τwo without considering any external
force except the ground reaction force (i.e., the body weight) can be computed by using ĈPwo and
the vGRF vector fwo as

STτwo = τb −
n f

∑
i=1

JT
ĈPwoi

fwo,i. (12)

Similarly, the overloading torque vector τwt considering the effect of any external force, can be
computed by using CPwt and the vGRF vector fwt as

STτwt = τb −
n f

∑
i=1

JT
CPwti

fwt,i −
nh

∑
j=1

JT
ahj

fh,j, (13)

where n f is the number of contact forces exchanged with the ground. fwo and fwt are the vGRF vectors
applied at the CoP without and with the effect of external forces, as explained in Section 2.1. nh is
the number of contact points where the external loads are applied. In this work, a single contact
point nh = 1 is considered as said in Section 2.1. The contact Jacobians at the CoP vectors JCP have
fixed parameters, while the Jacobian Jah at the contact points xah varies, depending on which body
link the load is applied and on the application point position of the load in such a body link, so it is
a function of q and xah . Deriving from (12) and (13), the overloading joint torques can be defined as

∆τs = ST(τwt − τwo) = −JT
a h

fh +
n f

∑
i=1

(JT
ĈPwoi

ζifh − JT
∆CPi

fwt,i), (14)

with the Jacobian of the CoP displacement defined as J∆CPi = JCPwti − JĈPwoi
. It should be noted that τb

does not affect the overloading torque vector ∆τs in any body configuration since the external load
effect is included in ∆τs. By disregarding τb, the number of human model parameters to be identified
can be considerably reduced [3]. 0 ≤ ζi ≤ 1 are the distribution gains for vGRF which can be calculated
from the body configuration [28,29] (N.B. ∑i ζi = 1 is a necessary condition).

To provide the humans with an online feedback of the overloading torques during the experiment,
a graphical interface was proposed in [30]. In this work, such interface was extended to additionally
include the estimated position of the external contact point on the body.

4. Experimental Analysis

In this section, we present an experimental analysis to validate the proposed contact point
detection method. First, a simulation study is performed with Simscape MultibodyTM (formerly
SimMechanicsTM), a multibody simulation environment for 3D mechanical systems developed
and commercialised by MathWorks, Inc. (Natick, Massachusetts, USA). Then, experiments using
data collected with sensor systems are carried out on two human subjects as a proof-of-concept,
to test the detection capability of the technique in real environments for 3 different contact
points. In addition, the estimation of the overloading torque induced on the human body joints
by the external load is performed, showing a possible application of the proposed technique.
The whole experimental procedure was conducted in accordance with the Declaration of Helsinki and
the protocol was approved by the ethics committee Azienda Sanitaria Locale Genovese (ASL) N.3
(Protocol IIT_HRII_001).

4.1. Experimental Setup

Simulation experiments were destined and developed to evaluate the feasibility of the proposed
technique in localisation of the external loads on body links on different body postures. A total of
357 conditions (17 body poses × 7 segments × 3 locations) were simulated to analyse the accuracy of
the method in locating the contact points. In fact, these simulations were to understand the expected
performance of the proposed technique, prior to the real experiments that revealed the exact
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performance, as outlined in Section 4.2. The simulation was conducted, as stated above, using Simscape
MultibodyTM and integrated using the ode15s solver. Computations were carried out using a personal
computer with an Intel core i7, CPU 2.50 GHz processor, 16.0 GB 1600 MHz RAM. The state variables
(e.g., joint angles) were collected from a SimMechanicsTM sensing model. On the other hand, Cp and
f of the human model were obtained by means of four virtual force sensors, which were located at
the bottom of the foot link. To consider feasible and realistic human postures, the data to simulate such
body configurations were collected through the Xsens MVN Biomech suit. For each body configuration,
3 fixed points on each one of the 7 links (proximal, central, distal) were assumed to be, one by one,
the load application point. In Figure 3, a few of these cases are presented as an example.

17 poses × 7 segments × 3 locations

Object

[Pose1, Forearm, L1] [Pose1, Forearm, L2] [Pose6, Thigh, L2] [Pose17, Torso, L2]

Figure 3. Some examples of the object placement conditions employed for contact point estimation
in the simulation performed with SimMechanics™ and the proposed technique.

In each of these 17× 7× 3 conditions, the estimated and measured CoP and vGRFs were simulated
and the contact point was computed as explained in Section 2.1. It should be pointed out that
in the simulation study the contact point link was assumed to be known, only the estimation error of
the proposed technique is evaluated here.

For the experiments on human subjects, two healthy adults, one female and one male, labeled as
subject 1 and subject 2, respectively, (age: 28 and 34 years; mass: 50 and 76 kg; height: 171 and 178 cm)
were involved in the experimental session. An Xsens MVN Biomech suit, commercialised by Xsens
Technologies B.V. (Enschede, Netherlands), provided with 17 inter-connected inertial measurement
unit (IMU) sensors, was used to measure the whole-body motion. The whole-body CoP and vGRF were
collected using a Kistler force plate, commercialised by Kistler Holding AG (Winterthur, Switzerland),
as illustrated on the left side of Figure 4b. The experimental procedure included an off-line calibration
experiment, a validation experiment and a demonstration experiment.

In the calibration experiment, the subjects were required to hold 25 static poses to build a suitable
input data set for the CoP model parameters identification described in Section 2.2. During the
acquisition, the postures were chosen by the subjects arbitrarily, but with the requirement to
change the orientations of each segment as much as possible in between, to obtain variables as
linearly-independent as possible. The motion was limited to the sagittal plane since a human sagittal
model is considered in this work. Accordingly, both the estimated and measured CoP employed
in the computations were projected onto such a plane. Once the SESC parameters were identified
off-line using the data collected during the calibration experiment, they could be used to estimate
the human whole-body CoP in any body configuration.
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(a)

(b)

Figure 4. Illustration of the experimental setup. (a) To simulate the external load a weight was placed
in 3 different body locations. (b) the subject was equipped with two sensor systems (a Xsens MVN
Biomech suit and a force plate) and provided with a visual feedback showing the current status:
the estimated contact point and the level of the joints overloadings.

For the validation experiment, the subjects were asked to perform 3 sessions. In each session, a 4 kg
weight was placed in one of the 3 pre-selected positions on the human body—hands, mid-forearms
and mid-upper arms—as shown in Figure 4a, distributed equally on the two limbs (2 kg for each
one). The measured linear position of the contact points in the correspondent link reference frame
Σlink, considered to be the real ones, were respectively: 0.31 m w.r.t forearm reference frame ΣFA,
0.14 m w.r.t ΣFA and 0.22 m w.r.t upper arm reference frame ΣUA. Then, the subjects were required to
move freely in the sagittal plane in a quasi-static way and performing symmetrical movements with
both the upper and lower limbs for the entire duration of the experiment. Meanwhile, the contact
point xah was detected using the proposed algorithm 1. A significance level of 0.05 (5%) was selected
to set both the Anderson-Darling test critical value and the z* value to compute the confidence interval.
The corresponding values are given in Table 1 along with the confidence interval threshold, which was
set arbitrarily (a further discussion about the value of δm,threshold will follow in Section 4.2).
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Table 1. Anderson-Darling test critical value, z* value and confidence interval threshold according to
a significance level of 0.05 (5%)

A2
critical z* δm,threshold [m]

0.735 1.96 0.01

For each experimental condition, the percentage errors between the real and the estimated linear
positions of the contact point w.r.t Σlink were calculated and the time needed to detect the contact point
was measured.

During the demonstration experiment, the subjects were asked to move freely in the sagittal
plane in a quasi-static way and performing symmetrical movements with the upper and lower limbs
while holding a 5 kg box. The experimental session was divided into two phases. In the first phase,
the contact point xah was detected. In the second phase, once the contact point position was found,
the overloading torque vector on the human joints was computed using (14), by varying the contact
point Jacobian Ja hj depending on the contact point position xah estimated. Throughout the experiment,
the subjects were provided with visual feedback showing the current body configuration, the position
of the estimated contact point and the overloading torque on the more meaningful joints, as illustrated
in the right side of Figure 4b. Please refer to the supplementary multimedia file for the video of these
experiments.

4.2. Results

The results of the simulation study to estimate the contact point position using the proposed
technique are shown in Figure 5.

Figure 5. The results of the contact point estimation using SimMechanicsTM and the proposed technique
in forearm (FA), upper arm (UA), torso (T), left thigh (LT), left shank (LS), right thigh (RT), right shank
(RS) links, are illustrated in error bar plots.
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The colored bars represent the mean value among all the simulated body configurations of
the contact point computed through the proposed technique, in the proximal (blue), central (orange)
and distal (yellow) location on the link, respectively, for each link. The considered links are forearm
(FA), upper arm (UA), torso (T), left thigh (LT), left shank (LS), right thigh (RT), right shank (RS).
The black line superimposed on the bars represents the maximum and minimum error of the contact
point position estimation between all the body configurations. In each condition, the percentage
errors between the expected and the computed contact point were calculated and the mean and
the standard deviation values, computed among all the contact point positions and body configurations,
were obtained for each link. Specifically, the results of such computations are: 17.53% ± 20.56% for
the forearm, 0.95%± 2.71% for the upper arm, 7.18%± 21.44% for the torso, 2.47%± 8.98% for the left
thigh, 0.62% ± 0.85% for the left shank, 2.32% ± 10.07% for the right thigh and 4.35% ± 14.68% for
the right shank, respectively.

Since static body postures were considered in the simulation study, a simple computation of
the contact point using (4) and the knowledge about the contact link were sufficient to accurately
identify the contact point position xN

ah
. Nevertheless, as explained in Section 2.1, a criterion to identify

the contact link must be set without a priori knowledge thus the Anderson-Darling normality test is
employed. Moreover, to ensure a good level of accuracy with real data, which are inevitably affected
by artifacts and noise, the concept of confidence level δm is introduced.

The results of the experiments on human subjects are hereafter presented. As regards
the validation experiment, the percentage error of the contact point positions and the time needed to
estimate it, in each experimental condition, are shown in Table 2, for both subject 1 and 2.

Table 2. Results of the validation experiment.

Subject Experimental Condition Percentage Error Estimation Time

Hands 1.022% 9.4 s
1 Mid-forearms 20.92% 16.1 s

Mid-upper arms 11.15% 14.4 s

Hands 1.17% 16.0 s
2 Mid-forearms 48.04% 27.2 s

Mid-upper arms 16.05% 17.5 s

The changes of A2,N and δN
m during the contact point detection phase, on the y-axis and

on the x-axis respectively, are illustrated in Figure 6.
The red square represents the starting point while the green square represents the instant in which

the contact point is detected. The contact point link is selected as soon as A2,N < A2
critical meaning that

the hypothesis of normality for the data set of the contact point link can be accepted. Nevertheless,
the contact point link is not changed even if the value of A2,N return beyond the threshold. In fact,
it should be noted that in some cases, in the end point, A2,N > A2

critical . The contact point position is
then found when the value of ∣δN

m ∣ is under the threshold ∣δm,threshold∣. This means that the confidence
level of the mean value is included within the predefined threshold. In all the experimental conditions,
even if the condition nj > 50 was satisfied and values A2,j were computed also for other candidate
links, the link that satisfies first the condition A2,N > A2

critical was always the actual contact point link.
Finally, typical results of the correlation between the choice of δN

m,threshold and estimation time are
shown in Figure 7.
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Figure 6. Results of the validation experiment: A2 and δm, on the y-axis and on the x-axis respectively,
computed for subject 1 (first row) and subject 2 (second row), in each experimental condition,
for the correspondent contact point link: hands (left column), mid-forearms (middle column) and
mid-upper arms (right column).

Figure 7. Illustrative trend of δN
m during the validation experiment represented with varying values

of δm,threshold.

By setting a higher threshold, the contact point position could be found faster, nevertheless,
with a larger confidence interval thus with less accuracy. Hence, ∣δN

m,threshold∣ has been set equal to
0.01 m as a good compromise between time and accuracy.

In Figure 8 the results of the demonstration experiments are illustrated for subject 1 (Figure 8a)
and for subject 2 (Figure 8b), respectively.
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(a)

(b)
Figure 8. Results of the demonstration experiment to show the application of the proposed contact
point detection method in the estimation of joint overloading. For subject 1 (a) and for subjects 2
(b), respectively, the human kinematic and dynamic status in some illustrative instants throughout
the experiment (upper graph) and the overloading torques induced by the external load (lower graph)
are represented.

As explained in Section 4.1, the experiment was divided into two phases: the contact point
detection and the overloading joint estimation. A black dotted line separates the two phases
in the graphs. For each subject, two graphs are reported. In the upper graph, the 2-D stick-model
of the human is depicted in some illustrative body configurations throughout the experiment. Only
during the second phase, the joint torques, which are computed based on the contact point estimated
in the first phase, are displayed in the form of spheres superimposed on the stick-model, color-coded
to denote a high (red), medium (yellow) or (low) level of joint overloading. The 3 levels of overloading
are determined as explained in Table 3.

The contact point position is depicted as well through a pink square. This information
was provided online to the subject by means of the graphical interface during the experiment.
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The percentage error of the contact point positions and the estimation time are, respectively: 5.04%
and 19.60 s for subject 1 and 9.83% and 5.80 s for subject 2. In the lower graph, the overloading torque
values for the human body model joints: hip (H), knee (K), ankle (A), torso (T), shoulder (S) and elbow
(E) are shown. In the first phase, before the black dotted line, the values are zero since the contact point
is not found yet while in the second phase, after the black dotted line, it is possible to compute them.
As explained in Section 4.1, only symmetrical movements were performed in this experiment thus
the information of the two legs and arms are considered to be equal.

Table 3. Stepwise scheme for joint torque overloading level

Overloading Level Control Threshold

GREEN 0<∆τi ≤0.3τmaxi

ORANGE 0.3τmaxi <∆τi ≤0.6τmaxi

RED 0.6τmaxi <∆τi ≤ τmaxi

5. Discussion

In this Section we first discuss the results of the simulation study and then we address the results
of the experiments performed on human subjects. For the simulation study, results indicated that
the estimation error of the contact point position, computed between all the body configurations
considered, was significantly low in most of the links. However, some exceptions were found for
the torso and the forearm. This is most likely due to a failure in computing the intersection between
the perpendicular line passing through xah ∣x and the link segment. In fact, when the vertical projection
lies slightly beyond the link end-point, the contact point position can not just be detected and this
lead to a misleading increment of the percentage error. Accordingly, we can state that the proposed
method is able to accurately estimate the contact point position in most of the cases, with a low chance
of failure occurring in extreme conditions (i.e., in the proximity of the link end-points).

An analysis of the performance of the proposed method in real settings indicated that, some factors
such as movement artifacts (that are present even during quasi-static motion) and the noise introduced
by sensor systems, could affect the accuracy of the estimation. To compensate for this effect in this work,
a statistical analysis approach was introduced with the aim to improve the accuracy of the estimation.
The link was correctly identified in all three experimental conditions, in the validation experiment,
as well as in the demonstration experiment, for both subjects. It should be noted that the load was not
applied punctually on the human body in any of the experimental conditions. However, in this work,
it is assumed that the contact point was the mid point of the load application area. Considering that
for the purposes of our framework the contact point detection is needed to set the overloading joint
torque estimation, such an assumption is deemed acceptable. Furthermore, the localisation accuracy
is, in our opinion, sufficiently good for the industrial applications we target. Considering the time
needed to detect the contact point, in both the validation and the demonstration experiment, less than
half a minute was required, proving the ’industrial-fast’ detection capacity of the proposed system.
Accordingly, we can state that the proposed method shows a promising potential to quickly detect
the contact point position, thus, we can assume that the overloading torque computed on the basis
of the estimated contact points are good indicators for the human effort while performing activities
with an external load. Consequently, their minimisation by means of an optimisation procedure can
contribute to guide the humans toward more ergonomic body configurations thus addressing healthier
working condition. It should be pointed out that, due to the assumption of quasi-static, sagittal and
symmetric movements and the capability of the method to work only with vertical forces, the proposed
framework can be deployed in a certain class of industrial tasks, which are quite numerous (lifting,
carrying, pick and place in sagittal plane, etc.).
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6. Conclusions

In this paper, we proposed a novel method to approximately detect the contact point
when an external force is exerted on the human body, based on the estimation of the CoP and
on the measurements collected by a motion-capture system and a force plate. Given its capability to
provide a rather accurate and quick online estimation of the contact point on the human body, such
a method can be used prior to the monitoring of the body dynamic states such as the overloading effects.
By minimising such an effect, an optimised body configuration can be found and the risk of injuries
for the human body joints can be significantly mitigated. Future works will focus on the extension of
the method to a more articulated human model by considering not only the sagittal plane and more
complex movements. Accordingly, since the force place severely reduces the work space, it will be
replaced with insole sensors that are easily wearable (by placing them inside the shoes) and do not
impose any constraints on the subject’s mobility. As a result, it will be possible to apply the proposed
method in real industrial settings.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/16/4471/
s1, Video S1: A Real-time Method to Detect and Locate an External Load on the Human Body: with Application
to Ergonomics Assessment.
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