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Abstract: The dynamic changes of the thawing and freezing processes of the active layer cause
seasonal subsidence and uplift over a large area on the Qinghai–Tibet Plateau due to ongoing
climate warming. To analyze and investigate the seasonal freeze–thaw process of the active layer,
we employ the new small baseline subset (NSBAS) technique based on a piecewise displacement
model, including seasonal deformation, as well as linear and residual deformation trends, to retrieve
the surface deformation of the Beiluhe basin. We collect 35 Sentinel-1 images with a 12 days revisit
time and 9 TerraSAR-X images with less-than two month revisit time from 2018 to 2019 to analyze the
type of the amplitude of seasonal oscillation of different ground targets on the Beiluhe basin in detail.
The Sentinel-1 results show that the amplitude of seasonal deformation is between −62.50 mm and
11.50 mm, and the linear deformation rate ranges from −24.50 mm/yr to 5.00 mm/yr (2018–2019) in the
study area. The deformation trends in the Qinghai–Tibet Railway (QTR) and Qinghai–Tibet Highway
(QTH) regions are stable, ranging from −18.00 mm to 6 mm. The InSAR results of Sentinel-1 and
TerraSAR-X data show that seasonal deformation trends are consistent, exhibiting good correlations
0.78 and 0.84, and the seasonal and linear deformation rates of different ground targets are clearly
different on the Beiluhe basin. Additionally, there are different time lags between the maximum
freezing uplift or thawing subsidence and the maximum or minimum temperature for the different
ground target areas. The deformation values of the alpine meadow and floodplain areas are higher
compared with the alpine desert and barren areas, and the time lags of the freezing and thawing
periods based on the Sentinel-1 results are longest in the alpine desert area, that is, 86 days and
65 days, respectively. Our research has important reference significance for the seasonal dynamic
monitoring of different types of seasonal deformation and the extensive investigations of permafrost
in Qinghai Tibet Plateau.

Keywords: Qinghai–Tibet; the active layer; NSBAS; freeze–thaw cycles; seasonal deformation

1. Introduction

The total area of permafrost on the Qinghai–Tibet plateau (QTP) is approximately 1.06± 0.09 km2 [1],
which is the largest area of high-altitude discontinuous permafrost in the middle and low latitudes
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of the world. Permafrost is an important component of the cryosphere and is sensitive to climate
changes [2]. In the last 50 years, with global warming, permafrost on the QTP has been characterized
by increasing temperatures, thickening of the active layer, shrinking, and thinning in permafrost
areas [3]. The uppermost layer of the permafrost is the active layer, which thaws in summer and
freezes in winter [4]. The active layer can cause seasonal uplift and subsidence of the surface during
freeze–thaw cycles. These phenomena will have important impacts on the formation of underground
ice and organic carbon, water resources, ecology and even the global climate system in permafrost
areas [5]. Additionally, the freeze–thaw cycles of the frozen soil in permafrost areas can lead to extensive
surface deformation and also seriously affects human engineering activities and infrastructure, such as
the Qinghai–Tibet Railway (QTR) and Qinghai–Tibet Highway (QTH) [6–8]. Thus, it is highly
important to monitor the surface deformation of permafrost on the QTP. Traditional methods of
deformation monitoring in frozen areas include drilling [9], Global Positioning System (GPS) [10],
leveling, and ground penetrating radar (GPR) [11]. However, these measurements are usually sparse
and unevenly distributed.

In recent years, Synthetic Aperture Radar interferometry (InSAR) has begun to provide an
opportunity to retrieve the surface deformation of the frozen soil on the QTP with the development of
multiple, high resolution sensors with wide coverage and frequent acquisitions [12–14]. In the past two
decades, by overcoming those limitations—such as temporal and geometrical decorrelations [15] and
atmospheric delay anomalies [16]—time-series InSAR technology (TSInSAR) has been widely applied
to monitor the freezing and thawing processes of the active layer in permafrost areas [14,17–24].

TSInSAR algorithms include Permanent Scatterer (PSInSARTM) [25], Interferometric Point Target
Analysis (IPTA) [26], Stanford Method for Persistent Scatterers (StaMPS) [27], Quasi-Persistent Scatterers
(QPS) [28], Persistent Scatterer Pairs (PSP) [29], and Spatio-Temporal Unwrapping Network (STUN) [30].
To increase the spatial density of measurement points in rural areas, a new generation time series
InSAR technique has been developed based on the combined analysis of permanent scatterers and
distributed scatterers [31–34]. Initially, such scholars as Chen et al. and Xie et al. [6,17] employ
the linear deformation model of PSInSAR technology to retrieve the deformation law of the frozen
soil. However, this deformation model has some limitations; for example, the freezing and thawing
processes of the frozen soil are affected by many factors (e.g., temperature, precipitation, water content,
heat flow, and soil lithology), and the surface deformation trend is not linear [19]. Then Chen et al.
propose the use of a cubic function to describe the seasonal deformation law of the frozen soil [35].
Based on the Stefan model, Liu et al. set up a seasonal deformation model that is related to the square
root of the accumulated degree days of thaw (ADDT; ◦C days) to calculate the seasonal subsidence
while hypothesizing that the seasonal subsidence is caused by thaw settlement of the active layer
and that the secular subsidence is probably due to thawing of an ice-rich layer near the permafrost
table [18,36]. Yuan [37] also uses a similar deformation model to retrieve the deformation of permafrost
in the northeast of Greenland, and some researchers suggest that sinusoidal models are capable of
approximating and effectively modeling the ground surface deformation of the frozen soil [20,21,38,39].
However, the seasonal deformation of the freeze–thaw cycles of permafrost in reality is susceptible to
the influence of precipitation, temperature and other factors, which may not vary in accordance with
the sinusoidal model. Zhao et al. propose a new deformation model considering both the external
(mainly climatic) and internal factors (such as tectonic activities and the thermal character of frozen
soil) [19]. Hu and Chen [10,23] incorporate a piecewise elevation change model that includes periodic
subsidence/uplift as its seasonally varying components, as well as linear subsidence trends. In contrast,
high resolution X-band TerraSAR-X images can explain the deformation features of different ground
objects in more detail [22,40,41], and L-band ALOS-2 PALSAR images with longer wavelengths and
better coherence avoid geometric decorrelation, significantly improving measurement accuracy for
frozen soil areas [19–21]. ESA Sentinel-1A and B satellites provide an opportunity to monitor the
surface deformation of permafrost for a large area [14,39,42,43]. To make the InSAR deformation model
more suitable for the deformation law of frozen soil and to capture the dynamic process of different
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ground types on the QTP, we propose a seasonal deformation model based on this model by Hu et al.
and Chen et al. [10,23].

In this paper, this seasonal deformation model is introduced to implement the NSBAS process
and to retrieve the surface deformation related to the freeze–thaw cycles of permafrost using Sentinel-1
and TerraSAR-X data at different scales over the QTP. This model includes the seasonally varying
components (subsidence/uplift), as well as linear and residual deformation trends, based on the
accumulated degree-days of freeze and thaw. Comparing the results of two sensors, the difference in
the deformation results and the deformation law of different typical ground targets on the Beiluhe
basin are explained in more detail. Spatiotemporal analysis is implemented to analyze the correlation
between seasonal deformation, linear deformation rates, slope, and elevation in the area of interest.
In addition, the daily air temperature dataset combined with the deformation results are used to
analyze the whole freeze–thaw cycles, and the relationship between the seasonal deformation and the
active layer thickness are also analyzed based on GPR data.

2. Study Area and Datasets

2.1. Study Area

The study area covering the Wudaoliang to Tuotuohe region is located in the northeast of the
continuous permafrost zone on the QTP, belonging to Qinghai Province, China (Figure 1). Figure 1b
shows the coverage of Sentinel-1 and TerraSAR-X images, and the white box represents the overlay
area of the study area. Figure 1c shows that the study area is characteristic of a rolling topography
with an elevation range from 4407 m to 5471 m. Figure 1d shows the TerraSAR-X amplitude image.
According to Figure 1b,d and the field photos of the study area [39,42], the region is classified into six
typical ground types: QTH Region, QTR Region, alpine desert, alpine meadow, barren, and floodplain,
which is characterized by a sub frigid semiarid climate with an average temperature of approximately
−3.8 ◦C [39,44]. The maximum and minimum temperatures in the study area are 23 ◦C and −38 ◦C,
respectively. The frozen soil of the Beiluhe basin is characterized by ice-rich (volumetric ice content
>25%), warm (mean annual ground temperature > −1.0 ◦C) permafrost. More than 90% of precipitation
falls between May and September [45]. The active-layer thickness (ALT) ranges from 1.6 to 3.4 m [46].
The mean annual precipitation ranges from 300 to 400 mm, 80% of which is concentrated in the thawing
period [47].
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Figure 1. (a) Geographic location of the study area. (b) Coverage of SAR images and the study
area. The red box indicates the coverage of Sentinel-1 data. The blue box indicates the coverage of
TerraSAR-X data, and the white box represents the overlay area of the study area. (c) Topographic map,
which is extracted from a Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM).
(d) TerraSAR-X amplitude image in the blue box (Figure 1c).

2.2. Datasets

In this paper, 35 scenes of C-band Sentinel-1 images with a 12 days revisit time from 7 August 2018
to 25 October 2019 and 9 X-band TerraSAR-X images with less than two month of revisit time from
15 December 2018 to 8 October 2019 were collected to implement the NSBAS process. Sentinel-1 is a
two-satellite constellation, i.e., Sentinel-1A and Sentinel-1B, which were launched by European Space
Agency (ESA) [48]. Sentinel-1 provides C-band SAR data with further enhancements in terms of,
for instance, repeat cycle and coverage. Sentinel-1 images were captured along the N. 150 descending
track with the Interferometric Wide swath (IW) TOPS mode and a 250 km swath. The coverage of
TerraSAR-X images was approximately 2.8 × 7.5 km2, and TerraSAR-X data were acquired by the
staring spotlight (ST) mode along the N. 385 ascending track. Detailed information is shown in Table 1.

Table 1. Detailed Information for SAR Data

Sensor Temporal Coverage Image
Number Orbit Incidence

Angle Polarization Range Pixel
Spacing(m)

Azimuth Pixel
Spacing(m)

Sentinel-1 08/07/2018–10/25/2019 35 Descending 34.46 VV 2.33 13.98
TerraSAR-X 12/15/2018–10/08/2019 9 Ascending 25.46 HH 0.454 0.167
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In addition, the one arc-second SRTM DEM (pixel size of 30 m) was adopted to remove the
topographic phase. Additionally, we obtained the 2−m air temperature in our study area by downscaling
the ERA5 monthly averaged reanalysis product. These measurements can be downloaded from ERA-5
repository of European Centre for Medium-Range Weather Forecasts [49]. In this study, a field
measurement was conducted in August 28, 2018 on the Beiluhe basin to detect shallow subsurface
conditions in permafrost [50,51] and retrieve the ALT [52,53] by using LTD-2100 GPR( produced by
China Research Institute of Radio Wave Propagation (CRIRP) in Qingdao, China ) [54].

3. Methodology

In this study, we employed the NSBAS approach based on the Stefan model [10,23] to investigate
the surface deformation of the study area in the freezing and thawing periods. The methodology
includes the following four steps (Figure 2): (1) Sentinel-1 and TerraSAR-X preprocessing, including
sub steps (Digital Elevation Model (DEM) and Enhanced Spectral Diversity (ESD) co-registration
and mosaic bursts); (2) interferometry, including sub steps (interferogram formation, removing
flat-earth and topographic phase, adaptive filtering, and phase unwrapping); preprocessing and
interferometry process of TerraSAR-X data were implemented using SNAP software ( produced by
European Space Agency (ESA) in Paris, France), while GMTSAR software (produced by Scripps
Institution of Oceanography in California, USA) was used in Sentinel-1 data preprocessing and
interferometry processes [55]. (3) NSBAS flow, in which we modified the linear deformation model to
the seasonal and long-term deformation model; time series deformation inversion and the NSBAS
flow were completed using the GInAT software ( supported by NASA solid earth and natural hazards
program (NNX09AD25G), the Keck Institute for Space Studies (KISS) and the Caltech Tectonics
Observatory (CTO) in USA ) [56,57]; (4) Spatiotemporal analysis, in which the relation between the
seasonal deformation and the DEM\slope and GPR data were analyzed; and (5) time series analysis.
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3.1. Sentinel-1 and TerraSAR-X InSAR Processing

The DEM co-registration method was adopted for TerraSAR-X and Sentinel-1 data. Furthermore,
the ESD method was used to refine the azimuth offset of the Sentinel-1 images [58]. Additionally,
deramping, interpolation, and reramping were performed on each burst [59], and then all the bursts
were mosaicked. The blue circles in Figure 3a,b represent the acquisition dates of the SAR images,
and the lines represent a set of interferograms. The perpendicular and temporal baselines of Sentinel
images are less than 100 m and 50 days, and TerraSAR-X images set a suitable threshold for the 180 m
spatial baselines and 187 day temporal baselines. Additionally, some interferograms were removed
due to serious decorrelation and atmospheric phase delay. Finally, 80 Sentinel-1 interferograms
and 23 TerraSAR-X interferograms were selected, as shown in Figure 3. Flat-earth and topographic
phase were removed using the 3 arc-second SRTM DEM. To increase the signal-to-noise ratio of each
interferogram, all the Sentinel-1 interferograms were multilooked by factors of 8 and 2 along the range
and azimuth directions, respectively, TerraSAR-X interferograms were multilooked by a factor of 2 in
range direction and of 12 in the azimuth direction. Then, a nonlinear adaptive spatial filtering was
applied to each interferogram [60]. The minimum cost flow (MCF) algorithm was used to perform
phase unwrapping [61]. Then, the fifth generation European Centre for Medium-Range Weather
Forecasts (ECMWF) reanalysis for the global climate ERA5 [49] was used to estimate atmospheric
phase using a stand-alone Python module, PyAPS (Python-based Atmospheric Phase Screen), in the
Generic InSAR Analysis Toolbox (GIAnT) toolbox, and atmospheric corrections were implemented for
all the unwrapped interferogram, which can also correct residual orbit errors from each interferogram
by network deramping methods. Finally, we obtained the seasonal deformation changes and time
series displacements using the NSBAS inversion.
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3.2. Seasonal and Long-Term Deformation Model

Permafrost areas generally experience seasonal uplift and subsidence. The linear deformation
model is not suitable to retrieve the freeze–thaw cycle deformation of the frozen soil [20]. In this study,
we used a piecewise deformation change model, including seasonal and long-term deformation, by
integrating the complete freeze–thaw cycles proposed by Hu [10], and we modify this model and add
residual deformation. This observed deformation during the SAR images acquisition time can be
summed across the seasonal and the linear deformation changes [23] in Equation (1).

D(t) =

V·(t− tT) + S·I(t) + c i f tT ≤ t ≤ tF

V·(t− tF) + S·I(t) + c i f tF ≤ t ≤ tT
(1)

where D(t) is the total surface deformation on any day t since the onset of thawing or freezing; V is
the linear deformation rate (mm/yr); tT and tF are the onsets of thawing and freezing, which can be
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obtained based on daily air temperature from Figure 4; S is the seasonal deformation rate (mm); c is the
residual deformation between the observations and the fitted model; and I(t) is the composite index to
combine the thaw and freeze indices in Equation (2).

I(t) =
√

ADDT(t) −

√
kFnF

kTnT

√
ADDF(t) (2)

where ADDT(t) and ADDF(t) are the square root of the accumulated degree days of thaw (ADDT)
and freeze (ADDF) to account for the seasonal thaw subsidence and freeze uplift, respectively, and
they are calculated based on the 2-m air temperature by Liu et al [18]. kF = 1.4 W·M−1

·K−1 and
kT = 0.6 W·M−1

·K−1 are the soil thermal conductivity that can be obtained from the local soil type and
volumetric water content [62]. nF = 0.61 and nT = 0.62 were calculated by Cao et al. [63].Sensors 2020, 20, x FOR PEER REVIE 7 of 24 
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3.3. NSBAS Method Based on the Seasonal and Long-Term Deformation Model

The gradual deformation change (subsidence/uplift) is primarily associated with the freezing and
thawing of the active layer and the uppermost permafrost on the Beiluhe basin. Therefore, we adopted
the NSBAS method based on the deformation model, including seasonal and long-term deformation
changes, to retrieve the surface deformation of freeze–thaw cycles. The seasonal and long-term
deformation model is shown in Equation (3)

∆ϕm = ∆ϕs+l
i + ∆ϕtopo_res

i + ∆ϕres
i =

4π
λ
(D(t) +

B⊥∆ε
R sinθ

) + ∆ϕres
i (3)

where λ is the radar wavelength; i is the number of unwrapped interferograms; ∆ϕm denotes the
model phase; ∆ϕs+l

i is the seasonal and long-term deformation phase; ∆ϕtopo_res
i represents the phase

contribution related to DEM error, which be related to the perpendicular baseline B⊥, slant range
distance R and incidence angle θ; D(t) is the observed deformation in Equation (3); and ∆ϕres

i is the
residual phase, including phase noise, atmospheric delay, and orbit error phase.

In the traditional SBAS approach, the set of interferometric phase observations is written as a linear
combination of individual SAR scene phase values for each pixel independently [33] in Equation (4).

dl
k = Gl

k·m
l
k ⇔ Φi, j =

j−1∑
n=i

δϕn (4)

where l is a specific pixel; k ∈ (1, M); M is the number of interferograms; dl
k represents a data vector

composed of the interferometric phase; Gl
k is a matrix of zeros and ones directly related to the set of

interferograms generated from the available data; ml
k is the phase delay increment; Φi, j is the pixel
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phase value for the interferogram combining acquisition of i and j; and δϕn is the phase increment
between acquisition n and n + 1. Singular value decomposition (SVD) is used instead of least squares
to retrieve the deformation time series in Equation (4).

However, Gl
k

TGl
k has a rank deficiency, and the incremental phase delay between successive

images groups is set to zero by SVD [33]. To overcome this SVD problem, the NSBAS method adds
constraints to the inversion, which was proposed by Doin et al. [64] as

∀d ∈ [2, N]
d−1∑
n=1

δϕn −D(∆t) + eBd
⊥
= 0 (5)

where N denotes acquisitions dates; Bd
⊥

s the perpendicular baseline between satellite paths at
acquisition 1 and d; and D(∆t) is used as a regularization function as discussed in Equation (1) and is
a parametric representation of the temporal form of the deformation. Then, V and S are estimated
for each pixel from the set of interferograms by the least squares method in the constrained linear
system. Additionally, the NSBAS method takes advantage of a user-defined functional form of the
phase evolution to overcome the issue of missing links in the interferometric network due to temporal
and spatial decorrelation.

In this study, GIAnT software was used to implement the NSBAS process [56]. Finally, the seasonal
deformation, the linear deformation changes and the residual deformation were estimated, while the
time-series deformations were also obtained.

4. Results and Analysis

4.1. InSAR Results

The proposed deformation model of Section 3.2 based on the Sentinel-1 data was used to estimate
the amplitude of seasonal deformation, linear deformation rate and residual deformation from
Wudaoliang to Tuotuohe. Meanwhile, TerraSAR-X and Sentinel-1 InSAR results were also used to
further analyze the deformation trends of different ground targets on the Beiluhe basin.

4.1.1. Sentinel-1 Results From Wudaoliang to Tuotuohe

The Sentinel-1 InSAR results from Wudaoliang to Tuotuohe are shown in Figure 5. Figure 5a
depicts the amplitude of the seasonal deformation map. The overall seasonal deformation ranges
from −62.50 mm to 11.50 mm in the study area and is generally smaller than 50 mm in most areas.
The seasonal deformation was mainly caused by the freezing uplift and thawing subsidence of the
active layer, and the variation is caused by the different thickness of the active layer [39]. The higher
values of seasonal deformation are mainly distributed on the Beiluhe basin because the active layer is
thicker and is dominated by subsandy soil and silty clay with rich water content. Figure 5b shows
that the linear deformation trends are up to −24.50 mm/y, and the linear subsidence values in most
areas are approximately 10 mm/yr. The DEM error inferred from Figure 5c ranged from −50 m to
50 m, which is similar to the seasonal deformation trend. Figure 5d shows that the range of residual
deformation is between −10.00 mm and 4.00 mm.
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4.1.2. Sentinel-1 and TerraSAR-X InSAR Results on the Beiluhe Basin

The Beiluhe basin is located in the middle of our study area. Figure 6 shows the amplitudes of
seasonal deformation and the linear deformation rates results of Sentinel-1 and TerraSAR-X data on
the Beiluhe basin. Compared to the longer revisit time and X-band of TerraSAR-X [65], the C-band
and a 12-day revisit time of Sentinel-1 data provides less decorrelation and better coherence on wet
and fast-moving permafrost surfaces. The seasonal deformation and linear deformation rates on the
Beiluhe basin from TerraSAR-X data range from −54.5 mm to 4.5 mm and −22.5 mm/yr to 2.5 mm/yr,
respectively, and those from Sentinel-1 data range from −49.5 mm to 5.0 mm and −24.0 mm/yr to
1.5 mm/yr, respectively. The maximum amplitude of seasonal deformation of TerraSAR-X images
is greater than that of the Sentinel-1 images, and there is a subtle difference between the linear
deformation rate and the seasonal deformation of the different datasets in some regions due to the
different observation periods of the two sensors. However, the overall deformation trends of the
seasonal deformation and linear deformation rate of the two datasets are consistent.
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the period 12/15/2018–10/08/2019.

4.2. Spatiotemporal Analysis of Deformation Results

To investigate the spatial distribution characteristics and deformation trends of the InSAR results,
we extracted the N1-N2 and M1-M2 profiles from the amplitude of seasonal deformation, linear
deformation rate, and residual deformation maps (Figure 5). We divided the N1-N2 and M1-M2
profiles into 100 subunits and extracted the minimum, maximum and mean values of each subunit for
detailed analysis. Figure 7a shows that the standard deviation and mean value of the DEM error are
17.95 mm and 2.86 mm, respectively. Figure 7b shows the residual deformation map with a mean of
−0.96 mm and standard deviation of 3.02 mm. Figure 7c,d show that the mean residual deformation of
the N1-N2 and M1-M2 profiles are between −4 mm and 1 mm, and the minimum value ranges from
−10 mm to 0 mm. The residual deformation changes may be related to the orbit errors and residual
DEM errors. Due to the residual deformation and DEM error with small dispersion, the deformation
results are reliable based on the seasonal and long-term deformation model.

Figure 8 shows that the maximum, minimum and mean values of the amplitude of the seasonal and
linear deformation rate are negatively correlated with elevation. As the elevation increases, the annual
average temperature decreases, the ALT which is primarily affected by soil properties and soil moisture
decreases, and the deformation trends decrease accordingly [43]. In contrast, solid precipitation
(snow) in these high-altitude areas can only lead to small changes in the soil moisture content; thus,
the hydrothermal properties remain stable, and the deformation values are relatively low. In addition,
because an increase in slope leads to elevation increases. Figure 9 shows a subtle negative correlation
between the height, the slope and amplitude of seasonal deformation. The correlation coefficients of the
height and amplitude of seasonal deformation{n along the N1-N2 and M1-M2 profiles are, respectively,
0.65 and 0.57 (Figure 9a,c), and the weak correlation coefficients of the slope and amplitude of seasonal
deformation rate along the N1-N2 and M1-M2 profiles are, respectively, 0.55 and 0.54 (Figure 9b,d).
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Figure 8. Relation between the maximum (red), the minimum (green), mean (black) value and elevation
(blue) of the amplitude of the seasonal deformation and linear deformation rate. (a) Amplitude of
the seasonal deformation profile along N1 to N2. (b) Linear deformation rate profile along N1 to N2.
(c) Amplitude of the seasonal deformation profile along M1 to M2. (d) Linear deformation rate profile
along M1 to M2.

To analyze the deformation trends of the different ground targets in more detail, the landform of
the Beiluhe basin was divided into six ground targets [41]: QTH Region, QTR Region, alpine desert,
alpine meadow, barren, and floodplain based on the TerraSAR-X seasonal deformation map and the
field investigation photos shown in Figure 10 (The investigation was conducted on 29 August 2018
on the Beiluhe basin). Figure 10g shows that these study areas with high seasonal deformation are
mainly in the alpine meadow, floodplain, and alpine desert regions. The amplitude of the seasonal
deformation ranges from -20 mm to 4 mm in the QTR and QTH regions. We extracted the amplitude of
the seasonal deformation and linear deformation rates of profiles P1-P2 and Q1-Q2.
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Figure 9. Correlations between the height, the slope and amplitude of the seasonal deformation.
(a) Height and amplitude of the seasonal deformation profile along N1 to N2. (b) Height and amplitude
of the seasonal deformation profile along M1 to M2. (c) Slope and amplitude of the seasonal deformation
profile along N1 to N2. (d) Slope and amplitude of the seasonal deformation profile along M1 to M2.
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Figure 10. Field photos of typical ground targets and the TerraSAR-X seasonal deformation map
(a) Alpine Desert (D1). (b) QTH Region (H1). (c) Barren (B1). (d) Alpine Desert (D1). (e) QTR region
(R1) (f) Floodplain (F1). (g) TerraSAR-X amplitude map.

Figure 11 shows the deformation profiles map of different ground targets for the P1-P2 and
Q1-Q2 profiles from the two datasets in Figure 6, and Table 2 shows the ranges of amplitude of the
seasonal deformation and linear deformation rates in different ground areas. Figure 11a,b show the
significant differences in the amplitude of the seasonal deformation and linear deformation rates of
the alpine meadow, alpine desert, and barren areas along the profile P1 to P2. The amplitude of
the seasonal deformation of the Sentinel-1 data along the profile P1-P2 is up to −48.53 mm in the
alpine meadow area, while the seasonal deformation of the TerraSAR-X data range from −53.49 mm to
−5.54 mm. The amplitude of the seasonal deformation and linear deformation rate of the barren are
relatively higher than that of the alpine desert because of the higher soil moisture content. Due to the
higher soil temperature and moisture content, Figure 11c and Table 2 shows that the amplitude of the
seasonal deformation along the profile Q1-Q2 in the floodplain area is high, with the TerraSAR-X data
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ranging from −39.98 mm to −6.05 mm and the Sentinel-1 data ranging from −38.17mm to −4.02 mm.
Figure 11c,d show that there is no significant difference in the amplitude of the seasonal deformation
and linear deformation rate between the alpine desert and barren area, but the linear deformation rate
of TerraSAR-X in the floodplain area is up to −19.70 mm/y. To quantitatively evaluate the accuracy and
reliability of the TerraSAR-X and Sentinel-1 results, we performed comparisons between deformations
measured by the two sensors along the P1-P2 and Q1-Q2 profiles. Figure 12 shows the correlation
and standard errors between the InSAR results for the TerraSAR-X data and Sentinel-1 data along the
P1-P2 and Q1-Q2 profiles. The amplitude of the seasonal deformations and linear deformation rates of
the two sensors along the P1-P2 profile showed good correlations of about 0.78 and 0.84, respectively
(Figure 12a,b), while Figure 12c,d show the good correlations of the two InSAR results of 0.89 and
0.86, respectively. Due to the intrinsic properties of the two sensors and datasets (observation periods,
temporal and spatial resolutions, sensor wavelengths, LOS, etc.) [14], there are some differences
between the TerraSAR-X and Sentinel-1 results along the Q1-Q2 profiles, and these measurements
along Q1-Q2 do not agree well with each other.
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(d) Linear deformation rate along the Q1-Q2 profile.

Table 2. Amplitude of the seasonal deformation and linear deformation rate along the P1-P2 and
Q1-Q2 profiles

Dataset
Typical Ground

Targets

P1-P2 Profiles

Typical Ground
Targets

Q1-Q2 Profiles

Amplitude of
Seasonal

Deformation (mm)

Linear
Deformation Rate

(mm/yr)

Amplitude of
Seasonal

Deformation (mm)

Linear
Deformation Rate

(mm/yr)

Sentinel-1
Alpine meadow −48.53~−7.37 −23.73~1.45 alpine desert −23.80~0.79 −13.70~0

Alpine desert −15.56~3.83 −14.93~0.56 barren −20.33~−0.81 −12.13~0.46
barren −25.93~−2.41 −22.14~−7.69 floodplain −38.17~−4.02 −19.12~−4.57

TerraSAR-X
Alpine meadow −53.49~−5.54 −21.29~2.38 alpine desert −20.87~−6.12 −15.76~−0.11

Alpine desert −19.63~−0.75 −18.65~−0.43 barren −24.79~−0.80 −14.80~1.29
barren −45.84~−1.87 −21.43~−4.10 floodplain −39.98~−6.05 −19.70~−1.04



Sensors 2020, 20, 4464 14 of 23

Sensors 2020, 20, x FOR PEER REVIE 14 of 24 

 

Table 2. Amplitude of the seasonal deformation and linear deformation rate along the P1-P2 and Q1-
Q2 profiles 

Dataset 
Typical 
Ground 
Targets 

P1-P2 Profiles 

Typical 
Ground 
Targets 

Q1-Q2 Profiles 
Amplitude 

of 
Seasonal 

Deformati
on (mm) 

Linear 
Deformation 

Rate 
(mm/yr) 

Amplitude of 
Seasonal 

Deformation 
(mm) 

Linear 
Deformatio

n Rate 
(mm/yr) 

Sentinel
-1 

Alpine 

meadow 

−48.53~−7.3

7 

−23.73~1.45 alpine 

desert 

−23.80~0.79 −13.70~0 

Alpine 

desert 

−15.56~3.83 −14.93~0.56 barren  −20.33~−0.81 −12.13~0.4

6 

barren −25.93~−2.4

1 

−22.14~−7.69 floodplain −38.17~−4.02 −19.12~−4.5

7 

TerraSA
R-X 

Alpine 

meadow 

−53.49~−5.5

4 

−21.29~2.38 alpine 

desert 

−20.87~−6.12 −15.76~−0.1

1 

Alpine 

desert 

−19.63~−0.7

5 

−18.65~−0.43 barren −24.79~−0.80 −14.80~1.29 

barren −45.84~−1.8

7 

−21.43~−4.10 floodplain −39.98~−6.05 −19.70~−1.0

4 
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Figure 12. (a) Correlation of the amplitude of the seasonal deformation of TerraSAR-X and Sentinel-1
along the P1-P2 profile. (b) Correlation of the amplitude of the seasonal deformation of TerraSAR-X
and Sentinel-1 along the Q1-Q2 profile. (c) Correlation of the linear deformation rate of TerraSAR-X
and Sentinel-1 along the P1-P2 profile. (d) Correlation of the linear deformation rate of TerraSAR-X and
Sentinel-1 along the Q1-Q2 profile.

4.3. Time-Series Deformation Analysis

Figure 13 shows the time series deformation map and the complete freeze–thaw cycles during
08/07/2018-10/07/2019 of Sentinel-1 data in the study area. The acquisition from the 7 August 2019
image is selected as the reference image. The frozen uplift reached the summit on 13 February 2018,
while the thaw subsidence was up to 50 mm on 2 August 2019 in most areas. Permafrost was relatively
stable from November to December each year in this region, and the freezing period lasted until
February of the next year. From April to September 2019, with the temperature and the precipitation
increasing, the heat of the active layer of the permafrost transferred from the top to the bottom, and
the thawing process gradually began from the top of the active layer, causing a one-way thawing
subsidence process of the active layer of the permafrost. Between the end of April and the beginning of
May 2019, the temperature began to increase sharply. During the summer months of July and August,
the temperature and precipitation reached extreme values for the region, and the subsidence also
reached its maximum of 50 mm. Additionally, the time series deformation boxplots from six typical
ground target regions (Figure 10) are plotted in Figure 14. There are obvious seasonal deformation
trends in the alpine desert, alpine meadow, floodplain, and barren areas. Compared with the alpine
meadow and floodplain, the displacement of the alpine desert and barren are lower, with mean
displacement value ranging from −22.50 mm to 19.60 mm, which is consistent with the analysis in
Section 4.2. The QTR and QTH regions have a small subsidence trend, with maximums of 15.57 mm
and 18.23 mm, due to human activity, and the annual periodic displacement of these regions ranges
from −18 mm to 6 mm.
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4.4. Freeze–Thaw Cycles of Permafrost in the Beiluhe Basin

To study the freeze–thaw cycles of permafrost, we extracted the time series displacement maps
of the four points marked in Figure 6a (point 1: alpine meadow, point 2: alpine desert, point 3:
barren, point 4: floodplain) from Figure 13 for discussing the freeze–thaw process of the Beiluhe basin.
Figure 15c,d shows the displacement changes of the Beiluhe basin during the freezing and thawing
periods. Table 3 shows the time lags between the InSAR-observed displacement of the different ground
points and the daily air temperature data. Due to the lack of TerraSAR-X images in August, all the
time lags of different ground points in the thawing period based on TerraSAR-X data were 61 days.
Figure 15a,b show that the time lags of the alpine desert based on TerraSAR-X and Sentinel-1 data are
the longest, likely because the activity layer thickness of the alpine desert is thicker than that of other
regions. The time lags from TerraSAR-X and Sentinel-1 data between the date of the maximum uplift
and the date of the minimum temperature (01/20/2019) were 86 days and 96 days, respectively, and the
time lags from between the date of the maximum subsidence and the date of the maximum temperature
(07/28/2019) were 86 days and 96 days, respectively. The time lags between the temperature and
the deformation of frozen soil in the present study are consistent with the conclusions of previous
studies [13,20]. Although the surface temperature of permafrost may increase to its highest or fall to
its lowest, the bottom of the active layer continues freezing or thawing until it reaches its maximum
freezing or thawing depth after this time delay.
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meadow (point 1) alpine desert (point 2), barren (point 3), and floodplain (point 4) during the freezing
and thawing periods. (a) Daily air temperature from 8/1/2018 to 11/1/2019. (b) Daily air temperature
from 12/1/2018 to 11/1/2019. (c) Sentinel-1 NSBAS time series displacement. (d) TerraSAR-X NSBAS
time series displacement.

Table 3. Time lags between the InSAR-observed displacement and the daily air temperature data

Dataset Typical
Ground Points

Date of the
Maximum Uplift
(Freezing Period)

Date of the
Maximum

Subsidence
(Thawing Period)

Time Lags between
the Maximum
Uplift and the
Minimum Air
Temperature
(01/20/2019)

Time Lags between
the Maximum

Subsidence and the
Maximum Air
Temperature
(07/28/2019)

Sentinel-1

Point 1 04/04/2019 08/26/2019 74 days 53 days
Point 2 04/16/2019 09/19/2019 86 days 65 days
Point 3 03/23/2019 08/26/2019 74 days 29 days
Point 4 03/11/2019 08/26/2019 62 days 29 days

TerraSAR-X

Point 1 04/04/2019 09/27/2019 74 days 61 days
Point 2 04/26/2019 09/27/2019 96 days 61 days
Point 3 03/02/2019 09/27/2019 41 days 61 days
Point 4 03/02/2019 09/27/2019 41 days 61 days

The thawing process began from the surface of the frozen soil in mid-April in 2019, and it ended
in mid-September in 2018 or 2019. The displacement maps of the Sentinel-1 and TerraSAR-X data in
Figure 15c,d and Table 2 show that different ground points began to thaw from mid-March through
April 2019. The thawing subsidence of the alpine desert is less than that of the alpine meadow and
floodplain in summer, with maximum settlement of 14.86 mm and 16.20 mm for the Sentinel-1 and
TerraSAR-X data, respectively. However, due to the rich soil water content, the deformation changes of
the barren and floodplain regions are more drastic, and the subsidence is obvious. When the active layer
reached its maximum thawing depth, this one-way freezing period began freezing from the bottom of
the active layer and then froze gradually upwards. This period is the autumn freezing process in the
Beiluhe area. Figure 15c,d show that different typical ground targets began to freeze from the end of
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September 2018 or the end of September 2019 followed by a two-way freezing process in the active
layer from the surface of the frozen soil until the end of the freezing process was reached. After the
freezing process of the active layer ended, the temperature began to drop rapidly, and the active layer
was in a cooling process, which lasted until mid to late January of the next year (Figure 15a,b). From the
end of March to the beginning of April 2019, the surface began to subside again. The above process is
the complete freeze–thaw cycle for the Beiluhe area.

5. Discussion

5.1. Comparison with Other Surface Subsidence Studies on the QTP

To verify the validity of our work, we compared our study with other studies on the QTP (Table 4).
Li et al. [20] observed a seasonal amplitude of 0.5 mm–28 mm using a sinusoidal model. Wang et al. [8]
reported amplitudes of seasonal deformation of 0–90 mm from 2014 to 2015 in the Beiluhe region.
Daout et al. [12] reported seasonal oscillations ranging from 2.5 mm to 12 mm during 2003–2011
in the northwest of the QTP. Jia et al. [21] observed seasonal amplitudes of 0–20 mm using ALOS
PALSAR data from 2007 to 2009. Chen et al. [23] incorporated a piecewise elevation change model
that includes periodic subsidence/uplift and observed seasonal amplitudes of −60–60 mm during
2006–2011. Compared with our previous studies, Zhang et al. [39] employed a sinusoidal model and
reported seasonal amplitudes of 0–30 mm from 2017 to 2018, but only Sentinel-1 data were adopted
to investigate the surface deformation of the QTP, with wide coverage. This study based on Chen
et al. [23] deformation model collected Sentinel-1 data with 12 days of revisit time and TerraSAR-X
data with less than two months of revisit time and conducted more detailed deformation studies on
different ground targets. Due to their different time periods and locations, there were some differences
between these studies and our study. However, the trends of gradual subsidence were all on the
order of centimeters per year. In addition, we used a similar model to Chen’s to retrieve seasonal
and linear deformation, and thus the range of deformation that we observed was similar to Chen’s
subsidence trends.

Table 4. Permafrost deformation studies on the QTP using different deformation models

Study Area InSAR Method SAR Dataset Observation
Period

Amplitude of
the Seasonal

Displacement (mm)
Authors

Southern QTP SBAS Envisat ASAR 2007–2011 0.5–28 Li et al (2015)
Beiluhe PSInSAR TerraSAR-X 2014–2015 0–90 Wang et al (2016)

Northwestern QTP NSBAS Envisat ASAR 2003–2011 2.5–12 Daout et al (2017)
Same as this study SBAS ALOS-1 PALSAR 2007–2009 0–20 Jia et al (2017)

Northern QTP PSInSAR ALOS-1 PALSAR 2006–2011 −60–60 Chen et al (2018)
Same as this study MT-InSAR Sentinel-1 2017.11–2018.12 0–30 Zhang et al (2019)
South of Qinghai

province NSBAS Sentinel-1 and
TerraSAR-X 2018.8–2019.10 −62.50–11.50 This study

5.2. Analysis of InSAR Results and ALT Based on GPR Data

In Section 4.1, we demonstrated that there is a close correspondence between the amplitude of
seasonal deformation and ALT and that ALT is also different at different altitudes. Our previous
studies and other studies have established the relationship between amplitude of seasonal deformation
and ALT [21–23,39,42]. We obtained the boundaries of the thawing layer of the alpine meadow,
alpine desert, barren, and floodplain based on GPR data, and Figure 16 shows that the average thawing
depths of the four typical ground targets are, respectively, 2.5, 3, 2.2, and 2 m. The ALT values of the
alpine meadow, floodplain and barren are relatively low, while the ALT of alpine desert is relatively
high. There is an obvious correspondence between ALT and the measured amplitude of seasonal
deformation by our method in Figure 17. The ALT of the alpine meadow area is thinner than that of
the alpine desert area, but the seasonal amplitude, which is related to soil moisture, is relatively high.
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The relationship between ALT and seasonal deformation is not obvious due to river erosion in the
floodplain area, and the water content in the surrounding area is relatively high.Sensors 2020, 20, x FOR PEER REVIE 20 of 24 
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6. Conclusions

In this paper, the NSBAS method with the seasonal deformation model provided new insights
into complex permafrost investigation and deformation monitoring. This deformation model based on
the accumulated degree days of freeze and thaw appears capable of accurately approximating and
modeling the ground surface deformation of the frozen soil.

Our results show that the amplitude of seasonal deformation is between −62.15 mm and 11.5 mm,
and the deformation rate ranged from −24.50 mm/yr to 5.00 mm/yr; the seasonal deformation and
linear deformation rate are negatively correlated with elevation from Wudaoliang to Tuotuohe region.
Additionally, the deformation results of six typical ground targets of the Beiluhe basin were analyzed in
detail, and the seasonal deformation and linear deformation rates of the alpine meadow and floodplain
were higher than those of alpine desert and barren. The QTR and QTH regions had a small subsidence
trend, with maximums of 15.57 mm and 18.23 mm, respectively. The deformation results are also
closely related to the ALT.

In addition, the complete freeze–thaw cycle of the Beiluhe basin was analyzed by combining the
daily air temperature data and the deformation map. The thawing process began from mid-April 2019
and ended in mid-September 2018 or 2019, and from the end of September 2018 or 2019, different
typical ground targets began to freeze. Based on the TerraSAR-X and Sentinel-1 data, the time lags of
the alpine desert are the longest, likely because the activity layer of the alpine desert is thicker than that
of other regions. Based on the GPR data, there is a close relationship between seasonal deformation
and the ALT. The seasonal deformation of the alpine meadow and the floodplain areas is relatively
higher than the alpine desert area, with thinner ALT.
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