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Abstract: Recently, the white (w) channel has been incorporated in various forms into color filter
arrays (CFAs). The advantage of using the W channel is that W pixels have less noise than RGB pixels;
therefore, under low-light conditions, pixels with high fidelity can be obtained. However, RGBW
CFAs normally suffer from spatial resolution degradation due to a smaller number of color pixels than
in RGB CFAs. Therefore, even though the reconstructed colors have higher sensitivity, which results
in larger CPSNR values, there are some color aliasing artifacts due to a low resolution. In this paper,
we propose a rank minimization-based color interpolation method with a colorization constraint
for the RGBW format with a large number of W pixels. The rank minimization can achieve a broad
interpolation and preserve the structure in the image, and it thereby eliminates the color artifacts.
However, the colors fade from this global process. Therefore, we further incorporate a colorization
constraint into the rank minimization process for better reproduction of the colors. Experimental
results show that the images can be reconstructed well even from noisy pattern images obtained
under low-light conditions.
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1. Introduction

An image sensor consists of a two-dimensional (2-D) array of photodiodes, where the number
of photons absorbed by a photodiode determines the brightness value of the pixel at that position.
However, the color of the photon, i.e., the wavelength of the photon cannot be discriminated by the
photodiode. Therefore, to discriminate the color, a small filter that receives either red (R), green (G),
or blue (B) (RGB) spectrum is coated in front of each pixel, and the arrangement of the different
types of filter is called the color filter array (CFA). Various types of CFAs have been designed to
sample the RGB pixels from a single sensor array starting with the widely used Bayer pattern [1],
and color interpolation methods for these patterned images have also been developed [2–15]. If the
input is a sequence of images, i.e., a video, the temporal information can be incorporated into the joint
demosaicking and denoising task [16,17].

Recently, the demand for high-sensitivity color images has increased for various products such
as autonomous driving cars and surveillance cameras. To overcome the physical limitations of the
RGB CFA, multispectral filter arrays have been recently proposed to capture extra information other
than the three primary color channels. For example, near-infrared pixels have been incorporated into
the RGB CFA, which results in the RGB-NIR CFA, to increase the contrast between objects in the scene
and the optical depth [18–24]. However, normally, the color images reconstructed from RGB-NIR CFAs
have lower SNR values than those reconstructed from RGB CFAs, as the correlation of the brightness
values of the near-infrared pixels and those of the RGB pixels are not so strong. To increase the SNR
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value in the reconstructed color image, a white (W) channel has been proposed to be used together with
RGB channels, as the W channel can absorb more photons than RGB channels because it absorbs the
full spectrum of the visible light [25,26]. The advantage of using the W channel is that W pixels have
less noise than RGB pixels; thus, under low-light conditions, pixels with high fidelity can be obtained.
Furthermore, the correlation of the W pixels to the RGB pixels is stronger than the near-infrared pixels.

Various types of RGBW CFAs [27–30] and their corresponding interpolation methods [25,26,31–33]
have been proposed to reproduce a color image with high SNR values and high fidelity to the
original colors. Especially, Kim and Kang have proposed an adaptive demosaicing method for the Sony
RGBW CFA, where the reconstruction of the W channel is preferred to the reconstruction of the color
difference channels to overcome the lack in the color information [25], while Rafinazari and Dubois
have proposed a demosaicking algorithm for the Kodak RGBW CFA by reducing the overlap between
the luma and chroma components. Due to the difficulty in applying appropriate image processing
methods on novel color filter arrays, Tian et al. proposed a method which automates the design of
image processing pipelines for novel color filter arrays [34]. In all these conventional interpolation
techniques, a local interpolation is usually performed, which take pixels of the neighborhood into
account. As W pixels have no color information, normally, the color interpolation process becomes
more complex than using the conventional Bayer CFA. The additional use of W pixels also reduces
the density of the RGB pixels making the color interpolation more difficult and complex. Therefore,
previously, we tried to improve the sensitivity and the resolution in the RGBW CFA before applying
demosaicing on the RGBW CFA [35]. However, the difficulty increases if noise is present in the sensed
pattern image as the noise is spread out to neighboring pixels by the interpolation. The noise does
not follow an ordinary Gaussian distribution, but shows blob-like structures of low frequency, also
called color bleeding. Therefore, the number of W pixels is usually lower than the total number of
RGB pixels in conventional RGBW CFAs.

In this paper, we propose a rank minimization-based matrix completion algorithm with a
colorization constraint, which can be regarded as a global color interpolation with a local constraint.
The rank minimization-based matrix completion reduces color bleeding artifacts that appear in local
interpolation. This is because the matrix completion takes the overall structure in the image into
account and attempts to obtain a low-rank structure, thereby reducing local artifacts. The matrix
completion works well with low-rank images even in the case of little information. This fact favors
the use of W-dominant CFAs [36], which have more W pixels than RGB pixels. Therefore, we first
interpolate W pixels using a conventional local interpolation method, which is an easy task owing to
the large number of W pixels. After that, we reconstruct the remaining R–W, G–W, and B–W channels
using the proposed method. These difference channels (hereafter called color difference channels)
are of low rank by nature, and thus can be well reconstructed even though the numbers of RGB
pixels in W-dominant CFAs are small. Furthermore, the low-rank property of the matrix completion
effectively removes the noise. However, the colors slightly fade from the global low-rank interpolation.
Therefore, we incorporate the colorization-based constraint into the rank minimization process for
better reproduction of the colors in the reconstructed color image. The rank minimization and the
colorization mutually constrain each other and are iteratively and alternatingly applied on the image
being reconstructed. At the end of the iteration, i.e., at the convergence state, the resulting image
becomes the desired reconstructed color image. Experimental results show that the proposed method
can produce a reconstructed image of high visual quality, even in the presence of noise.

2. Related Works

In this section, we explain the performed work related to the proposed method.

2.1. Levin’s Colorization

Levin’s colorization algorithm [37] has been introduced as an algorithm that can colorize a gray
image with a small number of color pixels. Let M be the number of pixels in the color image, and y and
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u be the vectorized luminance and chrominance images of size M× 1. Levin’s colorization attempts to
find u given y and a small number of color seeds. Let x denote an M× 1 vector which contains these
color seeds, i.e., the chrominance values only at the positions belonging to Ψ and zeros at all other
positions. Here, Ψ denotes the set of positions of the color seeds in x, i.e., Ψ is the set of all r where
x(r) 6= 0, and r denotes the pixel position index in raster-scan order (1 ≤ r ≤ M). The colorization is
performed by minimizing the following functional J(u):

J(u) = ‖x−Au‖2, (1)

where A = I−W, I is an M×M identity matrix, and W is a weighting matrix of size M×M defined as

W(r, s) =

{
ωrs if r /∈ Ψ and s ∈ N(r)
0 otherwise,

(2)

where N(r) is the set of the 8-neighborhood pixels of r. The weighting coefficient ωrs is designed as

ωrs ∝ e−(y(r)−y(s))2/2σ2
r , (3)

where σ2
r is a positive number. The minimizer u of J(u) is the reconstructed chrominance channel,

which together with y can be composed into the reconstructed color image. The colorization technique
brought about the idea that RGB channels can be reconstructed using a small number of sensed color
pixels that contain the true color information and a full-resolution W channel.

2.2. Colorization Based Color Interpolation

Previously, we proposed a W-dominant RGBW CFA, where 75% of the sensor area is composed
of W pixels [36]. Using the W-dominant RGBW CFA, the interpolation of the W channel becomes an
easy task, and the interpolation can be performed using any local interpolation technique. After the W
channel is fully interpolated, the color channels can be obtained using the aforementioned colorization
scheme. Let w and c represent the lexicographically ordered vectors corresponding to the W channel
and one of the RGB color channels, i.e., c ∈ {r, g, b}. Then, the color difference channel uc to be
reconstructed is defined as:

uc = c−w. (4)

As the pattern only samples about 25/3 ≈ 8% of the components for each color channel c, the input
vector xc is a sparse vector containing chrominance values only at the positions where the colors are
sensed, and zero values at all other positions:

xc(m) =

{
c(m)− ŵ(m) if m ∈ Ψc

0 otherwise,
(5)

where ŵ(m) is the reconstructed W pixel at m ∈ Ψc, and Ψc represents the set of the pixel positions
where the colors of c are sensed by the RGBW CFA. The white channel ŵ is reconstructed by an
8-neighborhood weighted interpolation,

ŵ(m) =
∑n∈N (m) αnw(n)

∑n∈N (m) αn
, (6)

where αn is a directional weighting parameter and N (m) denotes the 8-neighborhood of m. In the
experiments, we used the same directional weights as in the method of Paul et al. [36], but any other
directional interpolation will also give good results since the ratio of white pixels is 75% of the whole
CFA domain.
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3. Proposed Method

In this section, we propose an iterative rank-minimization-based matrix completion method with
a colorization constraint for filling in the missing pixels, i.e., for demosaicing of W-dominant RGBW
random-pattern images [36]. Previously, a matrix completion-based interpolation method has been
proposed for homogeneous autofluorescence hyperspectral images [38]. However, to our knowledge,
it has not been used for demosaicing of normal images, because matrix completion usually works well
with low-rank images, but not with normal images. However, for a W-dominant RGBW pattern image,
the matrix completion can be a good match owing to the following facts. First, the main problem
with W-dominant RGBW pattern images is the reconstruction of color difference channels, i.e., R–W,
G–W, and B–W difference channels, which have low ranks, and therefore, can be well reconstructed
using the minimum-rank matrix completion. Second, the W channel, which contains high-frequency
components, can be easily reconstructed using any type of local interpolation method as W pixels cover
75% of the whole CFA. Third, the minimum-rank matrix completion works well with random patterns.
Normally, with CFAs which have periodical patterns, the contributions of pixels to the directional
interpolation of a certain color are different for different positions, which results in the aliasing artifact.
However, with the random CFA, the contributions of pixels of different colors to the interpolation of
a certain color are almost the same at every position, and therefore, the aliasing artifact is reduced
to some extent. However, as a random pattern is also unstructured, the colors are interpolated in an
unstructured local way using local interpolation techniques, which leads to color permeation. The rank
minimization technique, which takes the global structure of the image into account, can overcome
this problem to some extent. The constrained rank minimization based demosaicing problem can be
formulated as:

min
Uc

rankDCT(Uc)

subject to Uc(r) = Xc(r) ∀r ∈ Ψc,
(7)

where rankDCT denotes the fact that we minimize the rank with respect to the discrete cosine transform
basis, and Uc is the color difference channel in a 2-D image form and Xc is the 2-D matrix containing
the color difference pixels at the positions where R (or G/B) pixels are sensed:

Xc(r) =

{
C(r)− Ŵ(r) if r ∈ Ψc

0 otherwise,
(8)

where r is the 2-D position vector, C is the sensed R (or G/B) pattern image, Ŵ is the reconstructed W
channel, and Ψc is the set of r at which pixels of a specific color (c = r, c = g, or c = b) are sensed, i.e.,
Ψc can be either Ψc=r, Ψc=g, or Ψc=b corresponding to the color difference channel (Uc=r−w, Uc=g−w,
or Uc=b−w) we want to reconstruct. The constraint in (7) that Uc(r) = Xc(r) for ∀r ∈ Ψc keeps the
sensed color values intact when minimizing rank(Uc). Note that the color difference channel cannot
be treated in the vectorized 1-D form as a 1-D vector has a rank of one; therefore, Uc is 2-D. As can be
seen in Figure 1, the rank minimization-based global interpolation can achieve structured results as
it takes the global structure into account. This reduces the aliasing artifact and false-color artifacts,
which can be observed in Figure 1b,e, which is reconstructed using the residual interpolation (RI)
method [14], a representative of local interpolation methods.

However, although the rank minimization reduces the local artifacts in the structures of the
image, it also results in global smoothing of the colors, which leads to color fading, i.e., less-saturated
colors. This can be observed in Figure 2. The red line in Figure 2b reconstructed using the RI
method shows some local artifacts. The rank minimization-based global interpolation achieves a more
structured result, i.e., removes the local artifacts, but the color fades, as can be seen in Figure 2c. This is
due to the fact that the fading of the red line reduces the rank, and therefore, the attempts to minimize
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the rank fade the red line. To handle these issues, we solve the demosaicing problem by the following
minimization problem:

min
Uc

rankDCT(Uc) + λJ(vec(Uc))

subject to Uc(i, j) = Xc(i, j) ∀r ∈ Ψc.
(9)

Here, λ is a small positive value that controls the balance between the rank minimization term and the
colorization-based constraint, and J(vec(Uc)) is the colorization-based constraint term defined as

J(vec(Uc)) = ‖Ac vec(Uc)− vec(Xc)‖2, (10)

where vec(M) denotes the vectorization operator that vectorizes a 2-D matrix M into a 1-D vector,
and Ac ∈ RM×M is defined as follows:

Ac(r, s) =



1 + γ if r ∈ Ψc and s = r (11.1)
−γωrs if r ∈ Ψc and s ∈ N (r) (11.2)
1 if r /∈ Ψc and s = r (11.3)
−ωrs if r /∈ Ψc and s ∈ N (r) (11.4)
0 otherwise. (11.5)

(11)

where r and s are 1-D indices corresponding to the 1-D positions of pixels in the vector vec(Uc),
and N (r) denotes the set of 1-D indices corresponding to the 2-D neighborhood of the pixel
corresponding to r, and γ is a small positive value which decides the amount of diffusion at the
color seeds. In the experiments, we let λ = 0.1 and γ = 0.037. Finally, ωrs is the weight function
computed from the reconstructed W channel ŵ defined as

ωrs ∝ e−(ŵ(r)−ŵ(s))2/2σ2
r , (12)

and σ2
r is a positive number. The constraint in (10) is a simplified version of the functional used in [36],

where it is used together with a weighting kernel. Here, we use it as a constraint term to overcome
the color fading artifact of the rank minimization. The local diffusion, which reduces the global color
fading artifact, is performed by minimizing the energy functional in (10). The elements in matrix Ac as
defined in (11) determine the amount of local diffusion. The condition in (11.1) and (11.2) together
define the amount of diffusion at the color seeds (r ∈ Ψc) and at their neighborhoods. If γ = 0,
there is no diffusion at the color seeds, and the color seeds are preserved as they are sensed. However,
in this case, the noise in the color seeds will propagate to neighboring pixels by the local diffusion.
Therefore, a small diffusion in the color seeds is controlled by a small positive value of γ and ωrs to
remove the noise in the color seeds. Meanwhile, (11.3) and (11.4) account for the diffusion of pixels
other than the color seeds, i.e., for r /∈ Ψc, where the amount of diffusion is determined by ωrs.

Figure 2d shows the result of the proposed method, i.e., the result of applying the minimization
in (9). As can be seen, both the global structure and the color of the red line are well preserved.
Even though the attempt to minimize the rank fade the red line, the minimization of the colorization
constraint keeps and diffuses the colors of the color seeds. As a result, the red line is reconstructed with
a low-rank structure, but maintaining its colors, i.e., Figure 2d is the result of the trade-off between
these two conflicting minimization processes. Compared with Figure 2b, the local artifacts are reduced
in Figure 2d, whereas the colors are better preserved than in Figure 2c. When applied on a noisy
CFA image, the low-rank minimization will act as a simultaneous demosaicing and denoising process
whereas the colorization constraint will preserve the colors and act as an additional demosaicing
process guided by the W channel.

Figure 3 shows the overall diagram and Algorithm 1 shows the detailed algorithm of the proposed
method. The rank minimization-based matrix completion and the colorization constraint evaluation
are iteratively and alternatingly performed. The rank minimization-based matrix completion can be
performed by various methods. Here, we use the simplest approach based on the use of a fixed basis,
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i.e., the patch-based DCT(discrete cosine transform) basis. First, we decompose the whole image into
local patches and vectorize them. The vectorized local patches are composed into a matrix as column
vectors. Then, we decompose this matrix by the DCT transform and reduce the rank by reducing
the number of non-zero coefficient values. The matrix completion is performed by multiplying
the non-zero coefficient values with their corresponding DCT basis and composing them together.
The colorization constraint evaluation is performed using the conjugate gradient method as described
in Algorithm 1, and the result of the matrix completion process is updated. After that, again, the rank
minimization-based matrix completion is applied on the resulted image. The whole process is iterated
until the maximum iteration is reached.

Figure 1. Effect of the rank minimization-based global interpolation, as described in (7). Experimental
results on a partially cropped photo image of the ISO 12233 Resolution Chart. (a) Original;
(b) Reconstructed using residual interpolation [14]; (c) Reconstructed by (7); (d) Enlarged region
of (a); (e) Enlarged region of (b); (f) Enlarged region of (c).

Figure 2. Effect of the rank minimization-based global interpolation with a colorization constraint, as
described in (9). Experimental results on a photo image of a book. (a) Original; (b) Reconstructed using
residual interpolation [14]; (c) Reconstructed by (7); (d) Reconstructed by (9).
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Algorithm 1: Algorithm of the proposed method
Input : Images U and X, where X contains the color seeds.

Output : Color interpolated U

1 for i = 0 to imax do

/* Low-rank matrix completion using DCT basis */

2 Initialization: Let u(r) = 0 and m(0)(r) = x(r), ∀r

3 forall vectorized patch matrix mk do

4 Create an initial dictionary v(k) from the Discrete Cosine Transform (DCT) frame

5 Compute the coefficient l(k) by orthogonal matching pursuit

6 Compute the completed patch matrix mk = v(k)l(k)

7 Restore the color seed u(r) = x(r)

8 end

/* Color diffusion using the conjugate gradient method */

9 Initialization: Let p(0)(r) = r(0)(r) = u(r), ∀r

10 for t = 0 to tmax do

11 Compute the conjugate vector

p(t)w (r) =


(1 + γ)p(t)(r)

−γ ∑p∈N(r) ωp p(t)(p) if r ∈ ΨC

p(t)(r)
−∑p∈N(r) ωp p(t)(p) otherwise.

12 Compute the coefficient

α(t) =
∑∀r r(t)(r)r(t)(r)

∑∀r p(t)(r)p(t)w (r)

13 Update the difference chrominance values

u(t+1)(r) = u(t)(r) + α(t)p(t)(r)

14 Compute the residual r(t+1)(r) at step t

r(t+1)(r) = r(t)(r)− α(t)p(t)w (r)

15 Compute the coefficient for the conjugate vector update

β(t) =
∑∀(r) r(t+1)(r)r(t+1)(r)

∑∀(r) r(t)(r)r(t)(r)

16 Update the conjugate vector

p(t+1)(r) = r(t+1)(r)− β(t)p(t)(r)

17 end

18 end
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Figure 3. Diagram of the proposed method.

4. Experimental Results

We compared the proposed method with three different CFA patterns, i.e., the Bayer CFA as a
representative of RGB CFAs, Sony CFA as a representative of RGBW CFAs with 50% W pixels, and the
W-dominant CFA which has 75% of W pixels and the remaining 25% of the pixels are equally distributed
as RGB pixels. We performed experiments for two different cases: low noise and high noise. The noise
was added to the RGB channels, and then the channels were sampled according to the different CFA
patterns. In the low-noise case, the noise is derived from a zero-mean Gaussian distribution with
standard deviations of 0.0463, 0.0294, 0.0322, and 0.0157 for the R, G, B, and W channels, respectively.
The amount of noise is different for the R, G, B, and W channels as the different color filters absorb
different light energies. The ratio between the standard deviations of the noises in the R, G, B, and
W channels correspond to real physical measurements with real sensors. Here, we simulated the
noise on noiseless datasets to calculate the CPSNR (Color Peak Signal-to-Noise Ratio), SSIM (Structual
Similarity) [39], and FSIMc (Feature-Similarity-Color) [40] values. The CPSNR measures the ratio of
the power of the signal to the power of the corrupting noise, and serves as a measure of the level of
the noise, whereas the SSIM and the FSIMc evaluate the similarities of the structure and the feature
between two images, respectively.

We performed demosaicing on the Bayer CFA with the residual interpolation(RI) [14], the
adaptive residual interpolation(ARI) [15], the inter-color correlation(ICC) [12], and the deep learning
network(DNet) [13] based demosaicing methods. For the RGBW CFAs, we compared with the
demosaicing method developed by the Sony corporation [27] and the Paul’s method [36].

Figures 4–9 show the demosaicing results for the low-noise case on the Kodak No. 3, Kodak No.
19, and Kodak No. 20 images. The noise in the Bayer and the Sony CFAs results in high remaining
noise, as can be seen in Figure 4a–f to Figure 8a–f. Furthermore, there are some color artifacts, as can
be observed especially in the enlarged images in Figure 6a–f and Figure 8a–f. This is because the local
interpolation is locally affected by the local noise, which results in differences in the reconstructed
colors. Using the Sony RGBW CFA, the RGBW format is first converted to the Bayer RGB format
with the Sony demosaicing method [27], which results in additional color aliasing artifacts. Therefore,
even though the reconstructed color image has an overall sensitivity improvement because of the
higher sensitivity of W pixels, the spatial resolution degradation and the aliasing result in some false
colors which are visually unpleasant. This kind of false color artifacts is typical for RGBW CFAs.
However, using the Paul’s method [36] and the proposed method on the W-dominant RGBW CFA,
the color artifacts are reduced as both the Paul’s method and the proposed method first reconstruct
the W channel from the 75% white pixels, and then use it as a guidance for reconstructing the colors.
The reconstructed W channel suffers less from the noise than the RGB channels as it has higher
sensitivity.
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Figure 4. Demosaicing results of the Kodak No. 3 image under low-noise condition. (a) Original (b)
ICC [12], (c) DNet [13] (d) RI [14] (e) ARI [15] (f) Sony [27] (g) Paul’s [36] (h) Proposed.

Figure 5. Showing the enlarged regions of Figure 4. (a) Original (b) ICC [12], (c) DNet [13] (d) RI [14]
(e) ARI [15] (f) Sony [27] (g) Paul’s [36] (h) Proposed.

Therefore, the reconstruction of the colors under the guidance of the W channel becomes also
less prone to the noise, which is the reason that the reconstructed color channels have less color
artifacts. As can be seen in Figures 6g,h, 7g,h and 8g,h, the results of the proposed method and
the Paul’s method are visually similar. Table 1 shows the CPSNR, the SSIM, and the FSIMc values
of the various demosaicing results on the Kodak and the McMaster datasets. The bold texts in the
tables represent the largest CPSNR, SSIM, and FSIMc values for the various demosaicing methods.
The proposed method shows the largest CPSNR and SSIM values in both the Kodak and the McMaster
datasets, which indicates the fact that the proposed method reconstructs a color image with the least
noise and well preserved structure of the image. The Paul’s method and the proposed method show
larger FSIMc values than other demosaicing methods which indicates the fact that the features in the
reconstructed images are better preserved than with other methods.
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Figure 6. Demosaicing results of the Kodak No. 19 image under low-noise condition. (a) Original (b)
ICC [12], (c) DNet [13] (d) RI [14] (e) ARI [15] (f) Sony [27] (g) Paul’s [36] (h) Proposed.

Figure 7. Showing the enlarged regions of Figure 6. (a) Original (b) ICC [12], (c) DNet [13] (d) RI [14]
(e) ARI [15] (f) Sony [27] (g) Paul’s [36] (h) Proposed.

However, using the Paul’s method, there are some deteriorations in the color when a certain
color channel has low intensity values, as can be seen in Figures 4g and 5g. This artifact is due to
the noise added to the color seeds. Normally, the noise in the color seeds will cancel each other out
by the diffusion in the colorization process. However, when the original color channel has intensity
values close to zero, the Paul’s method fails to reconstruct the zero-like intensity values owing to
the noise. This is because the sensors always receive positive light energies; thus, the effect of the
noise cannot be compensated by negative values as the the negative values are clamped to zero by
the sensors. Therefore, many color seeds which should have values close to zero have positive values
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much larger than zero, and the diffusion of these values results in false colors. This can be seen as a
type of low-frequency noise, which is common in colorization methods.

Figure 8. Demosaicing results of the Kodak No. 20 image under low-noise condition. (a) Original (b)
ICC [12], (c) DNet [13] (d) RI [14] (e) ARI [15] (f) Sony [27] (g) Paul’s [36] (h) Proposed.

Table 1. Comparison of the CPSNR, SSIM, and FSIMc values between the various demosaicing methods
on the Kodak, the McMaster, and the Kodak+McMaster image datasets under the low-noise condition.
The bold texts represent the largest values.

Measure Dataset
Methods

ICC DNet RI ARI Sony Paul’s Proposed[12] [13] [14] [15] [27] [36]

CPSNR
Kodak 28.77 28.79 28.69 29.00 29.17 30.72 30.98

McMaster 28.83 28.88 28.59 28.99 28.80 27.79 29.66
Kodak+McMaster 28.80 28.83 28.64 28.99 29.01 29.47 30.41

SSIM
Kodak 0.8471 0.8487 0.8453 0.8543 0.8900 0.9235 0.9257

McMaster 0.8840 0.8892 0.8803 0.8891 0.9091 0.9039 0.9176
Kodak+McMaster 0.8629 0.8661 0.8603 0.8692 0.8981 0.9151 0.9223

FSIMc
Kodak 0.9521 0.9540 0.9517 0.9552 0.9615 0.9794 0.9774

McMaster 0.9571 0.9579 0.9563 0.9599 0.9641 0.9715 0.9705
Kodak+McMaster 0.9542 0.9557 0.9537 0.9572 0.9626 0.9760 0.9745

Figure 10 shows the case where the B channel in the original color image has intensity values close
to zero. Even though the noise is smaller than in the color channels reconstructed by other demosaicing
methods, it can be seen in Figure 10g,o that the reconstructed B channel has large intensity values
where it actually should have small values. This results in deterioration of the reconstructed color.
This type of artifact is reduced with the proposed method owing to the rank minimization, as can
be seen in Figure 10h,p. The rank minimization smooths out the noise in the color seeds and keeps
the intensity values low. This is due to the fact that a majority of the intensity values are low and the
low-rank structure follows the trend of the majority. Therefore, the proposed method reconstructs
the colors better than the Paul’s method. Meanwhile, Figure 11 shows the case where all the color
channels in the original image have values much larger than zero. In this case, both the Paul’s method
and the proposed method can well reconstruct the colors.
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Figures 12–17 and Table 2 show the results for the high-noise case. In the high-noise case, the noise
is derived from a zero-mean Gaussian distribution with standard deviations of 0.1463, 0.0929, 0.1018,
and 0.0496 for the R, G, B, and W channels, respectively. The proposed method shows the largest
average CPSNR and SSIM values for all datasets, again demonstrating the fact that the proposed
method is the most robust one against the noise and preserves well the structures of the image.
Furthermore, it can be observed that the Paul’s method intensifies the problem of deteriorated colors
as the noise becomes larger. However, using the proposed method the colors are well reconstructed.

Figure 9. Showing the enlarged regions of Figure 8. (a) Original (b) ICC [12], (c) DNet [13] (d) RI [14]
(e) ARI [15] (f) Sony [27] (g) Paul’s [36] (h) Proposed.

Figure 10. Demosaicing results when one channel has low intensity values. The first and the second
rows show the reconstructed color images, while the third and the fourth rows show the Blue channels.
(a) Original (b) ICC [12], (c) DNet [13] (d) RI [14] (e) ARI [15] (f) Sony [27] (g) Paul’s [36] (h) Proposed
(i) Original (j) ICC [12] (k) DNet [13] (l) RI [14] (m) ARI [15] (n) Sony [27] (o) Paul’s [36] (p) Proposed.
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Figure 11. Demosaicing results when none of the channels has low intensity values. The first and the
second rows show the reconstructed color images, while the third and the fourth rows show the Blue
channels. (a) Original (b) ICC [12], (c) DNet [13] (d) RI [14] (e) ARI [15] (f) Sony [27] (g) Paul’s [36]
(h) Proposed (i) Original (j) ICC [12] (k) DNet [13] (l) RI [14] (m) ARI [15] (n) Sony [27] (o) Paul’s [36]
(p) Proposed.

Figure 12. Demosaicing results of the Kodak No. 3 image under high-noise condition. (a) Original
(b) ICC [12], (c) DNet [13] (d) RI [14] (e) ARI [15] (f) Sony [27] (g) Paul’s [36] (h) Proposed.
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Figure 13. Showing the enlarged regions of Figure 12. (a) Original (b) ICC [12], (c) DNet [13] (d) RI [14]
(e) ARI [15] (f) Sony [27] (g) Paul’s [36] (h) Proposed.

Figure 14. Demosaicing results of the McMaster No. 16 image under high-noise condition. (a) Original
(b) ICC [12], (c) DNet [13] (d) RI [14] (e) ARI [15] (f) Sony [27] (g) Paul’s [36] (h) Proposed.

Figure 15. Showing the enlarged regions of Figure 14. (a) Original (b) ICC [12], (c) DNet [13] (d) RI
[14] (e) ARI [15] (f) Sony [27] (g) Paul’s [36] (h) Proposed.
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Figure 16. Demosaicing results of the Kodak No. 23 image under high-noise condition. (a) Original
(b) ICC [12], (c) DNet [13] (d) RI [14] (e) ARI [15] (f) Sony [27] (g) Paul’s [36] (h) Proposed.

Figure 17. Showing the enlarged regions of Figure 16. (a) Original (b) ICC [12], (c) DNet [13] (d) RI
[14] (e) ARI [15] (f) Sony [27] (g) Paul’s [36] (h) Proposed.
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Table 2. Comparison of the CPSNR, SSIM, and FSIMc values between the various demosaicing methods
on the Kodak, the McMaster, and the Kodak+McMaster image datasets under the high-noise condition.
The bold texts represent the largest values.

Measure Dataset
Methods

ICC DNet RI ARI Sony Paul’s Proposed[12] [13] [14] [15] [27] [36]

CPSNR
Kodak 23.42 22.87 23.37 23.69 24.45 25.28 25.35

McMaster 23.81 23.50 23.65 24.03 24.23 23.73 24.49
Kodak+McMaster 23.59 23.14 23.49 23.83 24.35 24.62 24.98

SSIM
Kodak 0.6543 0.6344 0.6522 0.6675 0.7103 0.7256 0.7282

McMaster 0.7507 0.7477 0.7466 0.7602 0.7767 0.7574 0.7727
Kodak+McMaster 0.6956 0.6830 0.6926 0.7072 0.7387 0.7392 0.7473

FSIMc
Kodak 0.8699 0.8733 0.8696 0.8785 0.8845 0.9178 0.9147

McMaster 0.8877 0.8896 0.8869 0.8950 0.8951 0.9180 0.9138
Kodak+McMaster 0.8775 0.8803 0.8770 0.8855 0.8890 0.9179 0.9143

5. Conclusions

In this paper, we proposed a rank minimization-based matrix completion method with a
colorization-based constraint for the demosaicing of the white-dominant color filter array (CFA).
The matrix completion performs a structured global interpolation, while the colorization-based
constraint evaluation performs a local interpolation and preserves the colors. Both processes mutually
compensate for the weaknesses of each other, i.e., the matrix completion helps to maintain the global
structure and eliminates local artifacts, whereas the colorization-based constraint helps to overcome
the over-smoothing problem in the global interpolation and to preserve the colors.

Therefore, we proposed a demosaicing method that is more robust against noise than other
demosaicing methods. The proposed method can be used for surveillance camera applications,
as surveillance cameras have to capture images in low illumination environments and the CFA image
becomes noisy owing to the large ratio of light energy versus thermal noise. In the experiments, we used
Kodak and McMaster datasets, and compared the robustness of different demosaicing methods against
noise in terms of the CPSNR, SSIM, and the FSIMc measures. The proposed method achieved CPSNR
values that were approximately 1.5 dB greater than those of RGB CFA based demosaicing methods such
as the residual interpolation (RI) [14], adaptive residual interpolation (ARI) [15], inter-color correlation
(ICC) [12], and even a deep learning based method (DNet) [13]; thus, we verified the robustness of our
proposed method against noise. Compared with RGBW based demosaicing methods, the proposed
method achieves CPSNR values approximately 0.5 dB and 0.3 dB greater than those of Sony’s [27] and
Paul’s [36] methods, respectively. Furthermore, compared to the Paul’s method, the proposed method
can overcome the problem of deteriorated colors in regions with low R, G, or B intensity values.

The proposed method uses a rank minimization with respect to the DCT basis. Further studies
can elaborate the usage of other bases apart from the DCT basis. For example, if an optimal basis is
learned from the image, it can lead to performance improvement. Besides, a study on sophisticated
methods that can combine the global and the local interpolation constraints more effectively can be
another topic for further studies.
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