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Abstract: As key-components of the urban-drainage system, storm-drains and manholes are essential
to the hydrological modeling of urban basins. Accurately mapping of these objects can help to
improve the storm-drain systems for the prevention and mitigation of urban floods. Novel Deep
Learning (DL) methods have been proposed to aid the mapping of these urban features. The main
aim of this paper is to evaluate the state-of-the-art object detection method RetinaNet to identify
storm-drain and manhole in urban areas in street-level RGB images. The experimental assessment was
performed using 297 mobile mapping images captured in 2019 in the streets in six regions in Campo
Grande city, located in Mato Grosso do Sul state, Brazil. Two configurations of training, validation,
and test images were considered. ResNet-50 and ResNet-101 were adopted in the experimental
assessment as the two distinct feature extractor networks (i.e., backbones) for the RetinaNet method.
The results were compared with the Faster R-CNN method. The results showed a higher detection
accuracy when using RetinaNet with ResNet-50. In conclusion, the assessed DL method is adequate
to detect storm-drain and manhole from mobile mapping RGB images, outperforming the Faster
R-CNN method. The labeled dataset used in this study is available for future research.

Keywords: convolutional neural network; object detection; urban floods mapping

1. Introduction

According to the United Nations Office for Disaster Risk Reduction [1], floods were the most
common type of natural disaster in the world for the period 1998–2017, affecting 2 billion people,
causing 142,088 deaths and economic losses estimated at $656 billion. In this context, also urban
floods need to be considered; according to the World Urbanization Prospects [2], 36.8% of the
633 largest cities in the world are exposed to flood risk, impacting over 660 million inhabitants.
An increase in urban flood risks is expected due to climate change, as an intensification of extreme
events of precipitation is predicted, potentially leading to a larger water intake into an urban basin [3].
Furthermore, according to [4], changes in land use are another main factor responsible for modifying
the hydrological characteristics of urban basins due to the reduction of infiltration capacities and
increased runoff. Thus, urbanization leads to increased flood risk because of the impervious surfaces
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in urban areas [3,5]. Municipalities adopt storm-drain networks to decrease the runoff rate from
extreme events and impervious surfaces and thus reduce the impacts by urban floods [6]. One way to
assess urban flood risks is to model the drainage system for these watersheds at specific hydrological
conditions, and thus adapt the storm-drain network to mitigate the potential damage caused by such
floods. It is an essential tool for the planning and management of storm-drain system infrastructures
of urban watersheds [7]. Models, such as HEC-1 and Storm Water Management Model (SWMN),
evaluate the interation between rainwater and drainage system. Inputs to these models include the
size, quantity, and spatial distribution of storm-drains. However, municipal management does not
always possess this data, especially in developing countries.

Various remote sensing approaches have been developed to find manholes and storm-drains
in urban areas automatically. For instance, [8,9] tested the usage of laser scanning (LiDAR) data.
However, when compared to image-based methods, LiDAR data are expensive in terms of equipment
and computational costs. Therefore, another focus has been on machine learning algorithms applied to
imagery because they can be a useful and robust form to analyze data [10]. These algorithms are widely
combined with computer vision techniques to process image data [11,12]. For manhole detection in
aerial images, different algorithms were designed with shallow structures [13–17], which need a careful
feature extraction method involving pre-processing steps and classification algorithms to achieve
good accuracy rates [18,19]. For example, in [15], the authors achieved manhole detection accuracies
of 58%. Due to the variety of images datasets (with different illumination conditions, occlusions,
noise, and scale), traditional machine learning methods have a low probability of being successful to
detect manhole and storm-drain, especially in high dimensionality feature space. More recent, Deep
Learning (DL) based-methods have shown higher performances in computer vision tasks because they
can extract features while jointly performing classification (end-to-end learning) [18].

DL methods have been successfully used to object detection [20] in several applications, such as
agriculture and environmental studies [21,22], urban infrastructure [23] and health analysis [24]. Thus
far, solely few works have been developed to detect manholes using DL ([25] and [26]). Reference [25]
perform manhole detection in aerial images. However, according to [26], there are two main limitations
for using aerial images to detect manholes: (i) The images present resolutions of about 5–10 cm/pixel,
which can be insufficient to identify details of the objects, and (ii) manholes can be hidden by trees
and vehicles in these images. Therefore, in [26] the authors aimed to detect manhole and storm-drains
in images captured from Google Street View API. They demonstrated that street-level imagery can
provide useful information to identify obstructed objects, which were not appropriately detected in
aerial images.

In this paper, the state-of-the-art DL method RetinaNet was investigated to automatically detect
storm-drain and manhole covers in street-level images collected with a car-mounted camera. As
an additional contribution, an analyzes of the influence of different feature extractor networks
(i.e., backbones) was conducted at the detection accuracy of storm-drain and manhole different
from [26], which used a Faster R-CNN architecture (two-stage network) with Resnet 101 as the
backbone. The one-stage network RetinaNet was chosen as the network architecture because of its
state-of-the-art performance in object detection tasks [27–29]. Furthermore, one-stage methodologies
have lower computational processing costs than two-stage approaches [20,30]. One-stage methods
typically use the VGG and ResNet as network backbone [31,32], which have shown good results even
compared to the DenseNet backbone [23]. ResNet backbones (ResNet-50 and ResNet-101) are used
to analyze the effect of their depth on the RetinaNet classification model. Another contribution is to
make the labeled dataset publicly available to allow for further DL training in this object detection
application. In summary, here are the main contributions:

• The state-of-the-art DL method RetinaNet is investigated to detect Storm-drain and Manhole;
• RetinaNet is compared to Faster R-CNN, which was used for the same purpose in

previous research;
• ResNet-50 and ResNet-101 backbones were assessed and;
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• The data set is publicly provided for future investigations in https://sites.google.com/view/
geomatics-and-computer-vision/home/datasets.

This paper is organized as followed. In Section 2, materials and methods adopted in the study
are described. Section 3 presents and discusses the results obtained in the experimental analysis, and
Section 4 highlights the main conclusions.

2. Material and Methods

To achieve the aim of this work, initially terrestrial images were acquired in the streets of the
Campo Grande city (Section 2.1). The image dataset is described with details in Section 2.2, including
the organization in training, validation, and testing sets. The assessed object detection methods are
presented in Section 2.3. Finnaly, the assessment metrics are presented in Section 2.4. The procedure
steps are the same adopted in our previous work [22].

2.1. Study Area

The images were acquired in the streets of the Campo Grande city, in the state of Mato Grosso do
Sul, Brazil (Figure 1). Several damages related to floods occurred in Campo Grande in the previous
years, showing a real need for detailed hydrological modeling in its urban area. Accurately mapping
storm-drains and manholes is a crucial step to contribute to this modeling. The black lines in Figure 1d
highlight the streets considered in our experiments.

Figure 1. Study area in (a) South America and Brazil, (b) Mato Grosso do Sul, (c) Campo Grande,
and (d) experimental streets. The black lines represent the streets used in the experiments

2.2. Image Dataset

Storm-drain and manhole samples are presented in Figure 2, showing that the images of the
dataset possess variability in terms of appearance, position, scale, and illumination. The dataset is
composed of 297 images with resolutions of 1280 × 720 pixels acquired with a GoPro HERO6 Black

https://sites.google.com/view/geomatics-and-computer-vision/home/datasets
https://sites.google.com/view/geomatics-and-computer-vision/home/datasets
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RGB camera. This data set contains 166 manhole and 142 storm-drain objects. These images correspond
to different regions of Campo Grande city. The images were cropped at 50% of the original width to
remove the sky, as done by [26] and [25], resulting in images with resolutions of 1280 × 369 pixels.

Figure 2. Eight examples of images containing (a) storm-drains and (b) manhole, both highlighted by
green rectangles.

The images were manually annotated by marking the manhole and storm-drains objects with
rectangles (bounding boxes) and labeling each rectangle to its corresponding class. Afterward, these
images were divided into two groups of training, validation, and testing sets. The first group
(named 76-12-12) has 76%, 12%, and 12%, respectively, for training, validation and testing sets.
The second group (named 66-15-19) has 66% of training images, 15% of validation images, and 19%
of testing images. These two groups were considered to assess the methods not only in one scenario,
contributing to a more robust evaluation.
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Images for training, validation, and test are from different regions of the city. The idea is to avoid
similarity between images from validation and test sets with the training set images to achieve a well
generalizing detection model. In Table 1, the main features of our data set summarized.

Table 1. Distribution of the number of (#) images and classes on training, validation and testing
data-sets for the division 72-12-12 and 66-15-19.

Division Set # Images (%) # Manholes # Storm-Drains

76-12-12

Train 226 (76%) 120 113
Validation 35 (12%) 25 10

Train + Validation 261 (88%) 145 123
Test 36 (12%) 21 19

66-15-19

Train 198 (66%) 104 100
Validation 44 (15%) 25 20

Train + Validation 226 (81%) 129 120
Test 55 (19%) 37 22

2.3. Object Detection Method

For this study, the RetinaNet object detection method [33] was adopted. RetinaNet is a one-stage
object detection method that considers class imbalance by reducing the loss assigned to images that
are well-classified. Class imbalance happens when the number of background examples is larger than
the examples of the object of interest, which, in this case, are storm-drains and manholes.

The training step focuses on hard-to-detect examples. RetinaNet architecture is composed of
a backbone and two task-specific subnetworks. We adopted the ResNet-50 and ResNet-101 as the
backbone and combined it with the Feature Pyramidal Network (FPN) [34], which represents objects
at multiple scales that share high and low-level features. Two subnets are applied to the backbone’s
output to perform the classification and regression tasks.

The models’ weights were initialized with weights from the same architecture pre-trained on the
MS Coco dataset [35] to reduce the training time. We used the source code available on the Detectron2
toolbox [36] for our implementation. The model was trained and tested on a desktop computer with
an Intel(R) Xeon(R) CPU E3-1270@3.80GHz, 64 GB memory, and an NVIDIA Titan V Graphics Card
(5120 Compute Unified Device Architecture (CUDA) cores and 12 GB graphics memory) on the Ubuntu
18.04 operating system.

A learning rate of 0.01 was adopted. The number of iterations was set to 10,000 (as set in [25]).
Moreover, a batch size of 4 images and 128 regions of interests was chosen for the RetinaNet and Faster
R-CNN [37] methods. The results between both methods were compared because previous work on
storm-drain and manhole detection [26] considered Faster R-CNN.

2.4. Method Assessment

The performance of RetinaNet was assessed by precision–recall curves and the average
precision (AP) as adopted in [22]. To estimate the precision and recall, the Intersection over Union (IoU)
was calculated. This metric is given by overlapping the area between the predicted and the ground
truth bounding boxes divided by the area of union between them. Following well-known competitions
in the object detection scene, a correct detection (True Positive, TP) was also considered for IoU ≥ 0.5,
and a wrong detection (False Positive, FP) for IoU < 0.5. A False Negative (FN) is assigned when no
corresponding ground truth is detected. Based on the above metrics, precision (P) and recall (R) are
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estimated using Equations (1) and (2), respectively. The average precision is estimated by the area
under the precision–recall curve.

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

3. Results and Discussions

3.1. Learning Results of the Object Detection Method

The training of the methods was performed with different backbones and the loss curves are
shown in Figures 3 and 4 for both groups, 76-12-12 and 66-12-19, respectively. These loss curves
indicate that no overfitting occurred because the loss values for training and validation were similar
and did not increase. Furthermore, the RetinaNet model converged at approximately 2000 iterations
while the Faster R-CNN needed about 8000 iterations until the training loss curve remained flat. This
was noted for both proposed divisions of training, validation, and testing sets.

Figure 3. Training and Validation Loss values for all methods to the division 76-12-12 over 10,000
iterations of training model.
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Figure 4. Training and Validation Loss values for all methods to the division 66-15-19 over 10,000
iterations of training model.

3.2. Inference Results of the Object Detection Method

The average precision (AP, %) and its mean values (mAP, %) obtained from the area under the
curve are illustrated in Figures 5 and 6 and in Table 2. The results on Table 2 display the IoU cutoff
at 0.5 (AP50) and the AP values to each class, manhole (APmh) and storm-drain (APsd). The best AP50
values are achieved by RetinaNet, compared to Faster R-CNN, for both datasets division (76-12-12 and
66-12-19). Furthermore, RetinaNet provides the best results for the storm-drain class, which is more
challenging to identify when compared to the manhole class.

Table 2. Average precision values to AP50 and to classes manhole (APmh) and storm-drain (APsd).

Division Method Backbone AP50(%) APmh(%) APsd(%)

76-12-12
Faster-RCNN ResNet-50 88.30 95.24 71.93

ResNet-101 86.32 95.24 71.15

RetinaNet ResNet-50 92.08 100.00 84.21
ResNet-101 92.08 95.24 89.47

66-15-19
Faster-RCNN ResNet-50 88.62 97.22 80.86

ResNet-101 85.22 96.95 73.85

RetinaNet ResNet-50 88.85 94.01 84.42
ResNet-101 89.69 94.22 85.93
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Figure 5. Precision–recall curves for all methods (R_50 and R_101 means ResNet-50 and ResNet-101,
respectively) to the division 76-12-12. on IoU threshold at 0.5 (AP50).

Figure 6. Precision–recall curves for all methods (R_50 and R_101 means ResNet-50 and ResNet-101,
respectively) to the division 66-15-19 on IoU threshold at 0.5 (AP50).

Considering the images in Figure 7 it becomes obvious that not all predictions were made correctly
by RetinaNet and Faster-RCNN. We found six situations of FNs (false-negative) for the division
76-12-12: Faster-RCNN (ResNet-101) achieved four FNs (Figure 7b–f); Faster-RCNN (ResNet-50 ) not
only achieved the same FNs, but also did not detect the object of interest in Figure 7a; RetinaNet
(ResNet50) and RetinaNet (ResNet101) provided only two FNs each one. The objects were not detected
in Figure 7b,e when using RetinaNet (ResNet-50), while RetinaNet (ResNet-101) did not detect them
in Figure 7c,d. These images were challenging for the trained network due to illumination and noise
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conditions (Figure 7f). Nevertheless, even in these conditions RetinaNet (ResNet-50) achieved an IoU
value of 0.77 with a corresponding confidence (score) value of 0.99.

To examine the importance of our proposed framework, a discussion is presented with a selection
of similar studies. A study by [38] achieved an F1-measure score of 0.95 using mobile laser scanning
data and a random forest model to identify manholes. The approach, although showing high
performance for a shallow learning method, is more expensive regarding data acquisition than RGB
data imagery. Another approach by [25] detected manholes in aerial imagery with an accuracy of 99%
and a positioning error below 0.7 m. In that study, a Single Shot multi-box Detector (SSD) method
was developed and evaluated for images mostly captured from the nadir position. A paper by [25]
evaluated different DL networks to detect manholes similar to the current study. However, they
utilized aerial images. Their method faced the same conditions as the study by [25]; the high-resolution
imagery from the nadir position returned lower accuracies (ranging from 0.67 to 0.89) than our
approach. However, it is difficult to compare the results with the performance of our method because
they evaluated images from a different point-of-view. The investigated DL-based approach identified
hard-to-detect instances with proximal accuracy metrics, in different sizes, point-of-view, and positions,
which demonstrates its versatility.

Based on the qualitative and quantitative analysis, RetinaNet outperformed Faster-RCNN,
mainly due to more reliable detection in challenging situations. It is important to highlight that
the RetinaNet method focuses on hard-to-detect examples in the training task. Furthermore, a higher
performance was revealed for manhole detection compared to storm-drain, which confirms the
previous work by [26]. Furthermore, only small differences was verified in the results obtained with
different backbones. According to [26], results from deep models (like ResNet101) could deteriorate
the detection’s quality when using aerial images because the last layers of the model are not able to
respond to too small objects, as shown in [25]. Thus, street-level images can provide a good alternative
to detect manhole and storm-drain objects in images.

Previous work [22,39] showed the potential of RetinaNet in other remote sensing applications,
which was also verified in the detection of manhole and storm-drain. However, additional experiments
are still necessary to evaluate its effectiveness in other applications.

Figure 7. Examples of images that some models did not predict the bounding boxes to the
division 76-12-12 considering (a) shadow presence, (b) small size objects, (c) small size objects truncated,
(d) small size objects, (e) small size objects with shadow presence and (f) shadow presence.
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4. Conclusions

The state-of-art deep network named RetinaNet was investigated to detect storm-drains and
manholes in mobile mapping RGB images. RetinaNet was considered with a backbone composed of
the ResNet-50 and the Resnet-101 models. THe approach revealed high accuracy in detecting both
objects (with mAP higher than 90%). The RetinaNet method was suitable to detect storm-drains in
terrestrial RGB imagery, and it outperformed the Faster R-CNN method.

In the future, the trained network will be able to be used to map entire urban catchments with
the help of image-based mobile imagery to allow for the incorporation of manhole and storm-drain
information into hydrologic and hydraulic modeling to better prevent and mitigate the impact of
urban flood events. Other state-of-the-art methods should be proposed and tested to produce a more
specific network, which is related to our previous work [21], that can handle this and similar tasks
considering point annotation. We provide the labeled dataset used in this study and encourage future
research to test the performance of new DL methods with this data. Because of the specific nature
of this type of labeled data, it is usually not easily available, and hence it should benefit the training
process for focused hydrological work in urban areas.
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