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Abstract: The Long Range Navigation (Loran) system as a backup of the Global Navigation Satellite
System (GNSS) is a good choice. The dominant deterioration factors of position accuracy are the
pseudo-range measurement errors and the geometric dilution of precision (GDOP). This paper focuses
on the algorithm integrated difference with pseudo-ranges to improve the position accuracy. Firstly,
the theoretical prediction of propagation delay and raw measurement are compared. The results
show that the measured pseudo-range consists of a constant term and a temporal term, which reflect
the propagation situation along the true path. Secondly, a position solution algorithm based on a
pseudo-range and difference is presented, exceeding the limit of a single chain. Finally, some simulation
tests are implemented utilizing the new proposed position algorithm to verify the differential
performance. This method can reduce the GDOP conveniently through increasing the number of
transmitters. In view of the amplitude and characteristics of errors in measurement, systematic
error and random noise are distinguished and discussed. The absolute accuracy responds to the
pseudo-range bias that is different from geometric distance and repeatable accuracy is mainly
influenced by random noise. The difference method can improve the absolute accuracy via the
correction degree without changing the geometry of the transmitters.
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1. Introduction

Accurate position is a significant topic that should be intensively studied. Generally, it is easy to get
the required accuracy using the Global Navigation Satellite System (GNSS). However, the vulnerability
of GNSS to unintentional and intentional interference signals can be found frequently nowadays [1–3].
For national security and economic effectiveness, a reliable and complementary navigation system is
needed desperately [4]. The suitability of the Loran for a backup navigation system has been evaluated
and reported [5]. Since then, as a leading role, the United States Coast Guard (USCG) has tried to
improve the performance of the Loran system dramatically by the modernization of equipment [6],
which mainly included the improvement of transmitters and reference clocks. The improved effect and
application are also very obvious [7]. Besides the US, the United Kingdom (UK), South Korea and
other countries have also introduced much research on alternatives to the GNSS backup system [8–11].
They all identified Loran as the terrestrial radio navigation system that has the potential to fulfil
those requirements. China has also carried out relevant research [12–14]. Meanwhile, China’s major
national infrastructure project for developing terrestrial Loran began recently. Three new transmitters
using the Loran-C mechanism will be built in the west region of China, which will construct a full
coverage timing and positioning network. In order to meet the stated performance [15] as a backup,
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many researchers and organizations mostly focus on the correction of the Additional Secondary Factor
(ASF), which still plays an importance role in position and timing [16–21]. The results show that ASF
varies with time and can be modified by the difference method, which will be used to improve position
accuracy. Nevertheless, the effect of difference is not involved or discussed [22]. So, it is necessary to
research the different position solutions and performance to upgrade the position accuracy.

As we all know, geometric distance applied to position can be derived by the product of propagation
delay and velocity when the propagation path is smooth and homogeneous. When the propagation
distance between the transmitter and receiver is known, the Loran signal propagates along the surface
of the Earth, whose velocity is slowed by the atmosphere and the surface dielectric properties of the
Earth [19,21]. Based on this, a model predicting propagation delay based on relative dielectric and
equivalent conductivity is developed, which contains three main components: Primary Factor (PF),
Secondary Factor (SF) and ASF [16,23,24]. However, weather experienced along the propagation path
influences the refractive of the atmosphere and the ground conductivity and then cause variations
in the propagation delay [24–28]. In other words, propagation delay is not constant and changes
with time, so it is difficult to calculate the delay of the Loran signal instantaneously. In some work,
researchers have divided propagation delay into spatial and temporal components based on actual
measurements, which correspond to a pseudo-range via velocity. Some studies about the impact of the
temporal component on Loran position, especially on aviation Non-Precision Approaches (NPAs) and
maritime Harbor Entrance and Approach (HEA), have also been done [29]. In fact, systematic error
and random noise are involved in the space and temporal components. The influence of observation
error on position and the influence of processing on error mitigation need to be studied in detail.

This paper focuses on a new position method of the Loran system, based on measurement
pseudo-range combined difference. The performance of this way via position accuracy is discussed.
Before this, the distinction between predicted propagation delay and the measurement one is
presented. A fit formula and statistical calculation about the measured propagation delay are illustrated,
which reflect the characteristics of delay and pseudo-range variations over time. Accounting for the
features of pseudo-ranges, some simple tests using new algorithms are simulated. Firstly, a comparison
of the Geometric Dilution of Precision (GDOP) between three and four sites is considered, showing that
the new method can easily decrease the GDOP. Then, position accuracy is presented in order to estimate
the difference performance with the impact of observation error, including SF, ASF and random noise.

2. Pseudo-range and Position Solution Method

2.1. Comparion between Predicted Propagation Delay and Measurement

2.1.1. Predicted Propagation Delay

Generally, it is important to convert the propagation delay to the ground truth range in
positioning [16]. If the truth range is known, the propagation delay is derived from the distance
divided by the speed of light in a vacuum. However, the Loran signal propagates out radially from the
transmitter by groundwave, traveling parallel to the surface of the Earth. So, it does not travel at the free
space speed of light, rather, it is slowed by the atmosphere and the surface of the Earth. The groundwave
accumulates a delay compared to the expected propagation time over the same distance in free space.
This delay is the accumulation of three theoretical components or factors [16–19,23–25]. One part is the
PF, which is the time delay of the long wave signal propagation through the atmosphere. The second
part is the seawater SF, which is the additional delay due to the signal traveling over the sea. The last
one is the ASF, the additional delay due to the signal traveling over the land. The specific formula can
be seen in Equation (1).

Tp = PF + SF + ASF (1)

where PF =
Rd∗ns

C , the light speed C in the vacuum is 299,792,458 m/s and Rd is the distance of signal
propagation between the transmitter and the receiver. The refractive index of the atmosphere ns,
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assumed as a constant, means that the speed of the signal is a fraction lower than the speed of light in a
vacuum. At present, it is difficult to distinguish the SF and the ASF, so SF is often incorporated with
ASF as a function of distance Rd, carrier frequency f , relative dielectric εr and equivalent conductivity
σe, as shown in Equation (2):

SF + ASF =
argW( f , Rd, εr, σe)

ω
(2)

where ω = 2π f corresponds to the Loran carrier frequency of 100 kHz and argW is the phase of signal
attenuation function W about the Loran. It is known that the value of SF + ASF is a smaller modified
term comparing to PF [30]. According to the parameters in [30], SF + ASF via distance for each type
of ground is given in Figure 1. When the propagation distance increases the SF + ASF also increases.
At a constant distance, SF + ASF is the least for average sea water.
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In the above model, the total propagation delay is calculated using some simplification, similarly to
the result of Brunavs’ formula. The result of the calculation is constant if the ground truth distance is
known and the dielectric constant with equivalent conductivity is determined. At this level, the effect
of climate and weather is not taken into account, or of ground elevation on the index of refraction of
the atmosphere on the surface of the ground. Meanwhile, it is not enough to consider the dielectric and
equivalent conductivity changes due to freezing rain and snowy weather. These variations are often
lumped together for the user. Real-time factors, such as climate and weather, will result in a distinct
difference between predicted value and true propagation delay. That is to say, the total propagation
delay is not accurate, although it is possible to predict it from Equations (1) and (2).

2.1.2. Measured Propagation Delay and Assessment

In order to describe the true value, a modified formula is presented:

Tp(t) = PF + SF + ASF + ∆ASF(t) (3)

where ∆ASF(t) accounts for all of the time varying aspects, reflecting the impact of various real-time
factors. In other words, ∆ASF(t) depends on the weather and ground conductivity along the
propagation path over time. Any changes in climate and the conductivity would change ∆ASF(t).
If the receiver position is not accurate or the propagation path is irregular, the fluctuations would also
be contained in ∆ASF(t). Similarly, we also divided the propagation delay into two parts: a spatial
component Tp, which is the constant part of Tp(t), and a temporal component ∆ASF(t).

A better way to get propagation delay is to measure it directly. For this purpose, a Loran receiver
is used. The measured propagation delay N is the difference between the Time of Arrival (TOA)
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and Time of Transmission (TOT) of Loran pulses coherently modulated on the carrier ground wave.
The measurement principle is shown in Figure 2.
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τ in TOT(τ) represents the transmitter’s frame and r in TOA(r) is the receiver time frame.
The propagation delay N between receiver and transmitter is defined by Equation (4) below:

N = TOA(r) − TOT(τ) = Tp + ∆ASF(t) + δTr + Pr + ξ(t) (4)

where δTr and Pr are the clock bias and the internal processing delays of the receiver, respectively,
and ξ(t) represents the random residual error due to the unavoidable noise in artificial measurement.
In the Loran frequency band, the dominant source of noise is atmospheric noise, which is caused
by lighting discharges and man-made noise and local interference from, for example, switch-mode
power supplies. Other sources of noise may include transmitter pulse timing jitter or receiver-related
noise [31]. It is likely the accuracy of N itself is a function of t, consisting of a constant part N′

(i.e., N′ = Tp + δTr + Pr) different from Tp and a temporal part ∆ASF(t) + ξ(t).
Figure 3 presents a raw measurement of N in a fixed position (109.7503◦ E, 38.2503◦ N) for four

days, receiving the signal of a BPL transmitter (109.5431◦ E, 34.9486◦ N) in Pu Cheng (PC, a city in
Shaanxi Province, China). Here, abnormal measurements are removed from the results in advance.
The propagation environment is rather homogeneous. Obviously, N varys via time, as seen from the
blue line in Figure 3a. A mean value is also plotted by the red line, giving the constant part of N.
The average value of the observation is 1253.145 µs, while the predicted constant Tp is 1223.860 µs based
on the parameters of average land [30] using Equations (1) and (2). Depending upon the navigation
application, the difference originating from the effect of δTr + Pr is negligible, because each transmitter
is synchronized and the user receiver clock bias is common. Due to the influence of random noise on
raw measurements, polynomial fitting is used to derive the trend of observation, seen as the green
curve in Figure 3a.

Sensors 2020, 20, x FOR PEER REVIEW 4 of 15 

 

Time of Transmission (𝑇𝑂𝑇) of Loran pulses coherently modulated on the carrier ground wave. The 

measurement principle is shown in Figure 2. 

TOA(t)

  

Figure 2. The schematic diagram of propagation delay. 

𝜏 in 𝑇𝑂𝑇(𝜏) represents the transmitter’s frame and 𝑟 in 𝑇𝑂𝐴(𝑟) is the receiver time frame. The 

propagation delay 𝑁 between receiver and transmitter is defined by Equation (4) below: 

𝑁 = 𝑇𝑂𝐴(𝑟) − 𝑇𝑂𝑇(𝜏) = 𝑇𝑝 + ∆𝐴𝑆𝐹(𝑡) + 𝛿𝑇𝑟 + 𝑃𝑟 + 𝜉(𝑡) (4) 

where 𝛿𝑇𝑟  and 𝑃𝑟 are the clock bias and the internal processing delays of the receiver, respectively, 

and 𝜉(𝑡) represents the random residual error due to the unavoidable noise in artificial 

measurement. In the Loran frequency band, the dominant source of noise is atmospheric noise, which 

is caused by lighting discharges and man-made noise and local interference from, for example, 

switch-mode power supplies. Other sources of noise may include transmitter pulse timing jitter or 

receiver-related noise [31]. It is likely the accuracy of 𝑁  itself is a function of 𝑡 , consisting of a 

constant part 𝑁′ (i.e., 𝑁′ = 𝑇𝑝 + 𝛿𝑇𝑟 + 𝑃𝑟) different from 𝑇𝑝 and a temporal part ∆𝐴𝑆𝐹(𝑡) + 𝜉(𝑡). 

Figure 3 presents a raw measurement of 𝑁 in a fixed position (109.7503°E, 38.2503°N) for four 

days, receiving the signal of a BPL transmitter (109.5431°E, 34.9486°N) in Pu Cheng (PC, a city in 

Shaanxi Province, China). Here, abnormal measurements are removed from the results in advance. 

The propagation environment is rather homogeneous. Obviously, 𝑁 varys via time, as seen from the 

blue line in Figure 3a. A mean value is also plotted by the red line, giving the constant part of 𝑁. The 

average value of the observation is 1253.145 µs, while the predicted constant 𝑇𝑝 is 1223.860 µs based 

on the parameters of average land [30] using Equations (1) and (2). Depending upon the navigation 

application, the difference originating from the effect of 𝛿𝑇𝑟 + 𝑃𝑟  is negligible, because each 

transmitter is synchronized and the user receiver clock bias is common. Due to the influence of 

random noise on raw measurements, polynomial fitting is used to derive the trend of observation, 

seen as the green curve in Figure 3a. 

  
                  (a)                                     (b) 

Figure 3. The schematic diagram of measured propagation delay and decomposition. (a) Raw 

measurement; (b) Decomposition of propagation delay. 

In order to compare the amplitude of each component, Figure 3b gives the decomposition of 𝑁′, 

∆𝐴𝑆𝐹(𝑡) and 𝜉(𝑡). It is clear that 𝑁′, the mean value over four days, is the determinant of position 

and ∆𝐴𝑆𝐹(𝑡) is much smaller than the former. However, its variation as time advanced is no more 

Figure 3. The schematic diagram of measured propagation delay and decomposition. (a) Raw
measurement; (b) Decomposition of propagation delay.



Sensors 2020, 20, 4436 5 of 15

In order to compare the amplitude of each component, Figure 3b gives the decomposition of N′,
∆ASF(t) and ξ(t). It is clear that N′, the mean value over four days, is the determinant of position
and ∆ASF(t) is much smaller than the former. However, its variation as time advanced is no more
than 30 ns no matter whether it increased or decreased. The amplitude of ξ(t) is similar to ∆ASF(t),
whose histogram of each day is plotted in Figure 4. The standard deviations (STDs) of calculation for
ξ(t) are 10.343 ns, 13.521 ns, 11.463 ns and 9.647 ns, respectively. Besides, normal distribution fitting
curves with the same STDs are also presented, which are used to explain the characteristic of ξ(t).
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2.2. Position Solution Method Integrated Difference

The difference method is usually used to correct common errors between the user and referent
station. A scheme of the difference correction system in this paper is shown in Figure 5.
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Based on the above illustration, the procedure using difference is:

• Consistency test of reference station receiver and user receiver, to determine the processing delay
deviation between two receivers.

• Identify the accuracy position of a reference station and get the reference station’s pseudo-range,
then derive the difference correction based on the accurate location.

• Obtain pseudo-range observations from at least three transmitters.
• Calculate the correction of each pseudo-range, then use the least squares solution to find

the location.

The details are listed in the following part. The measured propagation delays between the
transmitting stations and receiver are converted into pseudo-ranges by multiplying the speed.
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A pseudo-range’s equation for referent station is given, based on the delay relationship, which is used
to calculate the difference correction:

Ni(t)C = nsRdi + C(SFi + ASFi + ∆ASFi(t)) + C(δTr + Pr) + Cξi(t). (5)

where i corresponds to the ith transmitter and i = 1, 2, 3 . . . Other parameters have the same meaning
as above. Here, it is necessary that the local clock of the reference station is consistent with the time
system of the transmitter or that the time deviation is known and all the transmitters in one chain
are synchronized or the inherent difference is known in advance. The relative difference correction,
removing ξi(t), is expressed as:

C(SFi + ASFi + ∆ASFi(t)) = Ni(t)C− nsRdi −C(δTr + Pr) (6)

In the previous work, the database of differential correction is necessary, which cost a large number
of measurements [19]. In this paper, according to the analysis of SFi + ASFi in Section 2.1.1 and the
amplitude of ∆ASFi(t) in Section 2.1.2, differential correction for user position is derived depended
on distance relation. A simple data map around the referent station is calculated. The pseudo-range
integrated difference equation for the user is given as:

Ni(t)C−C(SFi + ASFi + ∆ASFi(t)) = nsRdi + C(δTr + Pr) + Cξi(t) (7)

where C(SFi + ASFi + ∆ASFi(t)) on the left side of Equation (7) is the correction corresponding to
different transmitters. It is noted that the environmental features of the path from the transmitter to the
reference station are similar to those of the path to the user’s receiver. If the paths are very different,
the difference method is not suitable.

In the geodetic coordinate system, the Loran system transmitter’s position (ϕi,λi) is known.
The receiver position (ϕ,λ), Rdi and δTr +Pr are three unknown parameters to be sought. It is necessary
to measure three pseudo-ranges used to at least find a position. The algorithm is similar to the GNSS
pseudo-range solution based on all available measurements using least squares. Differing from the
former algorithm [22], another processing method for the distance between the transmitter and the user
is presented in this paper, and details can be seen in Appendix A. With the help of matrix inversion,
the main linearized observation equation is thus given by:

A·X = B (8)

where A is the design matrix, X is the unknown quantity and B is the observation vector eliminating
the difference correction. The least squares solution is derived as:

X =
(
AT
·A

)−1
·AT
·B (9)

The assumed position P0(ϕ0,λ0, Tu0) is updated by the increment (∆ϕ, ∆λ, ∆Tu) and the process
is repeated. If the new update is less than 1mm, then no further iterations are considered necessary
and we arrive at a “best” Loran fix.

3. Results and Discussion

Raw measurements of propagation delay or pseudo-range contain a number of biases and errors.
In order to illustrate the practicability of the pseudo-range method, some detailed simulation tests
are discussed in the following parts. The simulation environment is a seawater path, which is partly
homogeneous. Another propagation type is considered in the Discussion.
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3.1. Geotrical Dilution of Precision

In the Loran positioning system, the GDOP between the receiver and the transmitters is a dominant
deterioration factor of positioning accuracy. The impact of geometry on the accuracy performance
of a ranging system is well understood [32]. An effective method for improving position accuracy is
to optimize the geometrical placement of transmitters, thereby decreasing the GDOP. On the other
hand, another way to improve performance is by increasing number of stations involved in the
position solution when the transmitter station’s location has been confirmed, However, it is difficult to
diminish the GDOP using traditional hyperbolic navigation position fixing due to chain restrictions.
The pseudo-range method proposed in this paper is convenient to progress two chains or more,
not limiting the number of transmitters. As an example, two chains on the east coast of China are used
to analyze the GDOP. The details are listed in Table 1.

Table 1. Location of sites used in the calculation.

Flag Location Latitude (N) Longitude (E)

M RongCheng 37.0644 122.3228
X HeLong 42.7199 129.1075
Y XuanCheng 31.0689 118.8860
Z Raoping 23.7239 116.8958

The GDOP is calculated for three and four sites, respectively, using the geodesic and its azimuth,
shown in Figure 6. An area with GDOP ≤ 20 is presented. The left one is for three sites (M, X, Y)
and the right one is for four sites (M, X, Y, Z). It is obvious that the coverage area of the three sites is
smaller than for the four sites. That is to say, the value of the GDOP for the four sites is smaller than for
the three sites on fixed points. Table 2 lists three points within coverage, arbitrarily including their
coordinates and corresponding results, which are for later analysis.
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Table 2. The GDOP of user sites.

Test Site Latitude(N) Longitude(E) GDOP

Three Sites Four Sites

A 25.000 125.000 18.476 3.721
B 35.000 130.000 4.295 2.774
C 25.000 135.000 18.292 6.946
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3.2. Position Accuracy

When referring to the accuracy of a positioning system, it is necessary to distinguish its absolute
accuracy and repeatable accuracy. According the Loran-C User Handbook [33], the absolute accuracy
is defined as the accuracy of a position with respect to the geographic or geodetic coordinates of the
Earth. The repeatable accuracy, then, is the accuracy with which a user can return to a position whose
coordinates have been measured at a previous time with the same navigational system [31,33]. The true
test of the position method is the position accuracy between solutions in a receiver and true fix, where
the absolute accuracy and repeatable accuracy are contained.

Before discussion, a specification of some simulation parameters is illustrated in Table 3.
Three preferential user sites within coverage range are presented, with coordinates the same as
in Table 2. The distances between the test site and each transmitter using Equations (A2) and (A3) in
the Appendix A, as well as PF, are also given. Similarly, the predicted value of SF and ASF, assuming
all-seawater paths according to Equation (2), are calculated and are presented in Table 3. Based on the
former two items, the pseudo-ranges not containing time variations and clock biases are simulated,
as seen in Table 3. Additionally, four stations are considered regardless of the number of participants.
Here, the different correction progress is ignored and the performance of difference is stressed.

Table 3. Specification of simulation parameters, ns = 1.000315.

Test Site Transmitters Distances (Rd/m) PF/µs SF+ASF/µs Pseudo-Range (ρ/m)

A

M 1,361,597.312 4,543.230 2.719 1,362,412.499
X 2,001,273.422 6,677.632 4.178 2,002,526.074
Y 901,698.633 3,008.690 1.673 902,200.037
Z 834,208.694 2,783.497 1.521 834,664.528

B

M 728,502.840 2,430.789 1.285 728,887.962
X 860,486.081 2,871.177 1.580 860,959.626
Y 1,125,186.922 3,754.402 2.180 1,125,840.485
Z 1,780,238.864 5,940.108 3.674 1,781,340.376

C

M 1,800,246.82 6,142.864 3.720 1,801,362.021
X 2,038,381.588 6,801.451 4.263 2,039,659.613
Y 1,718,993.171 5,735.750 3.535 1,720,052.800
Z 1,841,004.383 6,142.864 3.813 1,842,147.447

3.2.1. Position without Difference Correction

The method without difference is tested. Based on the observation characteristics of the propagation
delay referred to in Section 2.1.2, the pseudo-range consistes of the distance between the user and
transmitter, SF and ASF. Here, the temporal ∆ASF is ignored due to a small amplitude. Meanwhile,
random noise with an STD of 50ns (i.e., about 15m, which is smaller than the typical value) is
added to sampling point 1,000 of each pseudo-range. Actually, the range of noise determined by the
signal-to-noise ratio (SNR) of the received signal is temporarily not considered here. All terms in the
pseudo-range are considered as measurement biases besides distance related to position. Figure 7
gives the scatter position error using the algorithm proposed in Section 2.2. The longitude and latitude
error are represented by the horizontal and vertical axis, respectively. The upper three subgraphs,
with respect to the user’s position A, B, C, are the results of the three sites composed of M, X, Y and
the bottom three subgraphs are the results of the four sites composed of M, X, Y, Z. The red star is
the statistical average corresponding to the case without random noise. A significant absolute offset
of position emerges due to the impact of SF and ASF. It implys that the pseudo-range sufferes from
large measurement biases resulting in absolute accuracy in the order of hundreds of meters or more,
seen in the 95% error radius. The error’s directional components, along longitude and latitude in
the form of a statistical average, are listed in Table 4, where the STDs of each component represents
the repeatable accuracy. Comparing the upper three subgraphs and the bottom one, the repeatable
accuracy is improved because the GDOP for the four sites is smaller than for the three sites, that is,
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a smaller GDOP suppresses the influence of random noise. However, absolute accuracy does not
always improve because it also depends on observation error.
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Table 4. The position error’s directional components, random noise with STD 50ns.

SF + ASF Number Test Site Lat Error
Average/m

Lat Error
STD/m

Log Error
Average/m

Log Error
STD/m

Yes

Three
A 1240.696 191.300 −1353.648 65.061
B 381.39 29.958 −474.168 49.089
C 270.754 154.478 −595.915 134.361

Four
A 371.544 30.192 −1097.384 35.255
B 576.355 15.359 −737.312 34.628
C 304.614 48.458 −622.784 68.172

Yes 1

Three
A 873.035 191.346 −948.423 65.974
B 267.893 30.632 −331.792 49.735
C 190.103 159.826 −418.229 140.051

Four
A 260.044 30.605 −768.590 34.547
B 403.782 16.262 −514.944 36.179
C 212.640 46.631 −434.992 64.4859

Yes 2

Three
A 370.236 185.145 −407.631 63.306
B 115.498 30.396 −144.487 49.337
C 81.238 162.273 −176.940 142.134

Four
A 111.064 29.137 −328.444 33.520
B 173.122 16.335 −222.153 36.548
C 88.517 47.753 −184.277 67.344

No

Three
A 0.920 197.696 −2.288 67.840
B −0.538 29.899 1.440 50.042
C −10.626 150.576 10.775 133.709

Four
A −0.626 31.427 0.607 37.680
B 1.262 16.771 −1.199 37.655
C −0.311 46.741 0.474 64.937

1 SF + ASF is decreased 30% in pseudo-range. 2 SF + ASF is decreased 70% in pseudo-range.

3.2.2. Position with Difference

Based on the results of Section 3.2.1, the difference correction is used to mitigate the influence of
SF and ASF to obtain the actual distance between transmitter and receiver. For example, the amplitude
of SF and ASF is reduced to 70%, that is to say, 30% of the bias in the pseudo-range is corrected.
The results are presented in Table 4. Similarly, 70% of biases are corrected and are listed in Table 4, too.
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It shows that the latitude and longitude direction’s positioning average error decreased proportionally
and gradually with the increase in correction. Compared with no difference, the latitude average error
is reduced to 873.035 m and 370.236 m, respectively, corresponding to 30% and 70% correction for the
A site. However, the STD is almost unchanged because the random noise is not corrected. Ideally,
difference would correct all the system errors, implying that there is no SF or ASF in the observations.
The absolute error is almost nearly zero for both three and four transmitters, as seen in Table 4. Figure 8
presents the scatter plot of position error by the influence of random noise only, using the algorithm
proposed in Section 2.2 with difference. The longitude and latitude errors are represented by the
horizontal and vertical axis, respectively. The upper three subgraphs are the results of three sites,
composed of M, X, Y. The bottom three subgraphs are the results of four sites, composed of M, X, Y,
Z. There is almost no position bias from the statistical mean results, which means a good absolute
accuracy performance. The 95% error radius for the B site is smaller than for the A and C sites due to
its smaller GDOP. Comparing the upper and bottom subgraphs, the 95% error radius decreases for
the bottom case, which also responds to the decreased GDOP for the four transmitters. In a practical
application, the difference correction is not always or necessarily proportional, so the correction effect
based on arbitrary correction is not improved at all times.
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3.2.3. Discussion

In Sections 3.2.1 and 3.2.2 of the paper, the main influence of SF + ASF and random noise on
position accuracy is discussed. The effect of ∆ASF with a smaller amplitude is omitted because its
influence is similar to SF + ASF, which is system bias corresponding to position. It is shown that
difference correction can calibrate the system error only, improving the absolute accuracy. However,
if the correction scale of the system error in the observed pseudo-range is inconsistent, i.e., all the
observation is non-weighted, then a process method considering unequal precision is very necessary.
The least squares solution equation with weight could be expressed as follows:

Z = (AT
·W·A)

−1
·AT
·W·b (10)
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Naturally, it is important to determine the weighting matrix. One method is based on the SNR
of each signal, seen reference [19] for details. As for random noise, it is eliminated significantly by
filtering or smoothing the pseudo-range. The repeatable accuracy is improved using a pseudo-range
after filtering, such as the Kalman filtering progress. When the proposed pseudo-range method is
used, the user receiver needed to obtain three transmitter signals at least. The position of the new
transmitter and geometric placement must be considered before using this new method in order to
ensure signal reception.

In the above discussion, the simulation path is seawater, where SF + ASF is the smallest one
of all the ground types shown in Figure 1. Clearly, in another propagation type, such as average
land, the absolute position bias will be much larger than that for seawater. The difference method is
necessary in order to get a higher absolute accuracy. Compared with the actual difference, the degree
of correction depended on the correlation of the two paths. One is the path between the transmitter
and the reference station. Another one is the path between the same transmitter and the user receiver.
A more complicated situation is that the degree of correction is different for all transmitters. A more
detailed analysis should be considered in future work.

4. Conclusions

In this paper, a theoretical predicted propagation delay of the Loran signal and influential factors
are discussed. Moreover, the direct measurement of propagation delay between user and transmitter
are illustrated. Both theoretical analysis and measured results showed that propagation delay could be
divided into a spatial constant term and temporal term. In particular, we presented a new position
solution algorithm combining difference using the Loran system conveniently based on pseudo-range
measurement. Some conclusions about this method are:

The new algorithm, not limited by the chain, is better than the traditional hyperbolic method.
Besides, it is capable of decreasing the GDOP because of greater participation of the transmitters in
the position solution. The repeatable accuracy could be improved without changing the amplitude of
random noise.

In addition, the absolute accuracy corresponded to the measurement’s bias in the pseudo-range,
such as SF and ASF. So, in the new method using difference, it is convenient to eliminate the
measurement bias of the pseudo-range to improve the absolute position accuracy due to the clear error
sources. In detail, absolute positioning offset decreased proportionally with the increase in correction
degree about the pseudo-range.

The work in this paper could be applied to the Loran receiver with a filter restraining random
noise, thereby improving the repeatable accuracy of the Loran system further. It is able to promote the
safety of HEA and the development of the Loran receiver. In the future, the Loran system may create
greater value within the navigation field.
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Appendix A. Position Solution Algorithm

The Loran is a navigation system that operates at 100 kHz. The Loran uses a hyperbolic positioning
technique to estimate one’s location [34]. Then, pseudo-ranges like GNSS are developed [21].
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Different from the former algorithms in [22], another processing method is presented in this paper.
The pseudo-range equation is expressed as:

Ni(t)C = nsRdi + C(SFi + ASFi + ∆ASFi(t)) + C(δTr + Pr) + Cξi(t) (A1)

The algorithm is based on a GNSS-like pseudo-range solution of all available measurements using
least squares. In order to describe it clearly, C(SFi + ASFi + ∆ASFi(t)) is neglected due to its smaller
amplitude, however, its influence is reflected in the measurement.

In the geodetic coordinate system, the Loran system transmitter’s position (ϕi,λi) is known, and the
receiver position (ϕ,λ), Rdi and δTr + Pr are three unknown parameters to be sought. The distance
between the transmitter and receiver on an ellipsoid could be calculated by many formulas. A universal
formula used in the field of navigation is the Andoyer–Lambert formula [35]:

Rdi = S0i + ∆Si (A2)

where: 
S0i = aδ0i

cosδ0i = sinϕisinϕ+ cosϕicosϕcos(λ− λi)

∆Si = a f
4

[ sinδ0i−δ0i
1+cosδ0i

(sinϕ+ sinϕi)
2
−

sinδ0i+δ0i
1−cosδ0i

(sinϕ− sinϕi)
2
] (A3)

S0i is the arc distance of a sphere, a is the radius of the Earth, δ0i is the geocentric corner between the
transmitter and receiver, ∆Si is a correction due to the sphere to ellipsoidal surface, f = (a− b)/a is the
oblateness of the ellipsoid and a and b refer to semi-major and semi-minor axes, respectively, of the
WGS-84 ellipsoid.

It is necessary to measure three pseudo-ranges at least used to find a position. So, the process
is started by an assumed position P0(ϕ0,λ0, Tu0) and Equation (A1) had to be linearized using a
Taylor expansion: 

ρ1 − nsRd1(ϕ0,λ0, Tu0) ≈
∂Rd1
∂ϕ ∆ϕ|P0 +

∂Rd1
∂λ ∆λ|P0 +

∂Rd1
∂Tu

∆Tu|P0

ρ2 − nsRd2(ϕ0,λ0, Tu0) ≈
∂Rd2
∂ϕ ∆ϕ|P0 +

∂Rd2
∂λ ∆λ|P0 +

∂Rd2
∂Tu

∆Tu|P0

ρ3 − nsRd3(ϕ0,λ0, Tu0) ≈
∂Rd3
∂ϕ ∆ϕ|P0 +

∂Rd3
∂λ ∆λ|P0 +

∂Rd3
∂Tu

∆Tu|P0

(A4)

where ρi = NiC and Rdi represents the distance between the transmitter and the assumed position.
With the help of matrix inversion, the linearized observation equation is thus given by:

A·X = B (A5)

where

A =


∂Rd1
∂ϕ

∂Rd1
∂λ

∂Rd1
∂Tu

∂Rd2
∂ϕ

∂Rd2
∂λ

∂Rd2
∂Tu

∂Rd3
∂ϕ

∂Rd3
∂λ

∂Rd3
∂Tu

, X =


∆ϕ
∆λ
∆Tu

, B =


ρ1 − nsRd1(ϕ0,λ0, Tu0)

ρ2 − nsRd2(ϕ0,λ0, Tu0)

ρ3 − nsRd3(ϕ0,λ0, Tu0)

 (A6)

The most important process is to get the partial derivatives in matrix A.

∂Rdi
∂ϕ

= a
∂δ0i
∂ϕ

+ a
∂∆δi
∂ϕ

(A7)

where
∂δ0i
∂ϕ

=
cosϕisinϕ cos(λ− λi) − sinϕicosϕ√

1− [sinϕisinϕ+ cosϕicosϕ cos(λ− λi)]
2

(A8)
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However, ∆δi is very complex, which is a function of δ0i, ϕ and λ. The partial differential of ϕ is
given by:

∂∆δi
∂ϕ

=
∂∆δi
∂δ0i
·
∂δ0i
∂ϕ

+
∂∆δi
∂ϕ

(A9)

The right part is expressed:
∂∆δi
∂δ0i

=
f
4

[
[(cosδ0i−1)(1+cosδ0i)+(sinδ0i−δ0i)sinδ0i]·(sinϕ+sinϕi)

2

(1+cosδ0i)
2

]
−

f
4

[
[(cosδ0i+1)(1−cosδ0i)−(sinδ0i+δ0i)sinδ0i]·(sinϕ−sinϕi)

2

(1−cosδ0i)
2

]
∂∆δi
∂ϕ =

f
4

[
(sinδ0i−δ0i)[2(sinϕ+sinϕi)]cosϕ

1+cosδ0i

]
−

f
4

[
(sinδ0i+δ0i)[2(sinϕ−sinϕi)]cosϕ

1−cosδ0i

] (A10)

Besides,
∂Rdi
∂λ

= a
∂δ0i
∂λ

+ a
∂∆δi
∂λ

(A11)

where
∂δ0i
∂λ

=
cosϕicosϕ sin(λ− λi)√

1− [sinϕisinϕ+ cosϕicosϕ cos(λ− λi)]
2

(A12)

Similarly, the partial differential of ∆δi about λ is given by:

∂∆δi
∂λ

=
∂∆δi
∂δ0i
·
∂δ0i
∂λ

+
∂∆δi
∂λ

(A13)

Now, all components in matrix A are listed in Equations (A5) and (A6). Based on the expression
of the matrix, the least squares solution is derived as:

X =
(
AT
·A

)−1
·AT
·B (A14)

The assumed position P0(ϕ0,λ0, Tu0) is updated by the increment (∆ϕ, ∆λ, ∆Tu) and the process
is repeated. If the new update is less than 1mm, then no further iterations are considered necessary and
arrive at a “best” Loran fix. The whole process of position solution based on pseudo-ranges is clear.
The accuracy of the derived position solution can be calculated by comparing the ground truth fixes.
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