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Abstract: Several studies have examined the accuracy of the Kinect V2 sensor during gait analysis.
Usually the data retrieved by the Kinect V2 sensor are compared with the ground truth of certified
systems using a Euclidean comparison. Due to the Kinect V2 sensor latency, the application of
a uniform temporal alignment is not adequate to compare the signals. On that basis, the purpose
of this study was to explore the abilities of the dynamic time warping (DTW) algorithm to
compensate for sensor latency (3 samples or 90 ms) and develop a proper accuracy estimation.
During the experimental stage, six iterations were performed using the a dual Kinect V2 system.
The walking tests were developed at a self-selected speed. The sensor accuracy for Euclidean matching
was consistent with that reported in previous studies. After latency compensation, the sensor accuracy
demonstrated considerably lower error rates for all joints. This demonstrated that the accuracy was
underestimated due to the use of inappropriate comparison techniques. On the contrary, DTW is
a potential method that compensates for the sensor latency, and works sufficiently in comparison
with certified systems.

Keywords: kinect sensor; gait analysis; dynamic time warping; latency

1. Introduction

Despite the fact the Kinect V2 sensor is no longer manufactured, Kinect V2 devices keep working.
There are hundreds of users around the world, many of them using the sensor for research in the field
of biomechanics. Microsoft has stopped supporting the adapter, which may affect the development of
commercial applications such as motion gaming, but the generic depth detection solutions will prevail,
and the Kinect V2 sensor will continue to be used for research purposes. The use of the Kinect V2
sensor in human gait analysis has increased in the last five years. In general, the Kinect V2 sensor has
been extensively used for kinematic gait analysis [1] and the identification of normal and pathological
gait [2]. Some important studies have analyzed and validated the application of the Kinect V2 sensor
for kinematic gait analysis [3–5]. Despite that fact, there is something interesting in these studies.
In order to validate the data obtained by the Kinect V2 sensor, the data from certified systems are
resampled using the timestamps of the Kinect sensor. Afterwards, the differences are measured by
using a vertical point-to-point comparison, as in [6–8]; all these studies refer to Kinect V2. However,
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this is not the most suitable way to perform this process due to the system’s performance and the
variable processing speed of the Kinect V2 sensor.

Variations in system performance and processing speed produce non-symmetrical temporal
variations in signals. This problem is named latency. Latency is caused by several factors,
such as the software development kit (SDK) settings, image resolution, image format, exposure,
and even the graphics processing unit [9]. It is common in most depth sensor types, regardless of
framerate, the brand and model (Kinect V1/V2, Intel Realsense, Orbbec, ASUS), the technology used
(structured light, time of flight), and the processing algorithm (proprietary or general algorithm such
as Nuitrack SDK). This makes the latency compensation technique that will be proposed in this study
directly exploitable by other technology based on depth sensors.

The latency in the Kinect V2 sensor cannot be controlled via SDK, in contrast to the Kinect V1,
wherein latency can be controlled indirectly by setting a smoothing parameter. In the case of Kinect V1,
a decrease in smoothing parameter value produces a lower latency but also a less smoothed skeleton
data. The search for a balance between these parameters makes latency inevitable.

Several studies have measured Kinect sensor latency for skeleton tracking applications. In [10]
the Kinect sensor latency was found to be about 70 ms. On the other hand, in [11], three samples
of latency were measured. These studies are related to Kinect V1, as we have not found studies
dedicated to Kinect V2 specifically. This latency produces a dynamic lag and consequently an incorrect
relationship between the points when applying a point-to-point comparison with the ground truth.

Several algorithms have been used to realign these time series during validations of Kinect
V2 sensor. The most common procedure is the uniform temporal alignment. Among them are
the Euclidean distance minimization, weighted Euclidean distance minimization [8,12], and even
the cross correlation [13–15]. All of them have been applied for validation of Kinect V1/V2 during
human gait analysis. However, the residual time scale variability can still be significant, even after
modeling a uniform scale. Since the effect of latency is not a uniform delay, a uniform temporal
alignment technique cannot be used to compensate for it. In these cases, a non-uniform temporal
scaling technique is required.

Dynamic time warping (DTW) is probably the most successful algorithm with which to compare
a pair of signals and measure their similarity, even if they fluctuate in speed. DTW [16] is a nonlinear
time normalization technique based on dynamic programming. DTW allows the comparison of
sequences with tolerance of small misalignments, enabling an accurate comparison.

DTW has been widely proven and validated in gait recognition applications [17] and the identification
of human body gestures using Kinect data [18]. DTW has even been used for the validation of
musculoskeletal models [19]. Commonly, DTW has been applied as a comparison distance, not as
a measure of accuracy. That is because DTW is not a metric, it is a measure. However, it is possible to use
this warped distance as an error metric if several conditions are imposed [20]. In our case, these conditions
are oriented to the use of a constrained dynamic time warping within a Sakoe–Chiba band [16] that
compensates only for the sensor latency.

Since the global time scaling used in previous validations of Kinect V2 sensor is not adequate
to solve this problem, the purpose of this study was to explore the abilities of the DTW algorithm
to compensate for sensor latency and develop a proper accuracy estimation. The accuracy results
obtained with DTW alignment were always compared with those obtained by Euclidean matching.

Additionally, when validation is done by using only one Kinect V2 sensor, commonly the range of
view of the sensor is a limitation. It forces the test subjects to walk at short speeds, altering the normal
walking pattern. For this reason, some studies prefer the use of treadmills. However, treadmill
analysis is unrealistic and should not be applied because it modifies gait pattern [21]. On this basis,
disregarding the use of a treadmill, any gait analysis that uses a depth sensor must apply a multi-camera
setup or use a mobile robot platform that moves the camera close to the participant while walking.
In addition to the fact that the use of a treadmill is unrealistic, the variables that cause latency in
the signals, among them the joint occlusion, may be hidden. The occlusion points are precisely where
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the camera SDK deduces the position of the joint, causing a greater latency in the signal. When using
a treadmill, this would not happen, and therefore, we could not generalize by saying that our results
are applicable to gait analysis. In this context, because we wanted our results to be useful for future
studies specifically using depth sensors, we decided to use a dual-camera setup to capture overground
walking as realistically as possible. Thanks to this special setup, it is possible to capture longer tracking
ranges without altering the normal walking pattern.

2. Methods

2.1. Data Collection

A dual Kinect V2 system was configured to retrieve the kinematic joint information of 25 joints at
30 fps. With the use of a single-camera system, the sensor’s range of view was not enough to capture at
least one gait cycle with each foot. In addition, 6 samples on each side of the recording were unusable
and disturbed. This was because during a very short period, less than the entire body was captured by
the camera, which caused the algorithm to fail when building the skeleton. This effect was produced by
the progressive apparition of the subject. For this reason, some studies such as [1,22] kept the subject
on their feet within the recording area before starting the walking test, or alternatively, preferred to
use treadmills [23,24]. In this study, a dual camera system was chosen to extend the range of view of
the camera. The main goal of this configuration was to perform a validation of Kinect V2 sensor on
a real walking in long workspaces. An overview of the workspace is shown in Figure 1. More details
about this configuration can be found in our most recent study [25].

Figure 1. An overview of the workspace; the dual Kinect V2 system and the six Vicon cameras are
shown. Each Kinect V2 sensor has a depth range for skeleton tracking of 2.70 meters. An overlapped
field of view of 0.60 meters was reserved for the transition between the signals. The final walking path
(recording area) had a length of 4.80 meters. More details about this configuration can be found in [25].

During the experimental stage, six iterations were performed using the Kinect system and a gold
standard Vicon system. The Vicon system was composed of six M2 MCAM cameras with a sampling
rate of 120 Hz. This was used as the reference measure.

2.2. Data Processing

We mapped the Vicon skeleton to build one equivalent to the Kinect skeleton. Mapping rules
similar to those used in [26,27] were adopted, with the exception of the hip joint, for which the hip
joint centering algorithm recommended by [28] was applied. The mapping rules are shown in Table 1.
Figure 2 illustrates the equivalent skeletons. In this mapping process, six reflective markers were not
considered (LTROC, LTHI, LTIB, RTROC, RTHI, and RTIB). The kinematic angles of the main joints
involved in gait were analyzed in the sagittal, frontal, and transverse planes.
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Table 1. Mapping rules to build the equivalent Kinect V2 skeleton.

Kinect V2 Equivalent Joint Vicon Markers

Spine base Midpoint [RPSI,LPSI,RASI,LASI]
Spine middle Midpoint [T10,STRN]
Spine shoulder Midpoint [C7,CLAV]
Left shoulder Marker LSHO
Left elbow Midpoint [LELB marker A,LELB marker B]
Left wrist Midpoint [LWR marker A,LWR marker B]
Right shoulder Marker RSHO
Right elbow Midpoint [RELB marker A,RELB marker B]
Right wrist Midpoint [RWR marker A,RWR marker B]
Left hip Hip joint centering algorithm[LASI,LPSI] 1

Left knee Midpoint [LKNE marker A,LKNE marker B]
Left ankle Midpoint [LANK marker A,LANK marker B]
Right hip Hip joint centering algorithm [RASI,RPSI] 2

Right knee Midpoint [RKNE marker A,RKNE marker B]
Right ankle Midpoint [RANK marker A,RANK marker B]

1,2 The center of the hip joint’s location was calculated with the hip joint centering algorithm recommended
by [28].

Figure 2. The Kinect V2 skeleton model built from Vicon markers.

The time series from Kinect and Vicon systems were time-synchronized. That was done on
the basis of the initial timestamp of the first gait cycle retrieved from the inter-ankle distance according
to [29]. Afterwards, the Vicon data were subsampled from 120 to 30 Hz using a linear interpolation
method and the timestamps of Kinect data.

Once the signals were pre-processed, the accuracy of the Kinect V2 sensor was analyzed by using
Euclidean alignment and DTW alignment. To perform DTW alignment, an accumulated distance
matrix D was built. It represents the costs of aligning the Kinect and Vicon time series. Each element in
the accumulated matrix was built from the distance between corresponding points plus the minimum
value of the previous neighburing elements. Given two time series, k and v, corresponding to one
specific joint excursion each measured by the Kinect and Vicon systems respectively, the accumulated
distance matrix D was built using the following formula [30]:

D(i, j) = |ki − vj|+ min


D(i− 1, j)
D(i− 1, j− 1)
D(i, j− 1)

(1)
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where i and j represent the positions of the elements in the matrix D. Since the signals were previously
synchronized and interpolated, the time series k and v have the same length and therefore D is
a square matrix.

Once the matrix is built, the algorithm determines a warping path W over this matrix that allows
aligning both signals to produce the minimum cost. DTW makes it possible to set a warping constraint
w. In this case the DTW algorithm is called the constrained DTW and the value of w defines the limits
of the Sakoe–Chiba band [16]. It represents the maximum amount the warping path is allowed to
deviate from the diagonal. It is equivalent to the warping window width. A value of the warping
constraint w of zero is used to retrieve the Euclidean distance error. The chosen value for w can greatly
affect the accuracy [31]. This is the main reason to prefer metrics (such as the Euclidean distance) over
measures (such as the warped distance). The research community is aware that DTW is a measure
of distance rather than a metric, because DTW does not address the inequality of the triangle [31,32].
However, in the limit, as the warping constraint w approaches zero, DTW tends to be a metric [20].
For this reason, a very small value that compensates only for the sensor latency was set for the warping
constraint w. This ensures the avoidance of unrealistic deformations in the signals that disturb
the reported accuracy.

When the problem to be solved is unknown, the value of w is arbitrarily taken as a percentage of
the signal length. In our case, the sensor latency could be measured using the data collected. In this
context, the time shift between the corresponding peaks and corresponding valleys from the inter-ankle
distance was measured. The inter-ankle distance was used for this purpose because it is a general
measure for estimating the durations of gait cycles [29]. As result, the measured latency between
the Kinect and the Vicon system was 78.41 ms with a standard deviation of ±48.82 ms. As can be
noted, latency is not a uniform value. Latency changes between signals from different experiments
and even within the same signal.

The setting of the w parameter was done experimentally. When w = 0 samples, then a
point-to-point Euclidean comparison occurs. As the value of w increases, e.g., w = 3 samples, an elastic
deformation of the signal is allowed in the time domain. If w is increased too much, the temporary
deformation is not controlled and the algorithm may (not necessarily) erroneously match, e.g., a peak
of flexion with the corresponding peak of flexion of the next gait cycle. However, this error would be
evident when observing the warped signals during the analysis stage. According to a normal statistical
distribution, for 68% of cases the latency varies between 29.58 and 127.22 ms, which could translate
into a bandwidth varying from one to four samples. Ideally, the w parameter should be set to four
samples, but it was decided to leave a margin of safety of one sample to ensure that there are no
unrealistic temporary deformations. Therefore in this study the signal could be temporarily warped in
a range of ±3 samples. If w had been set at four samples, the results reported in this document would
have been slightly better, but we would have worked within an unrealistic deformation limit.

Figure 3 shows graphically the setting of w parameter. In this figure the warping window width
increases from zero to six samples while the RMSE error corresponding to a specific joint excursion is
analyzed (the knee flexion/extension). Figure 3 shows how the RMSE error decreases as the w value
increases. The strongest decreases occur in the first four units of w; from there the curves practically
flatten out, which means that the algorithm no longer has any effect. As mentioned above, a symmetric
warping constraint w equal to three samples (equivalent to 90 ms at the sampling rate of Kinect sensor)
was established. This value will compensate only for the sensor latency without disturbing the signals
or the reported accuracy.
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Figure 3. Setting of w parameter (the warping window width).

When applying a symmetrical warping window, a deformation at both sides from the diagonal of
the Euclidean path (Figure 4) could be possible. This setting does not break the causality condition,
in which the Kinect signal never could lead the Vicon signal. This is ensured because the point used
for synchronization could be affected by a non-uniform delay that makes possible a misestimation of
this point. Under this consideration, the Kinect signal can lead the Vicon signal and then the warping
window can be set as a symmetrical window.

2.3. Data Analysis

Figure 4 shows an example of how the constrained warping path moves within the Sakoe–Chiba
band when comparing the knee flexion/extension angle.
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Figure 4. An example of how the DTW algorithm operates to find similarities between both signals.
The movement belongs to the knee flexion/extension. The accumulated distance matrix obtained
is shown in gray scale. The Vicon signal is shown as a black line and the Kinect signal as a blue
line. The dotted white lines represent the limits of the Sakoe–Chiba band for a warping constraint
w = 3samples. The continuous white line represents the Euclidean path. The red line represents
the warping path.
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As can be seen in Figure 4, the DTW algorithm allows only three types of movement for
the warping path W within Sakoe–Chiba band. These movements are horizontal, vertical, and diagonal.
Considering a timestamp t in the time series k and v, if the movement is vertical, vt is extended to
vt+1 in the warped signal. If the movement is horizontal, kt is extended to kt+1 in the warped signal.
When the movement is diagonal, no temporary deformation is applied.

Figure 5 shows the alignment of the signals performed by the Euclidean and DTW algorithms.
The movement belongs to the knee flexion/extension shown in Figure 4. As can be seen in
a point-to-point comparison in Figure 5a, the peak, valley and slope recorded by the Vicon system are
compared with corresponding false points of the Kinect sensor. On the contrary, the correction showed
in Figure 5b is evident. The DTW algorithm allows for the correct association of these points.
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Figure 5. The alignment performed by the Euclidean and DTW algorithms. The movement belongs
to the knee flexion/extension shown in Figure 4. The Vicon signal is shown in black line and the
Kinect signal in blue line. The straight red lines indicate how the points are linked. There are three
highlighted points: the peak, slope and valley from Vicon signal and the corresponding points in the
Kinect signal. (a) The alignment of signals according to the Euclidean comparison. (b) The alignment
of signals according to the DTW comparison.

3. Results

Figure 6 shows examples of joint excursions in sagittal, frontal, and transverse planes. All these
figures were made from one of the iterations gathered during the data collection. In these figures
it can be seen how DTW algorithm warps the time axis of the signals so that the corresponding
features appear at the same location. As a result, the similarities between the signals are highlighted.
In addition, it can be seen how the DTW algorithm is able to make a correction in the correlation of
the signals. However, in some subfigures it is observed that an offset remains between the signals.
This offset comes from the inevitable mismatch of the Vicon and Kinect skeleton models. This offset
could be removed by applying a normalization by mean value, but we preserved this value in order to
report the results as realistically as possible.
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(a)

(b)

(c)

Figure 6. The kinematic angles for knee, hip, shoulder, trunk, and pelvis in (a) sagittal, (b) frontal,
and (c) transverse planes reported from Vicon (black line) and Kinect (blue line) systems. There are
four columns representing from left to right: The Euclidean alignment and the RMSE error. The scatter
plot for this non-warped signals and Pearson correlation (r). The warped signals by using DTW
alignment and the RMSE error. The scatter plot of this warped signals and the Pearson correlation (r).
All these figures were made from one of the iterations gathered during the data collection. The warping
constraint w was equivalent to 3 samples.



Sensors 2020, 20, 4405 9 of 14

Table 2 summarizes the sensor accuracy estimated from a Euclidean comparison and a DTW
comparison, respectively. The root mean square error (RMSE) but also the Pearson correlation (r)
and a qualitative scale were used to describe results of each method. These values were averaged
for all iterations performed during data collection. The average speed from all the iterations was
1.52± 0.05 m/s. When both tables are compared, it can be noticed that results have lower RMSE
values in the DTW alignment than in the Euclidean one. At the same time, the use of DTW allowed
the signals to be better correlated in all cases.

In the sagittal plane, all joints had a ”HIGH” correlation when using DTW matching. Trunk
and pelvis tilt changed their correlation from “MODERATE” to “HIGH” when DTW was applied.
In general, all joints showed lower RMSE values. Results in both methods confirmed that the sensor
works fine when retrieving excursions in sagittal plane. This is because the sagittal plane corresponds
to the depth estimation by the sensor. As can be seen in Figure 6a, the flexion/extension of the knee,
hip, and shoulder did not present significant offset with respect to the Vicon signal. On the contrary,
the vertical displacement of the correlation line for trunk and pelvis tilt demonstrated a mismatch
between the skeleton models. However, the value of this offset is shown in Figure 6a, and therefore
could be removed from the values reported in Table 2.

In frontal plane, shoulder adduction/abduction showed the best correlation. Again, results in
RMSE values were more promising for DTW matching. Nevertheless, the Figure 6b demonstrated
the existence of a notable offset for shoulder adduction/abduction. As we explained above, this was
produced by mismatches in the skeleton models of both systems. Although the correlation values
for hip adduction/abduction, trunk sway, and pelvis obliquity increased significantly by using DTW,
the values remained unpromising. The correlation in hip adduction/abduction and pelvis obliquity
changed from “LOW” to “MODERATE”. The correlation in trunk sway remained “MODERATE”.
However, the RMSE values stayed too high compared with the range of motion in these joints.
This demonstrated that the sensor is unable to fully detect the amplitudes of movement for these joints.
This is because, contrary to the sagittal plane, the estimated signals in the frontal plane correspond to
the spatial estimation of the camera.

In the transverse plane showed in Figure 6c, trunk rotation demonstrated a ”HIGH” correlation
despite the remarkable offset between the signals. On the contrary, the pelvic rotation continued with
a ”MODERATE” correlation even after applying the DTW alignment. In addition, the pelvic rotation
showed a notable RMSE error considering that no offset was observed in this signal.

Table 2. The accuracy of the Kinect sensor for Euclidean matching and DTW matching. The RMSE
and also the Pearson correlation (r) were averaged for all iterations performed during data collection.
A qualitative scale with which to measure the degree of correlation present at each signal has been
implemented. High: if r lies between ±0.80 and ±1. Moderate: if r lies between ±0.50 and ±0.79.
Low: if r lies below ±0.49. The average speed from all the iterations was 1.52± 0.05 m/s.

Euclidean Matching Dynamic Time Warping Matching

RMSE (◦) Pearson Correlation Qualitative r RMSE (◦) Pearson Correlation Qualitative r
(Mean ± SD) (Mean ± SD) (H./M./L.) (Mean ± SD) (Mean ± SD) (H./M./L.)

Sagittal

Knee flex/ext. 13.15 ± 1.83 0.91 ± 0.04 HIGH 10.47 ± 1.49 0.94 ± 0.02 HIGH
Hip flex/ext. 6.20 ± 2.08 0.94 ± 0.03 HIGH 2.65 ± 1.06 0.99 ± 0.01 HIGH
Shoulder flex/ext. 9.53 ± 3.88 0.94 ± 0.02 HIGH 5.80 ± 3.39 0.97 ± 0.03 HIGH
Trunk forw/back. tilt 2.09 ± 0.38 0.75 ± 0.02 MODERATE 1.93 ± 0.40 0.91 ± 0.04 HIGH
Pelvis ant/post. tilt 3.22 ± 0.37 0.72 ± 0.07 MODERATE 3.14 ± 0.39 0.87 ± 0.06 HIGH

Frontal

Hip add/abd. 5.83 ± 0.99 0.41 ± 0.19 LOW 4.70 ± 0.94 0.63 ± 0.13 MODERATE
Shoulder add./abd. 11.76 ± 3.98 0.87 ± 0.08 HIGH 11.69 ± 3.98 0.94 ± 0.05 HIGH
Trunk right/left sway 1.31 ± 0.39 0.50 ± 0.19 MODERATE 1.10 ± 0.36 0.62 ± 0.18 MODERATE
Pelvis up/down. obliquity 4.44 ± 0.48 0.40 ± 0.15 LOW 3.11 ± 0.42 0.76 ± 0.08 MODERATE

Transverse
Trunk int/ext. rotation 5.26 ± 0.64 0.88 ± 0.05 HIGH 5.09 ± 0.58 0.96 ± 0.02 HIGH
Pelvis int/ext. rotation 5.88 ± 0.36 0.54 ± 0.14 MODERATE 4.81 ± 0.43 0.72 ± 0.12 MODERATE

The Presence of Temporary Deformation Patterns

In addition to the remarkable improvements in system accuracy, the application of the DTW
algorithm made it possible to differentiate the regions of the Kinect signal where temporary
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deformations were applied. To correct the Kinect sensor latency, DTW applies temporary deformations
to the Vicon and Kinect signals. This would make its application impossible for future corrections
wherein the Vicon signal is not present. However, the deformations applied on the Vicon signal can
be transformed into opposite deformations on the Kinect signal. This means, for example, that a
temporary contraction in the Vicon signal is equivalent to a temporary extension in the Kinect signal
and vice versa. This allowed us to analyze the temporary deformation that should be applied only to
the Kinect signal. At the same time, it allowed us to identify the presence of a pattern of temporary
deformation using only the Kinect signal.

The results of this analysis can be observed in Figure 7. For example, in Figure 7a, the gait cycle of
knee flexion/extension signal is compared with its temporary deformation. The presence of temporary
deformations in peaks and valleys can be noticed. An almost perfect Pearson correlation (r = 0.9949)
indicates a strong relationship between the locations of peaks and valleys of knee flexion/extension
and the temporary deformation. It can be noticed how the signal is temporarily extended during
the peaks of flexion. Otherwise, there is a temporary contraction of the signal during the valleys.
Therefore, we can generalize that the Kinect signal needs to be extended at the peaks and contracted in
the valleys.
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Figure 7. Examples of the kinematic joint angles and the corresponding temporary deformations
represented only on the Kinect signal. The first Pearson correlation was calculated between the locations
(r-location) of peaks and valleys of the signal and the locations of the corresponding temporary
deformations. A second Pearson correlation was calculated between the amplitudes (r-amplitudes)
of peaks and valleys of the signal and the amplitudes of the corresponding temporary deformations.
To achieve a better understanding of the areas where temporary deformations occur, the phases of
the gait cycle have been identified: initial contact (IC—2%), loading response (LR—10%), mid stance
(MSt—30%), terminal stance (TSt—50%), pre-swing (PSw—60%), initial swing (ISw—73%), mid swing
(MSw—87%), and terminal swing (TSw—100%).

Furthermore, we analyzed the correlation between the amplitude of the signal at these points
and the amplitude of the temporary deformation applied by the DTW algorithm. Results showed
a high correlation (r = 0.7781) by which the magnitude of the temporary deformation is related to
the magnitude of the signal at that point.

It was observed that this behavior was repeated in the remaining joints involved in gait.
For example, in Figure 7b, the gait cycle of trunk tilt is compared with its temporary deformation.
Again, the temporary deformations occurred in peaks and valleys. There was a high degree of
correlation (r = 0.9959) between the locations of peaks and valleys and the temporary deformation.
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In the same way, the amplitude of the temporary deformation was related to the amplitude of the signal
at that point (r = 0.9536).

To clarify the process to be followed in future studies, the correction of latency will have to be
done during an offline analysis. To temporarily extend the signal during peaks, an interpolation
process may be the most appropriate. A second order interpolation could be suitable given the nature
of the signals we are processing. The amplitude of the signal to be reconstructed indicates the number
of data that will be retrieved from the interpolation. Moreover, to execute a contraction in the valleys
of the signal, surely the most appropriate process will be to design a median filter with a windowing
equivalent to the amplitude of the signal at this point.

4. Discussion

The accuracy of the Kinect sensor has been a topic of interest in several studies. For example,
in [22], Kharazi et al. presented a similar study to ours. The authors examined real overground
walking. In this case, due to the position of the sensor (Kinect placed frontal to the person) the authors
reported lower error rates than in our study. The authors reported an error of 6.31◦ for knee
flexion/extension and 5.61◦ for hip flexion/extension (for overground walking at normal speed).
However, placing the sensor in front of the person disturbs normal walking due to spatial limitations.
Furthermore, the authors claimed that the two-meter walking path used in their study would be too
short for future gait analysis applications.

In the study presented by Yunru et al. [5], during the joint kinematic validity, the author measured
the error of the Kinect V2 sensor. Looking at the kinematic signals provided by the authors, it is
remarkable, especially in knee flexion/extension, that the signals are affected by the sensor latency.
This means that a vertical point-to-point comparison is not adequate for comparing the Kinect signals
with the reference. In addition, the authors reported overly high errors due to the offset that existed
between the skeletal models used. For this reason, we preferred to perform a comparative analysis with
those results obtained by the authors after a calibration process. The authors reported 14.1± 4.8◦ for
knee flexion/extension, 11.5± 4.1◦ for hip flexion/extension, and 4.7± 2.2◦ hip adduction/abduction
(for overground walking, at normal speed, with a single Kinect placed in front of the participant;
the walkway being between 1.5 and 3.5 m from the Kinect). These values are very close to those we
reported during the Euclidean matching (13.15◦ knee flexion/extension, 6.20◦ hip flexion/extension,
5.83◦ hip adduction/abduction). However, the differences are clear when we apply DTW (10.47◦ knee
flexion/extension, 2.65◦ hip flexion/extension, 4.70◦ hip adduction/abduction).

In the study reported by Bilesan et al. [1], the accuracies of the most important kinematic
variables from gait were reported. The correlation (r) and RMSE errors of the knee and hip
flexion/extension, hip abduction/adduction, and pelvic rotation, were within acceptable ranges,
which indicates the validity of the method used by the authors (inverse kinematics techniques).
However, the correlation for pelvic obliquity and pelvic tilt was quite low. The signals were slightly
noisy to ensure that the low correlations were due to the effects of sensor latency. The authors reported
1.699◦/r = 0.2679 for pelvic tilt, 2.288◦/r = 0.6641 for pelvic obliquity, 7.233◦/r = 0.9502 for pelvic
rotation, 3.914◦/r = 0.9779 for hip flexion/extension, 3.240◦/r = 0.7562 for hip abduction/adduction,
and 3.247◦/r = 0.9834 for knee flexion/extension. The data were collected with a single Kinect sensor
and within a short walkway (overground walking, at moderate speed, with a single Kinect placed in
front of the participant; the walkway was between 1 m and 3 m from the Kinect).

Finally, Bravo et al. [24], applied the DTW algorithm to compare the signals with the ground truth.
Despite this fact, the signals from kinematic joint angles were too noisy. This produced errors rates
higher than the reality. The authors reported 14.07◦ and 19.04◦ for hip and knee flexion/extension
respectively, and 5.95◦ for hip abduction/adduction (at a self-selected speed and over a treadmill).
They compared the Kinect and Vicon data similarly to our method, using a DTW algorithm. However,
the authors did not mention anything about how they set up this algorithm. In addition, our method
demonstrates better accuracy in capturing the kinematic joint angles.
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As noted, the error rates that we retrieved when using a Euclidean alignment were very similar
to those presented in previous studies. However, the improvement was noticeable after latency
compensation using the DTW algorithm.

Additionally, this study revealed the existence of temporary deformation patterns in the signals
to fit with the ground truth. These findings will facilitate the design of filters or machine learning
algorithms to compensate for sensor latency in future studies. In addition, this study promotes
the effective use of the Kinect sensor by proposing a way to improve its accuracy during human
gait analysis.

5. Conclusions

The accuracy of Kinect sensor for human gait analysis was estimated using two methods of
time series realignment. The Euclidean matching, which is the common procedure applied in
earlier validations of Kinect sensor, was compared with the DTW matching. For this purpose, joint
excursions in three planes were analyzed. Results from Euclidean matching were consistent with those
reported in previous studies, whereas the DTW matching demonstrated considerably lower error rates.
This demonstrated that the accuracy of the Kinect sensor has been underestimated due to the use of
a Euclidean comparison.

DTW allowed the comparison of sequences with tolerance of small misalignments, enabling
an accurate comparison. This demonstrated that DTW is a potential method that compensates for
the Kinect sensor latency.

For future work, an in-depth analysis of the temporary deformation patterns in the Kinect signals
could be conducted. These patterns could be applied in future studies to design filters or machine
learning algorithms that compensate for sensor latency using only the Kinect data. In addition, this
could promote the use of the Kinect sensor for human gait analysis in a safer way.
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