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Abstract: The modern development of nanotechnology requires the discovery of simple approaches
that ensure the controlled formation of functional nanostructures with a predetermined morphology.
One of the simplest approaches is the self-assembly of nanostructures. The widespread implementation
of self-assembly is limited by the complexity of controlled processes in a large volume where, due to the
temperature, ion concentration, and other thermodynamics factors, local changes in diffusion-limited
processes may occur, leading to unexpected nanostructure growth. The easiest ways to control
the diffusion-limited processes are spatial limitation and localized growth of nanostructures in a
porous matrix. In this paper, we propose to apply the method of controlled self-assembly of gold
nanostructures in a limited pore volume of a silicon oxide matrix with submicron pore sizes. A detailed
study of achieved gold nanostructures’ morphology, microstructure, and surface composition at
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different formation stages is carried out to understand the peculiarities of realized nanostructures.
Based on the obtained results, a mechanism for the growth of gold nanostructures in a limited volume,
which can be used for the controlled formation of nanostructures with a predetermined geometry
and composition, has been proposed. The results observed in the present study can be useful for the
design of plasmonic-active surfaces for surface-enhanced Raman spectroscopy-based detection of
ultra-low concentration of different chemical or biological analytes, where the size of the localized
gold nanostructures is comparable with the spot area of the focused laser beam.

Keywords: gold; nanostructures; template synthesis; X-ray diffraction; X-ray photoelectron
spectroscopy; growth mechanism; SERS

1. Introduction

In the recent years, the usage of gold, silver, and copper nanostructures for surface-enhanced
Raman spectroscopy (SERS) has aroused a lot of interest [1–8] due to the appearance of surface plasmon
resonance in these nanostructures when exposed to electromagnetic radiation in the visible and/or
near-IR spectral range [1]. The exact position of the plasmon absorption band is determined by the
type/nature of the applied metal and the size and shape of the nanostructures [9].

The coupled plasmon resonance deserves special attention, as it appears in the gap between
nanostructures and leads to the appearance of so-called “hot spots”—areas with a high intensity of
local electric fields [9–11]. Due to this effect, the highest degree of amplification of the Raman signal
can be observed on aggregated structures with different morphology: from dimers [10,12] with one
“hot spot” to fractal structures [13–18], where a large number of “hot spots” can be achieved. However,
the aggregation of nanostructures is often very arbitrary, which leads to broad variation in the “hot
spots” average quantity from one aggregate to another. Consequently, the application of aggregated
nanostructures for SERS is often avoided. In most cases, the surface active substances are applied
to avoid aggregation [19,20] and increase the stability of colloidal plasmonic nanoparticles solutions.
The presence of surfactants in colloidal solutions leads to the appearance of additional vibrational
modes in the resulting Raman spectrum, which makes it difficult or impossible to correctly interpret
the SERS spectra of analyte. Another negative impact of surfactants is related to the creation or increase
of an electrostatic barrier in the near-surface area, which leads to a decrease in the adsorption of the
analyte molecules and therefore the decrease of signal intensity [21].

The using of stabilizers can be avoided by the controlled aggregation of nanostructures on the solid
substrates. Mettela et al. have proposed a promising approach to the formation of silver nanostructures
with repetitive dendritic-like morphology, which allows the realization of Raman signal with high
amplification [22]. However, the synthesis stage involves the utilizing of complex organometallic
compounds. It increases the number of operation steps during the proposed synthesis, including
high-temperature annealing for the organic matter removal. These are the main disadvantages of such
nanostructures’ formation.

A simple method based on the application of a porous matrix for the controlled and localized
formation of complex shape plasmonic metal nanostructures has been proposed in our previous
publications [23–25]. It was shown that the morphology of aggregated structures of copper and silver
can be controlled over the large silicon surfaces via galvanic replacement. At the same time, a porous
silicon dioxide matrix can be used as a template [26]. Interestingly, the shape of plasmonic metal
aggregates is largely influenced by the pore size, which determines the morphology of the deposits,
as was found in our previous publication [25]. The subtle adjustment of the unit metal shape can be
also carried out by changing the synthesis temperature [23].

Considering the fact that silver and copper nanostructures have low long-term chemical
stability against oxidation at ambient atmospheric conditions, especially in water-based solutions,
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the implementation of gold nanostructures is more realistic. In our previous work, we have already
demonstrated the possibility of obtaining gold nanostructures by means of template synthesis [27].
It is important to note that the proposed synthesis method uses "simple" chemistry to produce
plasmonic-active nanostructures, which allows us to avoid the consumption of organic additives
during the synthesis, and as a consequence, leads to low contamination of the gold surface with
derivatives of hydrocarbons. Herein, we present the detailed study of the gold nanostructures’
morphology and microstructure evolution during the selected formation times. To assess the
quality of the achieved surfaces, the evolution of the surface states and chemical composition of
the resulting gold nanostructures was studied by X-ray photoelectron spectroscopy (XPS). At the
same time, SERS’s ability to observe gold-nanostructured surfaces was examined by using a model
2-Mercaptobenzothiazole analyte.

2. Materials and Methods

To obtain the porous SiO2/Si matrix, we used the swift heavy ions-track technology [26],
which involves the irradiation of the silica surface with high energy ions with the subsequent
silica wet-chemical etching of the formed latent tracks in the presence of a selective etching agent.
SiO2/Si ion-track matrix, in the present study, with the initial pore diameters of 680 nm and 5% surface
porosity was used as a template for self-organization of Au clusters in pores with a limited volume.
A detailed description of the methods used in the work is given below. The obtained SiO2(Au)/Si
heterostructures were comprehensively studied for the estimation of the possible growth mechanism
of gold nanostructures in porous matrix SiO2/Si. The general idea of formation, investigation and
application of obtained SiO2(Au)/Si heterostructures is shown in Figure 1.
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Figure 1. Schematically representation of general idea of formation (a), investigation (b) and application
(c) of gold nanostructures in SiO2/Si porous matrix.

The galvanic replacement method has been used for the formation of gold nanostructures in the
pores of the SiO2 layer from an aqueous solution of 0.01M gold(III) chloride trihydrate (AuCl3·3H2O,
Sigma-Aldrich) and 5M hydrofluoric acid (HF) during different treatment times from 1 s to 1800 s.
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The process temperature was stabilized at 298K. The electrolyte before the deposition process has
been thermostated in a water bath for 20 min. At the end of the process, the samples were washed in
distilled water and dried in a stream of nitrogen.

The chemical transformations during the gold nanostructures growth in SiO2/Si pores matrix can
be represented as follow, in water, AuCl3 and HF dissociate into cations and anions Au3+, Cl−, H+, F−,
which participate in subsequent chemical reactions, and can be presented as follow:

4Au3+ + 3Si + 18F− → 4Au + 3SiF2−
6 , Si + 6HF→ H2SiF6 + 4H+ + 4e− (1)

Si + 2H2O→ SiO2 + 4H+ + 4e−, Si + 2H2O HCl
→ SiO2 + 2H2 (2)

SiO2 + 6HF→ H2SiF6 + 2H2O (3)

The morphology of the observed gold nanostructures was characterized using a field-emission
JEOL JSM-7000F scanning electron microscope (SEM).

To investigate the crystallinity of gold precipitates, X-ray diffraction analysis (XRD) was performed
on a D8 ADVANCE ECO diffractometer (Bruker, Germany) using Cu Kα radiation. To identify the
phases and study the crystal structure, the software Bruker AXSDIFFRAC.EVAv.4.2 and the international
database ICDD PDF-2 were applied.

The chemical states of the formed nanostructures were determined by surface-sensitive XPS
analysis in an ultrahigh-vacuum (10−9 mbar) using K-Alpha ThermoScientific system with a
monochromatic X-ray Al Kα 1486.6 eV source. An energy scale was adjusted in accordance with Au
4f = 84 eV, Ag 3d = 368.2 eV, and Cu 2p = 932.6 eV lines of standard samples. To neutralize the surface
charge, a calibrated (C 1s = 284.8 eV) compensating electron flood gun was used. The applied X-ray
beam spot size was 100 µm. High-resolution spectra were obtained with a spectral resolution of 0.1 eV
and constant pass energy of 20 eV. The number of applied scans was 10. For the deconvolution and the
component analysis Shirley/Tougard background was used. The line shape of the plotted curves was
obtained at a 30% ratio of the Gauss/Lorenz mixture.

The SERS measurements were performed with a LabRAM HR Evolution from Horiba Scientific
equipped with a confocal microscope and multichannel air-cooled CCD detector. The laser excitation
is provided by the red laser (HeNe: 633 nm; 1−10 mW). A spectral resolution of ~2 cm−1 is obtained by
using the LWD objective (50×) combined with a grating of 600 gr/mm. To acquire an averaged spectrum
from different positions, the laser is rapidly scanned across a defined area on the sample surface (30 s).
DuoScanTM (Horiba) is a unique hardware module to scan the laser beam using software-controlled
mirrors. The SiO2/Si template (4 × 4mm2) was placed on a microscope slide with a cavity and 200 µl of
2-Mercaptobenzothiazole (MBT) water solution with different dilutions (10−4 M–10−8 M) was added
and covered by a thinner glass slip. SERS studies were carried out in wet-drop conditions.

3. Results and Discussion

3.1. Gold Nanostructures’ Morphology

The typical SEM images of gold aggregates obtained via galvanic replacement, at different growth
times, in the porous SiO2/Si matrix are shown in Figure 2. As it can be seen, at all deposition times, with
the exception of the sample at the high deposition time of 1800 s, a high selectivity of the deposition
process is presented. A metallic deposit is formed exclusively and localized in the SiO2 pores. The gold
precipitate is formed in all the pores and all the deposits over the entire substrate have a similar
morphology at a given deposition time. The spatial distribution of nanostructures is governed by
the location of the pores in the matrix. The time evolution analysis of the morphology of the gold
aggregates shows that, even within a shorter time, a dense metal precipitate is formed inside the
pore. During the first few seconds, gold particles with diameter lower than 10 nm are formed at the
bottom of the pore, as shown in Figure 2b. Characteristically, larger particles are located mostly on
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the edges of the pores rather in the center of the pores. This may be due to the fact that the initial
nucleation occurs more intensely on the defective edge regions in the pores at the SiO2/Si interface.
After 5 s, an increase in the amount of gold deposits occurs and individual gold crystallites are found
at both the edges and in the center of the pores. Typically, particles localized at the edges of the pores
increase in size faster than in the central part of the pores, as presented in Figure 2c. The metallic
precipitate takes the form of “sunflower-like” structures, similar to our previously published results on
the localized silver growth in porous matrices [25], in samples grown at longer than 5 s deposition time,
as shown in Figure 2d−g. At longer than 15 s growth time, a gradual increase of the metal deposit can
be achieved. The growth of gold nanostructures occurs in a direction perpendicular to the surface, with
the formation of aggregated structures mainly at the edges of the SiO2 pores. This “sunflower-like”
morphology is preserved up to 180 s of deposition time, as shown in Figure 2d−g. However, further
increase in the deposition time up to 1800 s leads to both an increase in gold precipitants size and a
significant change in their morphology. Observed structures are transformed from selectively and
localized “sunflower-like” shapes to gold aggregates with an uncontrollable shape and localization at
longer deposition times, as shown in Figure 2h. The matrix surface between big gold agglomerates is
covered by smaller gold nanoclusters, as presented in Figure 2h. Possible explanation for such behavior
is that at longer deposition times silicon oxide matrix restricting the growth of gold nanostructures is
etched completely due to the presence of hydrofluoric acid [28]. As a result, the porous matrix does
not exist anymore, and the whole silicon surface can be covered with a film of gold nanoparticles.
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Figure 2. Scanning electron microscope-image planar views of gold nanostructures grown into porous
SiO2/Si matrix observed at different gold deposition times: (a) general planar overview of the surface at
deposition time of 30 s; (b) 1 s, (c) 5 s, (d) 15 s, (e) 30 s, (f) 60 s, (g) 180 s, (h) 1800 s. (b–h) insets: zoomed
view of single pores filled with gold agglomerates.
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3.2. X-Ray Diffraction of Gold Nanostructures

The microstructure of the obtained precipitates was investigated by X-ray diffraction. XRD patterns
of gold deposits after different growth times are shown in Figure 3.
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Figure 3. XRD patterns of the porous SiO2/Si matrix filled with gold nanostructures at different
growth times.

At gold deposition times of 1 s and 5 s, the crystalline phase is not presented and amorphous
behavior was observed. The absence of X-ray reflexes for the surfaces obtained at a deposition time of
1 s and 5 s is due to the fact that gold atoms do not have enough time to form atomic order in a crystal
lattice in such short growth time. This means that deposited gold into the porous matrix is presented
either in an amorphous state, or the amount of metal formed during such short deposition times does
not reach the sensitivity threshold of the XRD detector. The characteristic gold crystal structure of the
face-centered type with the space group Fm-3m (PDF[00-004-0784]) with selected crystallite orientation
along the plane (111) was observed for longer than 15 s growth time.

The calculation of the lattice parameter in the observed samples was carried out using the
Nelson–Taylor extrapolation function as presented in Equation (4):

a = f
[

1
2

(
cos2 θ
sinθ

+
cosθ
θ

)]
(4)

The value and error of the parameter a are determined by linear extrapolation of the function to
the argument zero value (θ = 90◦).

The average crystallite size can be calculated by the Scherer Equation (5):

τ =
kλ
βcosθ

(5)

where k = 0.9 is the dimensionless coefficient of the particle shape (Scherer constant), λ = 1.54 Å is
the X-ray wavelength, β is the half-width, half-height reflex (FWHM) and θ is the diffraction angle
(Bragg angle). The calculation results of crystallographic parameters of observed gold nanostructures
localized in the porous SiO2/Si matrix are given in Table 1.
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Table 1. The main crystallographic parameters of the crystal structure of the gold precipitants at
different crystal growth times.

Deposition Time Phase Space Group (hkl) Crystallite Size, nm Cell Parameter, Å FWHM

1 s amorph — — — — —

5 s amorph — — — — —

15 s cubic Fm-3 m(225) 111 88.68 4.05061 0.105

30 s cubic Fm-3 m(225) 111 88.00 4.05223 0.106

60 s cubic Fm-3 m(225)
111 111.42

4.04901
0.084

200 53.35 0.179
220 80.35 0.130

180 s cubic Fm-3m(225)
111 88.90

4.04740
0.105

200 56.74 0.168
220 65.07 0.161

1800 s cubic Fm-3m(225)
111 105.10

4.04901
0.089

200 34.10 0.280
220 95.26 0.110

The results presented in Table 1 show that the increase of the deposition time leads to the modest
changes in the deposited gold crystal lattice, which is caused by the nucleation processes and the
crystallites consolidation along the (111) crystal direction. However, the increase of deposition time
leads to a significant difference in the sizes of crystallites formed in different planes. The change in
the shape and intensity of the diffraction lines indicates the presence of stresses and deformations
in the structure due to the formation of crystallites that is fully logical for polycrystalline materials.
The material stresses or strains (ε) were estimated based on a diffraction shift analysis of the most
intense peak (111) with respect to the reference values calculated according to Equation (3):

ε =
dexp − dpristine

dpristine
(6)

where dpristine, dexp are interplanar distances of the reference sample and the experimentally obtained
data. The dependence of the stresses in deposited gold on deposition time is presented in Figure 4a.
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Figure 4. The selected material characteristic dependence on the gold deposition time: (a) strain of the
crystal lattice in observed nanostructures; (b) dislocation density in the deposited nanostructures.

Gold deposition time causes an increase in the stresses and deformations in the crystal structure
of the gold precipitant. This effect can take place due to the crystallite formation processes, which leads
to a change in the dislocation density of the structures, which is shown in Figure 4b. An increase in
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the dislocation density is associated with a change of the crystallite size change during the formation
process, as well as to subsequent changes in the interplanar distances and crystal structure strains.

3.3. XPS Studies of Obtained Gold Nanostructures

The results on the obtained surface composition studies by high-resolution XPS are presented in
Figure 5. The position and shift of the Au 4f7/2 and 4f5/2 core levels binding energy values correspond
to the presence of different chemical states of gold and can be direct evidence of the presence of
different gold oxidation states: Au(0), Au(I), and Au(III) [22,23]. The spectra obtained in Figure 5a,b,
are related to the samples with gold deposition times of 1 s and 5 s, where the binding energy values of
87.7 eV and 84 eV are well-correlated to the known binding energy of pure metallic gold(0) [22,23].
The additional binding energy value of the Au 4f at 85 eV (as additional shoulder in spectrum) is
related to the presence of the oxidized gold(I) phase on the surface of the gold precipitant grown
at 15 s, as shown in Figure 5c. The further increase of deposition time to 30 s and 60 s leads to an
increase in the contribution of the Au(I) phase and formation of the additional Au(III) oxidized phase
in precipitants, as pointed in Figure 5d,e. For the deposits at higher deposition times of 180 s or 1800 s,
only binding energy values characteristic for metallic gold(0) were observed (cf. Figure 5f,g).
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Figure 5. High resolution XPS spectra of Au 4f7/2 and 4f5/2 core levels in obtained nanostructures grown
at different time: (a)—1 s, (b)—5 s, (c)—15 s, (d)—30 s, (e)—60 s, (f)—180 s, (g)—1800 s, (h)—legend of
the graphs.
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XPS data shown in Figure 5, allow us to assume that different growth mechanisms for gold
nanostructures may occur at different stages of SiO2/Si pore filling. From the analysis of the chemical
reaction Equations (1)−(3), it is obvious that three chemical scenarios can take place during the gold
deposition: electrochemical reduction of gold on silicon (1), oxidation of silicon (2), and etching of SiO2

in fluorine acid (3). The schematic illustration of the pore filling process is demonstrated in Figure 6.
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limited volume porous matrices.

At the initial stage, a metallic gold precipitate is formed by the reduction of gold(III) ions on
silicon. In the first stage up to 5 s, the number of electrons pulled out from the silicon surface is in
equilibrium with the amount of gold(III) ions, and therefore all ions can be reduced up to a metallic
gold(0) state, as was observed in Figure 5a,b. Further, due to the lack of electrons for metal reduction,
uncompensated electronic states in gold atoms can be realized. Such behavior can be achieved due to
the fact that, in the first initial phase, a dense film of gold nanoparticles had already formed at the
bottom of the pore, which blocked hydrofluoric acid access to silicon surface, and as a result not all
gold(III) ions can be reduced up to a metallic state. As an evidence of such behavior, the presence of
gold ions with lower oxidation level (+1) was observed in the XPS spectrum for the sample grown
for 15 s (Figure 5c). In the case of the 30 s and 60 s deposits, the dynamics of incomplete gold ionic
reduction continues, which is confirmed by relatively large contributions of ionic states to the resulting
gold spectrum (see Figure 5d,e). On this point, we would like to note that the growth of structures
continues due to the presence of hydrofluoric acid in the solution, which gradually and evenly erases
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SiO2 pores along the edges, providing access to the silicon surface for the “generation” of new electrons.
Thus, there is a diffusion-limited process, and it becomes clear why the structures expand (increase)
mainly along the edges of the pores (only in this area do new electrons appear, which instantly can
reduce Au(III) ions to Au(0)) [29,30]. However, it can be assumed that the concentration of gold ions in
the local region of space at the pore boundaries exceeds the concentration of electrons generated from
the silicon surface. A significant part of the generated electrons migrates to the already-formed gold
structure. As a result of such behavior, the surface turns out to be negatively charged and gold ions
from the solution continue reduction on the surface of the structure, enlarging it. The gold ions, which
are around the pore edge and do not receive electrons, form a bond with silicon, as confirmed by XPS
spectra performed by Rahsepar and Leung [31]. The formation of Au3Si intermetallic alloys at near
room temperature have been reported in the 1970s by Bhattacharya et al. [32]. To determine the exact
contributions of Au(I) and Au(III) to this bond, as well as to verify the exact theory of the formation
of gold silicides in the localized regions of the pore edges, additional studies are required using a
synchrotron source in correlation with SEM to accurately position the X-ray beam. These studies are
planned in the future. Significant increase in gold growth time (180 s and 1800 s) leads to complete
etching of SiO2 layers between the pores and the release of the silicon surface, so that gold(III) ions can
fully be reduced to the metallic state, as evidenced by XPS spectra without additional contribution of
another gold oxidation state have been observed (Figure 5f,g).

Nevertheless, it should be noted that the XPS spectra indicate the absence of the formation
of any gold bonds with the components of the initial solution from which the gold nanostructures
were obtained. The analysis of the surface states of observed gold nanostructures grown at different
deposition times make it possible to demonstrate the possibility of producing gold nanostructures
with a positively charged surface due to the presence of silicide (Au-Si) in the structure. As mentioned
in [33], metal silicides, including gold, could be used as a catalyst. The advantage of these structures
over existing ones (as typically colloidal solutions) is that they are localized on a solid substrate.

3.4. SERS on Obtained Gold Nanostructures

The potential of the realized gold nanostructures as a SERS-active substrate is tested on model
analyte, MBT solutions, with different concentrations (10−4 M–10−8 M). The gold precipitates obtained
after a deposition time of 180 s were selected, because they approach the necessary size of the laser
spot of about 1 µm. Depending on the measured spot, the intensity of the Raman signal varies, so we
used a scanning laser beam, where the area of 25 × 25 µm2 is continuously scanned during the Raman
scattering measurement. We found that for concentrations of 10−4 M to 10−7 M the similar Raman
spectrum is obtained, as presented in Figure 7.
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The high intensity peak in the SERS spectra located at 520 cm−1 corresponds to the crystalline
silicon in porous matrix, at 1380 cm−1 originates from combined stretching of the NCS-ring and
peak at 1007 cm−1 and 1240 cm−1 relates to the C-S stretching modes [34]. It is well-known and
previously published by our group on similar nanostructures [27,35], that chemically reactive (e.g., thiol
in 2-Mercaptopyridin) groups containing molecules have strong chemical binding with metal surfaces,
that can significantly affect SERS signal intensity due to the Raman signal enhancement as a consequence
of chemical factor. In present study, SERS spectrum for the lowest MBT concentration of 10−8 M cannot
be detected that can be explained by the lower MBT molecules cross-linking of the gold nanostructures
surface. The direct evidence of such behavior is the decrease of the 1007 cm−1 and 1240 cm−1 C-S
stretching modes intensity, because the MBT molecule binding to the surface take place through –SH
group [36] that means that amount of adsorbed or bonded MBT molecules to the gold surface directly
correlates with intensity of C-S vibrational modes. Considering the size of the sample and the amount
of solution, the solution should contain at least 10−7 M of MBT to obtain a monolayer of analyte on the
gold agglomerates.

4. Conclusions

The localized gold nanostructures were obtained by galvanic replacement in the pores of the
SiO2/Si matrix. The evolution of microstructural and morphological features of the gold aggregates
depending on the time of metal deposition was studied. The deep investigation of the atomic
structure and chemical composition of the surface of the samples obtained during deposition from
15 to 60 s allowed us to reveal the contribution of Au(I) and Au(III) gold states in XPS spectra. It is
assumed that this fact is caused by an incomplete reduction of gold ions to a metallic state, due to
diffusion-limited processes occurring in the pores of the SiO2/Si matrix. It should be noted that these
SERS-active substrates were tested by being in a usual atmosphere for 1 year, while maintaining their
SERS-activity. Thus, the proposed structures are stable at ambient atmospheric conditions for at least a
year. Such functional surfaces are well-suited for the SERS-based detection of molecules. Additionally,
observed surfaces with different oxidized states of gold have perspectives as promising catalysts.
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