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Abstract: Visual-inertial navigation systems are credited with superiority over both pure visual
approaches and filtering ones. In spite of the high precision many state-of-the-art schemes have
attained, yaw remains unobservable in those systems all the same. More accurate yaw estimation not
only means more accurate attitude calculation but also leads to better position estimation. This paper
presents a novel scheme that combines visual and inertial measurements as well as magnetic
information for suppressing deviation in yaw. A novel method for initializing visual-inertial-magnetic
odometers, which recovers the directions of magnetic north and gravity, the visual scalar factor,
inertial measurement unit (IMU) biases etc., has been conceived, implemented, and validated. Based
on non-linear optimization, a magnetometer cost function is incorporated into the overall optimization
objective function as a yawing constraint among others. We have done extensive research and
collected several datasets recorded in large-scale outdoor environments to certify the proposed
system’s viability, robustness, and performance. Cogent experiments and quantitative comparisons
corroborate the merits of the proposed scheme and the desired effect of the involvement of magnetic
information on the overall performance.

Keywords: visual-inertial navigation; yaw estimation; magnetic information; non-linear optimization

1. Introduction

As befits one of the most crucial problems in robotics, SLAM has received much attention for
the past two decades and opened up many new vistas for autonomous robots, alongside numerous
proposed approaches and schemes for implementing it, which fall into three categories by sensing
modality: Laser SLAM, visual SLAM, and visual-inertial SLAM. Laser SLAM preponderated in the
early stages of the development of SLAM by virtue of its high precision, long range, and capacity for
obstacle avoidance. Notwithstanding its advantages, its scale in size and weight means its application
is confined to platforms allowing a limited load and a capacity enough for carrying a laser scanner,
which therefore circumscribes the application range and agility of the platform. Being cost-effective,
lightweight, and efficient in energy consumption, cameras, or vision-based sensors in general, are in
the ascendant, which is also attributed to its informative representation of geometry in a single image
caught on camera. A desirable consequence of images being abundant in information is the capacity to
retrieve previously registered scenes, known as scene recognition, so as to perform loop closure to
curb drift in estimates.

For a vision-based SLAM system or those reliant mainly on visual perception, four components are
deemed indispensable, including visual tracking, filtering/optimization, loop closure, and mapping,
each of which holds systemic effects on the overall performance of a system and to which various
solutions have been conceived, implemented, and experimented. Approaches to tracking visual cues
can be categorized into such two classes as feature-based and direct methods according to how they
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implement data association. Feature-based methods rely on the descriptors of features extracted in
images to associate image points appearing across several images, and points existing in more than one
images can then be used to estimate poses with stability due to the invariance of descriptors. Apart from
the relatively high computational cost of extracting features and descriptors, one of the penalties to
feature-based methods is their lack of resistance to texture-less views. The descriptor, dependent
on features being identifiable, does not contain the amount of information enough to perform data
association. Direct methods, however, eschew this problem by direct exploitation of changes in
illumination and by minimization of photometric errors rather than geometric ones, thereby being
more impervious to scarcity of texture as well as driving down computational consumption since they
don’t have to describe features. The concept behind every formulations of estimation is probabilistic
modelling with noisy measurements as input to estimate certain parameters. Typical models are based
on maximum a posterior (MAP) in which the final estimates maximize the a posteriori probability
given existent measurements. For pure visual SLAM, the probabilistic model is usually based on
Maximum Likelihood (ML) in the absence of prediction models. Earlier SLAM schemes estimate states
mainly in a filtering way in which the prior parameters are always marginalized out to focus merely on
current states for containment of computation, i.e., all the previous states are fixed, which is bound to
affect precision. Recently nonlinear optimization-based methodology has begun to gain ground among
scholars alongside increases in the performance of hardware and decreases in its cost. Due to the
sparsity inherent in the Hessian matrix of BA (Bundle Adjustment), the computational complexity of
estimation in SLAM is lighter than would be conceived. By benefiting from the sparsity and properly
assigning tasks among several parallels and with existent optimization modules including Ceres, g2o,
iSAM, and gtsam which have been leveraged across many platforms of navigation, optimization-based
systems can run smoothly within reasonable time but still need to marginalize out older states to
restrict the number of keyframes. The factor graph based on fast incremental matrix factorization,
on the other hand, allows for a more accurate and efficient solution by virtue of recalculating only
the matrix entries in need of change, whereby the system can considerably slash computation while
holding the whole trajectory.

The inertial measurement unit (IMU), light in weight, size, and price, and often in the form of
a MEMS (Micro-Electro-Mechanical System), has been gaining in popularity as a source of inertial
information complementary to vision since it recovers poses from motion itself and permits rendering
observable the metric scale of monocular vision and the direction of gravity whereas visual constraints,
in reverse, given accurate data association, can check error accumulation in the integration of IMU
measurements (angular velocity, acceleration). The fusion of visual and inertial information began
with loosely-coupled mechanisms and has now transitioned into tightly-coupled ones. The procedure
of propagating and predicting states with inertial measurements between two consecutive frames
and later using a visual image (or several) as an observation to update estimates is characteristic of
loosely-coupled mechanisms which are straightforward but fall short of gratifying decision because
they fail to take into account the correlation between the two types of data, as opposed to which,
tightly-coupled ones fare better by incorporating variables specific to vision (the coordinates of
landmarks) and those to inertia (gyroscope and accelerometer biases) into the whole set of optimization
states, which in essence utilizes the complementary attribute to a greater extent. To ameliorate
the additional computational expense incurred by the introduction of inertial constraints into the
optimization graph, in which case the Hessian matrix is no longer as sparse as that of purely visual
models, pre-integration on manifold may be adopted to reduce calculation for optimization and
bias correction.

Merging inertial and visual information leads to the angles of pitch and roll being observable
with the last dimension of attitude, namely yaw, still unobservable and bound to drift over time.
It is conceivable that high accuracy in yawing estimation can bolster the overall precision as every
pose is estimated partly based on previous estimates and is therefore affected by their yaw angles.
The magnetometer has long been employed in the field of navigation, often in combination with other
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types of apparatus such as an IMU. The magnetometer, as its name reveals, is a type of sensors that
measure magnetic density in a magnetic field, especially the Earth’s magnetic field (EMF), one of the
Geophysical Fields of the Earth (GFE) including the Earth’s Gravitational Field (EGF). It has been
used in a wide range of commercial and military applications, mostly for directional information [1],
whereas another way of using it for motion estimation is through measuring magnetic field gradients
so as to acquire velocity information as in [2] which formulated a sensing suite consisting of a vision
sensor and a MIMU (Magneto-Inertial Measurement Unit) that, on the presupposition of stationary
and non-uniform magnetic field surroundings (particularly indoor environments), can render the body
speed observable. The said two manners of employing the magnetometer imply that for this sensor
there is a dichotomy in how to process its readings between outdoor and indoor scenarios, and it will
not be straightforward to reconcile them.

However, little research has been done about integrating visual-inertial frameworks with magnetic
observation that could ably suppress the cumulative azimuth error and further facilitate navigation.
It seems that the magnetometer is not so much appealing for scholars in the area of SLAM as it ought
to be. What keeps magnetometers from being adopted might be its liability to magnetic disturbance.
Ubiquitous sources magnetic interference from ferrous metals and even from the platform itself would
entail the system both growing in size and demanding more intricate handling. Since applications of
SLAM are always towards compactness and generality, the magnetometer has remained out of favour.

We gather that despite the magnetometer’s weaknesses, outdoor environments might still be in
accord with its characteristics with appropriate measures taken, and therein lies the main motivation
of the paper.

In this paper, we present a visual-inertial-magnetic system of navigation based on graph
optimization that, apart from visual and inertial measurements, utilizes the geomagnetic field to
restrain drift in yaw. From devising the scheme to verifying its superiority, the following tasks have
been followed through along the way:

1. Exhaustive mathematic deductions have been made to support the proposed system theoretically
and mathematically, embodying observation models, least squares problems concerned with
initialization, the novel optimization framework that fuses visual-inertial-magnetic information,
and a novel way of loop-closure formulation aimed at enhancing the robustness to false loops.

2. A complete and reliable procedure of initialization for visual-inertial-magnetic navigation systems
is presented.

3. An effective and efficient optimization using visual-inertial-magnetic measurements as
observation is established.

4. A suite of sensors and a CPU with other hardware, capable of data acquisition and real-time
operation, has been assembled.

5. The system has been tried and tested on several datasets collected in large-scale outdoor
environments. Analysis and comparison of the experiment results attest to the feasibility, efficacy,
and excellence of the proposed system.

2. Related Work

Since [3] came out, large numbers of well-designed systems [4–8] have swollen the ranks of
SLAM schemes. Copious studies have been done on visual-inertial SLAM along with various
applications that have since been on a continuum to full maturity [9–11]. Until today, scholars are
still endeavoring to bring it to perfection with novel ideas and approaches [12–16]. Incipient methods
fuse inertial and visual measurements loosely where the two types of information are processed,
filtered, and used for estimation all separately [17]. In overcoming the notorious inconsistency
of loosely-coupled approaches, researchers have come to appreciate that the advantages of fusing
tightly, such as improved consistency [18,19]. Whether sources of information are amalgamated
loosely or tightly, filtering mechanisms hold more likelihood to arrive at a suboptimal solution in
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the wake of linearizing all previous states. In break with traditional filter-based methods, non-linear
optimization employed in SLAM has been deemed more desirable with its high precision and tolerable
computational requirements. Reference [20] copes with holding on to and optimizing an entire
trajectory by what the authors call ‘full smoothing’, but the ever increasing complexity in line with the
incremental map and trajectory largely limits its applicability. Reference [21] is generally recognized
as one of most early mature systems using non-linear optimization based on sliding window and
marginalization for containment of problem size. To make a virtue of escalated computation due to
the addition of inertial measurements, reference [22] proposes what is called the IMU preintegration
technique that integrates on manifold a segment of measurements between two time points with
the Jacobian matrices maintained for correction. In that way, changes in linearization will not need
complete re-integration but a few minor adjustments with respect to the Jacobian matrices as long as
they are not too large.

Another property of visual-inertial SLAM that comes to scholar’s attention is its initialization
and what its does is to work out several parameters describing the system’s initial states and sensors’
relation. Sfm calls for enough motion to be reliable while estimation of gravity’s direction is better off
under stationary condition. This contradiction suggests that visual-inertial initialization can not be
trifled with. Reference [23] proposes a deterministic closed-form method that can recover gravity’s
direction and scalar factor, but fails to take cognizance of IMU biases, making the system less stable
than it would otherwise be. Reference [17] estimates not only IMU biases but velocity using an EFK
but the convergence takes long. Reference [24] initializes system on the assumption that MAVs take
off flat with as small inclination as possible, which is, of necessity, unlikely to be the case in practice.
Reference [25], much like [24], relies on alignment with gravity at the beginning to initialize. In [26,27],
initialization does not calculate gyroscope biases, derogating from the precision.

As it develops, SLAM has begun to go beyond passively observing surroundings to actively
exploring environments so as to gain coverage, hence the name ‘active SLAM’ [28]. So-called active
SLAM integrates SLAM itself with path planing. Using this technique, a system covers an area
autonomously while performing plain SLAM.

Reference [29] is aimed at solving active SLAM problems where coverage is required and certain
constraints are imposed. With that end in view, reference [29] proposes a solution to it that focuses
on minimization and area coverage within an MPC (Model Predictive Control) framework. It uses
a sub-map joining method to improve both effectiveness and efficiency. The D-opt MPC problem is
resolved with recourse to a graph topology and convex optimization and the SQP method is employed
to address the coverage problem.The main contribution of [29] is it presents a new method capable of
generating a sound collision-free trajectory so as to better perform coverage tasks than many other
systems do.

Reference [30] presents an effective indoor navigation system for the Fetch robot. The main
idea is founded on sub-mapping and DeepLCD and the system is implemented using Cartographer
and AMCL (adaptive Monte Carlo localization). The main method comprises mapping and on-line
localization modules and sequential sub-maps are generated by fusing data from a 2D laser scanner
and a RGBD camera. AMCL is used to perform accurate localization according to image matching
results. Not only the localization system itself but novel evaluation methods for it are presented in the
paper and by using it the robustness and accuracy of the system is demonstrated.

Reference [31] presents a navigation method whereby a flying robot is able to explore and map an
underground mine without collision. Simulations have verified that the system performs as well as
the authors expected whether the robot is circling above flat or sloping ground. The authors also claim
in the paper that the system is as simple as it is reliable.
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3. Preliminaries

3.1. Notation

We employ the following symbols throughout this paper. (.)W denotes the world frame, (.)Bk

the kth body frame which doubles as the kth IMU frame as aligned with the body frame, (.)Ck the
kth camera frame, and (.)Mk the kth magnetometer frame. As for measurements, wk represents the
gyroscope’s readings, ak the accelerometer’s, and hk the magnetometer’s, at kth frame. (u, v)k the
coordinates of a feature point in the kth image.

The overall states to be estimated are expressed in such a vector as x =
[

P, q, V, bg, ba, qBC

]
Bk

with P the position, q the body orientation quaternion, V the velocity, bg and ba the gyroscope’s and
accelerometer’s biases respectively at the kth frame, qBC the transformation from frame C to frame B
intrinsic to the installation and thus considered to be invariant. LW symbolizes a landmark expressed
homogeneously with LW =

[
x, y, z, 1

]
.

θ× represents the askew matrix of the vector θ:

θ× =

θ1

θ2

θ3

 =

 0 −θ3 θ2

θ3 0 −θ1

−θ2 θ1 0

 (1)

Note that θ×T
= −θ× by its very definition.

3.2. Useful Properties of SO(3)

SO(3), the special orthogonal group in 3 dimensions, describes rotations in 3D space, with its
corresponding vector so(3) in parameter. SO(3) and so(3) are related to each other through the
exponential and logarithmic maps:

R(θ) = Exp(θ) = I +
sin||θ||
||θ|| θ× +

1− cos||θ||
||θ||2 θ×

2 (2)

θ = Log(R(θ)) =
||θ||

2sin||θ|| (R− RT)∨ (3)

||θ|| = arccos(
trace(R)− 1

2
) (4)

Four properties of SO(3) are essential in IMU pre-integration and Jacobian computation for
optimization and thus merit a mention:

• commutative
θ×φ = −φ×θ (5)

• approximation
Exp(θ) ≈ I + θ× (6)

• adjoint

R · Exp(θ) = Exp(Adj(R) · θ) · R

= Exp(R · θ) · R (7)

Exp(θ) · R = R · Exp(AdjT
(R) · θ)

= R · Exp(RT · θ) (8)



Sensors 2020, 20, 4386 6 of 30

• the righ-hand jacobian

Exp(θ + δθ) ≈ Exp(δ)Exp(Jr(θ)δθ) (9)

Exp(θ)Exp(θ + δθ) ≈ Exp(θ + J−1
r (θ)δ) (10)

Log(Exp(θ)Exp(θ + δθ)) ≈ θ + J−1
r (θ) (11)

Jr(θ) = I − 1− cos||θ||
||θ||2 [θ]× +

||θ − sin||θ||
||θ||3 [θ]×

2 (12)

J−1
r (θ) = I +

1
2
[θ]2 − (

1
||θ||2 −

1 + cos||θ||
2||θ||sin||θ|| )[θ]

×2 (13)

Note that there is also Jl called the left-hand jacobian as opposed to Jr. We shall refer to them as Jr

and Jl for the following content.

4. VIMO Measurement Models

4.1. Vision

We use a pinhole camera as a source of visual measurement. Under the pinhole camera projection
model, a 3D point is projected onto a plane with Z normalized and then projected onto the image plane
with projection parameters intrinsic to the camera:u

v
1

 =
1
Z

 fx 0 cx

0 fy cy

0 0 1


X

Y
Z

 (14)

where u, v denote the coordinates of the point projected onto the plane. In most cases, coordinates go
through radial and tangential distortion on the normalized plane with parameters called distortion
coefficients before scaled and displaced to form the final pixel coordinates. The distortion coefficients
vary in value and number according to the lenses of cameras. Lenses with a great degree of distortion
should be treated with up to 3 coefficients to express the distortion properly. The lens of the camera
used in the proposed scheme is an ordinary one and only two distortion coefficients are adopted.

xdis = x + 2p1xy + p2(r2 + 2x2)

ydis = y + p1(r2 + 2y2) + 2p2xy
(15)

The Jacobian matrices of pixel coordinates with respect to distorted ones, distorted ones to
normalized ones, and normalized ones to 3D coordinates are present as follows:

Jimg =

[
fx 0
0 fy

]
(16)

Jdis =

[
1 + k1r2 + k2r4 + 2k1k2u2 + 4k2u2r2 + 2p1v + 6p2u 2k1uv + 4k2r2uv + 2p1u + 2p2v

2k1uv + 4k2r2uv + 2p1u + 2p2v 1 + k1r2 + k2r4 + 2k1u2 + 4k2r2u2 + 6p1v + 2p2u

]
(17)

Jnor =

[
1/Z 0 −X/Z2

0 1/Z −Y/Z2

]
(18)

The overall Jacobian matrix can then be obtained by applying the chain rule:

Jpro2D→3D = Jimg · Jdis · Jnor (19)
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4.2. Inertia

Inertial data are obtain from an IMU at successive time instants at a frequency of 200 Hz:

wm = wt + bw + nw (20)

am = RBW(at + gW) + ba + na (21)

where wm and am are acceleration and angular readings, nw and na conceived of as Gaussian white
noise, bw and ba modelled as random walk, and wt and at the angular rate and acceleration in the
world frame.

The error-state kinematics in continuous time are

δ ṗ = δv (22)

δv̇ = −R[am − ba]
×δθ − Rδab + δg− Rwn (23)

δθ̇ = −[wm − wb]
×δθ − δbw − nw (24)

δḃa = na (25)

δḃg = nw (26)

In traditional navigation schemes where filters are often used, states are predicted by integration
of inertial measurements based on the prior states, indicating that accurate estimates of the initial states
are crucial since even slightly skewed gravity direction would translate into enormously egregious
errors in position and velocity estimates, giving rise to complete divergence. For positioning systems
based on state optimization applied in more generic environments, not only is the unknown initial
orientation problematic but the necessity of the system being re-linearized after each optimization
step acts as a further drag. With a view to tackling this issue, the concept of IMU pre-integration has
emerged and been well applied in visual-inertial navigation. Through multiplying both sides of the
kinematics by a rotation matrix intended to transform the reference frame from the world frame W
to the beginning frame Bk in question, relative integration terms independent of state variables and
gravity can be separated from other terms, obviating the need for re-propagation.

We reckon that mid-point integration is accurate enough as well as being efficient in computation.
As IMU readings arrive at regular intervals, the integration goes on step by step as follows:

∆Rk+1 = ∆Rk · Exp((
wk + wk+1

2
− bw) · ∆t) (27)

∆Vk+1 = ∆Vk +
∆Rk + ∆Rk+1

2
· ( ak + ak+1

2
− ba)∆t (28)

∆Pk+1 = ∆Pk + ∆Vk∆t +
1
2
· ∆Rk + ∆Rk+1

2
(

ak + ak+1
2

− ba)∆t2 (29)

where ∆R, ∆V, and ∆P are the pre-integration terms with the subscript (.)k denoting IMU frames. Note
that the pre-integration terms are independent of state variables except biases. No re-propagation will
be required after the position Pk, the velocity Vk, and the rotation Rk change and for small alterations
in biases the pre-integration will be adjusted according to the jacobians, caculated iteratively alongside
pre-integration, of errors in ∆R, ∆V, ∆R with respect to the biases bw and ba.

For error propagation, the error-state kinematics differ from those corresponding to Euler
integration since they involve measurements at both the previous and the next time instant. The error
updates are as follows:
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δθk+1 ←δθk − Rk JL(w̄m∆t)δbw + Rk JL(w̄m∆t)nw (30)

δVk+1 ←δVk − (R̄ām∆t)×δθk +
1
2

∆t2Rk+1 ā×m JR(w̄m∆t)δbw − R̄∆tδba

− 1
2

∆t2Rk+1 ā×m JR(w̄m∆t)nw + R̄∆tna (31)

δPk+1 ←δPk + ∆tδVk −
1
2
(R̄ām∆t2)×δθk +

1
4

∆t3Rk+1 ā×m JR(w̄m∆t)δbw −
1
2

R̄∆t2δba

− 1
4

∆t3Rk+1 ā×m JR(w̄m∆t)nw +
1
2

R̄∆t2na (32)

δbwk+1 ←δbwk + nbw∆t (33)

δbak+1 ←δbak + nba∆t (34)

where δ(.) indicates error states, ∆t the discrete time interval between tk and tk+1. Note that in the
above equations w̄m and ām take the place of wk+wk+1

2 − bw and ak+ak+1
2 − ba and R̄ of Rk+Rk+1

2 for
notation simplicity. For the Equation (30) of rotation error propagation, the angular error is defined on
the right side, i.e., Rtrue = δRR, probably opposite to most other definitions.

The jacobians δθ
δbw

, δV
δbw

, δV
δba

, δP
δbw

, δP
δba

calculated by (30), (31), and (32) are used for correction of

pre-integration values in response to variations in biases. If the norm of the bias vector
[
bw ba

]T

(rad/s2 for bw and m/s2 for ba) reaches above a threshold of 10−4, re-propagation over this period is
warranted and executed as the linearization point has changed too much.

According to (30)–(34), the error-state transition matrix is

Fδx =


I 0 0 −Rk JL(w̄m∆t) 0

−(R̄ām∆t)× 0 1
2 ∆t2Rk+1 ā×m JR(w̄m∆t) −R̄∆t

− 1
2 (R̄ām∆t2)× ∆t I 1

4 ∆t3Rk+1 ā×m JR(w̄m∆t) − 1
2 R̄∆t2

0 0 0 I 0
0 0 0 0 I

 , (35)

and the Jabocian matrix of pre-integration with respect to the noise vector.

Fi =


Rk JL(w̄m∆t) 0 0 0

− 1
2 ∆t2Rk+1 ā×m JR(w̄m∆t) R̄∆t 0 0
− 1

4 ∆t3Rk+1 ā×m JR(w̄m∆t) 1
2 R̄∆t2 0 0

0 0 ∆t 0
0 0 0 ∆t

 (36)

The propagation of errors and covariances for pre-integration is summarized as

δxk+1 ← Fx(xk, w̄m∆t, ām∆t)δxk (37)

Pk+1 ← FxPkFx
T + FiQiFi

T (38)

where Qi is the covariance matrix of Gaussian white noise determined from the IMU datasheet or
through calibration experiments. PBk Bk+1 propagated by (38) during the pre-integration from fBk to fBk+1

accounts for uncertainty, or observation noise covariances, and is used to weight inertial residuals.

4.3. Magnetism

Besides vision and inertia, geomagnetism is also involved to relieve localization of the
accumulative yawing error that would otherwise be ever mounting up.

As with the accelerator that can measure the gravitational field on a static platform,
the magnetometer purveys readings of the projection of its surrounding magnetic field onto its
body frame. While what it gauges is not the projection purely of the EMF, traditionally for centuries it
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has been used for bearing information. Figure 1 illustrates the vector of the total density EMF T and its
projections on the geomagnetic and geographic coordinate axes.

Figure 1. The geomagnetic and geographic coordinate frames.

In Figure 1:

• T – the vector of the total density EMF;
• X, Y , and Z – the Geographic System Coordinates;
• I – the angle of magnetic inclination;
• D – the angle of magnetic declination;

Such parameters as T , I, D can be determined by referencing geomagnetic maps that describe the
geomagnetic features of various locations around the globe.

The average magnetometer’s calibration model isMxt
Myt
Mzt

 =

kxx kyx kzx

kyy kxy kzy

kzz kxz kyz


Mx

My

Mz

−
bmx

bmy

bmz

 (39)

where:
[

Mx My Mz

]T
is the magnetometer’s raw readings that are a coefficient matrix and a bias vector

away from the true magnetic projection on the sensor’s body frame
[

Mxt Myt Mzt

]T
; kxx, kyy, and kzz

are scale factor coefficients; kxy, kyz, and kzx are the transverse coefficients caused by the magnetometer’s
axes non-orthogonality; bmx , bmy , and bmz are correction coefficients for biases created by local magnetic field.

According to Figure 1, the observation model of the magnetometer is

MM = RMBRT
WB HW (40)

where RMB is the relative rotation matrix from the body frame fB to the magnetometer’s frame fM and
is determined though calibration.

Following from the magnetometer’s observation model, the Jacobians of the measurement
function with respect to the variable to optimize RWB are

J M
R
=

∂MM
∂RWB

= RMBRT
WB H×W (41)

where the perturbation is defined on the right side of RWB (globally defined).
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5. Overall System Structure

Figure 2 depicts the system’s structure plainly.

Figure 2. Overall system structure.

6. Visual-Inertial-Magnetic Initialization

The initialization of monocular visual inertial odometry is as crucial as it is intricate, on account
of its precarious structure. Futile or incomplete initialization spell trouble for the entire system. On the
one hand, monocular vision calls for a certain length of translation long enough to reflect the depths of
key points, on the other hand, the projection of gravity onto the body frame can only be calculated
when there’s no extra acceleration other than gravity.

This section intends to present and lay out a novel and efficacious procedure of initialization.
As drawn out in Section 2, successful initialization is a prerequisite for the system to start off properly.
How accurate the initial parameters are estimated will play a huge part in how stably and smoothly the
system operates. The involvement of magnetometers introduces extra parameters to be determined,
namely the initial magnetic bearing. The proposed method delivers visual-inertial-magnetic
initialization with efficacy and credibility assured in some measure by deciding whether or not
it is initialized successfully through a set of specific criteria. Figure 3 illustrates the procedure
of initialization.

As opposed to VI-SLAM, the system uses magnetic information as rotation constraint during
visual recovery with the intention of expediting the initialization process and enhancing its precision.

6.1. Visual Recovery and Rotation Calculation through Magnetism

The task the visual module undertakes is estimating the relative transformation with respect to
the first frame by vision itself. Using a monocular camera without depth information indicates the
first step is to extract from two selected images the essential or homography matrix which can be
decomposed to recover the transformation between the images. The two images for recovering poses
are selected if there’s enough parallax between them. The essential matrix is better at computing poses
if the camera’s moved, whereas if it is only rotated without translation the homography matrix fare
better. The problem is there’s no way of establishing whether or not the camera’s moved because either
pure rotation or translation causes parallax between two images. For better robustness, we compute
and decompose both of them and check through whose transformation the reprojection is smaller to
decide to use which matrix. Key points tracked in the two images are triangulated to determine depths
if there’s sufficient translation between them. Those 3D key points are then utilized to execute PnP
(Perspective-n-Point) on all the intervening key frames under the auspices of BA (Bundle Adjustment).



Sensors 2020, 20, 4386 11 of 30

Figure 3. The flowchart of initialization.

Magnetic information is also exploited for rotation estimation by incorporating its measurements
into the BA problem as extra cost functions in Equation (42).

EM = MMk+1 − RT
WBk+1

RWBk RBM MMk (42)

where Mk denotes magnetometer’s kth frame and RBM is the rotation from magnetometer’s frame to
body’s frame.

6.2. Visual-Inertial-Magnetic Alignment

Before alignment, gyroscope biases need to be worked out. The reason why only gyroscope biases
are computed is because attitude holds much more influence on pose estimation as its estimates dictate
whether gravity can be rightly projected onto the body frame. By solving Equation (43) through least
squares, gyroscope biases bwBk

can be obtained:

∆RBk Bk+1 R(
∂∆RBk Bk+1

∂bwBk

bwBk
) = RT

WCk
RT

BCRWCk+1 RT
BC (43)

where ∆RBk Bk+1 is the rotational preintegration and
∂∆RBk Bk+1

∂bwBk
is its partial derivative with respect to

gyroscope biases. Section 4.2 lays out how to maintain this partial derivative.

∆PBk Bk+1 = RT
WBk

sRB
CPWCk+1

W − RT
WBk

(sRB
CPWCk

W + ∆tVWBk
W − 1

2
∆t2GW) (44)
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∆VBk Bk+1 = RT
WBk

VWBk+1
W − RT

WBk
(VWBk

W − ∆tGW) (45)

where s, VWBk
W , VWBk+1

W , and GW are the scalar factor, velocity, and the vector of gravity to be

determined. Obviously, PWCk
W and PWCk+1

W come from the visual recovery module. Every combination
of adjacent images and the preintegration in-between forms a set of equations like (44), stacking up
into a least squares problem.

The process described above is merely visual-inertial alignment after which the z-axis of the world
frame is aligned with the vector of gravity, velocity states projected onto the world frame, and key
points’ depths scaled to proper size. The next step is to align the magnetometer with the world frame
by making its projection on the xy plane of the world frame parallel with the x-axis.

After the complete alignment, the world frame’s z-axis is parallel with the direction of gravity
and x-axis with magnetic north.

6.3. Initialization Completion Verdict

It is not beyond the bounds of possibility that parameters initialized could be dubious. A common
case explaining this phenomenon is when the system keeps moving in one direction at a constant
speed, not administering sufficient excitation to IMU.

Inspired by [32,33], we examines initialization’s efficacy by reviewing estimation error that links
in to a degree with the uncertainty of the initialization system.

With the estimation error satisfactorily low, the system will be notified and go to the
optimization stage.

7. Joint Nonlinear Optimization

As regards calculation of Jacobians, it warrants mention that the perturbation is defined on the
right side where rotation variables are involved, as evidenced in [34] to have better properties.

T ← δT ⊗ T

{
R← δR · R
P← P + δP

(46)

Different definitions of the perturbation for differentiation certainly lead to different Jacobians
and inconsistency of which side the perturbation is operated on and how the Jacobians are calculated
is heading for failure in the process of optimization.

7.1. Visual Constraint

Feature points for tracking are extracted from every image [35] and data association across image
frames is realized by tracking them through optical flow [36], which, as exhibited in real-time operation,
relieves the visual front-end of heavy computation because it does not have to describe features and
subsequently match them as do standard feature-based methods. The number of successfully tracked
points will surely diminish as images arrive and pass frame after frame either because of points
moving out of the image region or simply of tracking failure. Additional features are extracted in every
frame where the number of successfully tracked points drops to a certain amount. Non-maximum
suppression is applied to the extraction of key points to obtain a more even distribution of points that
would otherwise cluster around a few areas little more than single features.
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As key points have to be dispersed to better represent the whole image, so do frames need to
be selected as key frames and the number of them be curtailed to avoid redundancy. Other than
representing a solitary frame and indicating a static state through small errors of re-projection,
frames with little parallax in-between or even identical due to a stationary state hold little significance
for the whole, probably quite long and large, trajectory and map retained in the system for loop closure
detection and other uses. A key frame ought to hold enough connections with its previous and next key
frames through co-visibility [37] for pose coverage and efficient estimation in regard to the local graph
while being distinct enough from its adjacent ones for the conciseness of the whole pose-graph. In our
formulation, whether or not a frame is “key” is conditioned by its key points’ association with the
previous and next frames, or specifically, the ratio of the number in the next frame to that in the current
frame of successfully tracked key-points that originate from the previous or older frames. A high
value (say 0.8) of this ratio suggests that the majority of key points tracked from previous frames to the
current one are well observed again in the next frame and thus this frame may be considered to be
redundant in the presence of its neighbours, whereas the lower the ratio is, the more contributory the
frame is to the observation and retention of landmarks. A practice is to pre-set a ratio threshold above
which a frame is deemed ‘non-key’ and is consequently going to be marginalized out after the current
round of optimization.

We use a plain pinhole camera as the visual sensing module with an ordinary projection model
that has been presented in Section 4.1. The re-projection error is

E(i, k) = Zi
k − π(TT

BCTT
W BLW L

W
i
) (47)

where i indexes landmarks and k denotes frames, variables to be optimized in bold type. π(.) is the
projection function whose Jacobian matrix (Jpro2D→3D ) with respect to the original 3D point vector has
been demonstrated in Section 4.1. TBC is the transformation from fC to fB that is regarded as being
constant provided the sensors are rigidly fixed on the platform, and the optimization of which is thus
optional with it calibrated in advance.

The Jacobians of the re-projection error with respect to each variable are as follows:

∂E(i, k)
∂RBC

= −Jpro2D→3D · R
T
BC(T

T
WBLWL

W
i − tBC)

× (48)

∂E(i, k)
∂tBC

= Jpro2D→3D · R
T
BC (49)

∂E(i, k)
∂RWB

= −Jpro2D→3D · R
T
BCRT

WB(LWL
W

i − tWB)
× (50)

∂E(i, k)
∂tWB

= Jpro2D→3D · R
T
BCRT

WB (51)

∂E(i, k)

∂LWL
W

i = −Jpro2D→3D · T
T
BCTT

WB (52)

where tBC and tWB are the translation parts of TBC and TWB. Jpro2D→3D are the Jacobian matrices of pixel
coordinates with respect to normalized 3D points as duduced in Section 4.1. The above jacobians are
derived with the rotation and translation variables treated separately as they are when being updated,
rather than computed as a whole as in [38].
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7.2. Inertial Constraint

As inertial observations take the form of the integration of measurements between two adjacent
frames aligned in time with camera frames, they somewhat resemble a measurement of the relative
transformation between each two frames, save that gravity is incorporated in the pre-integration.
The equations below express the observation model of pre-integration.

∆PBk Bk+1 = RT
W Bk

PW Bk+1
W − RT

W Bk
(PW Bk

W + ∆tVW Bk
W − 1

2
∆t2GW) (53)

∆VBk Bk+1 = RT
W Bk

VW Bk+1
W − RT

W Bk
(VW Bk

W − ∆tGW) (54)

∆RBk Bk+1 = RT
W Bk

RW Bk+1 (55)

where (.)Bk and (.)Bk+1 denote the first and last frames of the pre-integration and the variables to
optimize are highlighted in bold type.

The whole state vector to be optimized according to the pre-integration observation from fBk to
fBk+1 is given below:[

PW Bk
W VW Bk

W θW Bk bwBk
baBk

PW Bk+1
W VW Bk+1

W θW Bk+1 bwBk+1
baBk+1

]
(56)

with the corresponding residuals:[
RBk Bk+1(P) RBk Bk+1(V) RBk Bk+1(θ) RBk Bk+1(bw) RBk Bk+1(ba)

]
(57)

Rinertia =


RBk Bk+1(P)
RBk Bk+1(V)

RBk Bk+1(θ)

RBk Bk+1(bw)

RBk Bk+1(aw)

 =



∆PBk Bk+1 − RT
W Bk

(PW Bk+1
W − PW Bk

W − ∆tVW Bk
W + 1

2 ∆t2GW)

∆VBk Bk+1 − RT
W Bk

(VW Bk+1
W − VW Bk

W + ∆tGW)

∆RT
Bk Bk+1

⊕ RT
W Bk

RW Bk+1

bwBk+1
− bwBk

baBk+1
− baBk


(58)

where the variables to be optimized are in bold type as before. Note that the representations of
RBk Bk+1(bw) and RBk Bk+1(aw) indicate that by nature the two biases would not change over a period
of pre-integration.

The optimization of the variables for inertial residuals needs Jacobians, as do other optimization
problems, around various linearized points to nudge variables towards at least a suboptimal
solution. While the analytical form of Jacobians may not necessarily be required as there
are available optimization modules capable of automatic differentiation, the analytical form is
favourable nonetheless in its optimality and efficiency. The equations below present the Jacobians of
pre-integration residuals with respect to variables
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• Jacobians of RBk Bk+1(P)

∂R(P)

∂PW Bk
W

= RBkW (59)

∂R(P)

∂VW Bk
W

= RBkW∆t (60)

∂R(P)

∂PW Bk+1
W

= −RBkW (61)

∂R(P)
∂RBkW

= −RBkW(PWBk+1
W − PWBk

W − ∆tVWBk
W +

1
2

∆t2GW)× (62)

∂R(P)
∂bwBk

=
∂∆PBk Bk+1

∂bwBk

(63)

∂R(P)
∂baBk

=
∂∆PBk Bk+1

∂baBk

(64)

• Jacobians of RBk Bk+1(V)

∂R(V)

∂VW Bk
W

= RBkW (65)

∂R(V)

∂VW Bk+1
W

= −RBkW (66)

∂R(V)

∂RBkW
= −RBkW(VWBk+1

W −VWBk
W + ∆tGW)× (67)

∂R(V)

∂bwBk

=
∂∆VBk Bk+1

bwBk

(68)

∂R(V)

∂baBk

=
∂∆VBk Bk+1

baBk

(69)

• Jacobians of RBk Bk+1(θ)

∂R(θ)

∂RW Bk

= −∆RT
Bk Bk+1

· RBkW (70)

∂R(θ)

∂RW Bk+1

= ∆RT
Bk Bk+1

· RBkW (71)

∂R(θ)

∂bwBk

=
∂∆RBk Bk+1

bwBk

(72)

∂R(θ)

∂baBk

=
∂∆RBk Bk+1

baBk

(73)

• Jacobians of RBk Bk+1(bw) and RBk Bk+1(ba)

∂R(bw)

∂bwBk

= −I
∂R(ba)

∂baBk

= −I
∂R(bw)

∂bwBk+1

= I
∂R(ba)

∂baBk+1

= I (74)
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7.3. Magnetic Constraint

Magnetic observation, as laid out in Section 4.3, is the projection of the vector of the EMF onto the
body frame:

MM = RMBRT
WB HW (75)

where RMB is the relative rotation matrix from the body frame fB to the magnetometer’s frame fM and
is determined though calibration.

With the observation model, it is fairly straightforward to establish the magnetic residual:

R(M) = MM − RMBRT
W B HW (76)

where RMB and RW B are to be optimized.
The corresponding Jacobians:

∂R(M)

∂RMB
= (RMBRT

WB HW)×
∂R(M)

∂RW B
= −RMBRT

WB H×W (77)

Note that MM and HW are always normalized with norm equal to 1. HW is the vector of the total
intensity of the EMF whose projection on the X-Y plane is in the direction of magnetic north cross
true north at an angle called magnetic declination which is not concerned in our system since we use
magnetometers only for suppressing yaw estimation shift.

7.4. Loop Closure Constraint

Loop closure constraints come from the front-end’s detection of loop closures when the robot
arrives where it has roamed and thus its trajectory loops. Loop closure constraints take the form of

Eloop(i, j) = Zj − π(TBC
T
j TW B

T
j LWL

W
i
) (78)

where i and j are the indexes of frames between which a loop closure occurs. fi is the older one whose
pose together with the landmarks it holds are fixed on the grounds that the older a frame is the less its
estimate has drifted. Equation (78) is almost identical to the visual constraint, save that the landmarks
of the older frame are in regular type, signaling that they are not to be optimized since their would not
be any other variable more precise than the start of the loop.

Apparently, only frames involved in loop closures are to be adjusted, leaving the rest unchanged,
if optimization is executed merely on loop closures. That brings about inconsistency in the pose graph.
One putative way is to combine odometry constraints and loop closures. Odometry constraints are
relative pose transformations obtained from the current pose graph.

Tii+1 = T−1
wi · Twi+1 (79)

where Tij is a relative transformation taken from the existing pose graph as a measurement.
The standard pose graph optimization problem is then presented as

Epose graph = ∑
i,j

Eloopclosure(i, j) + ∑
i

Eodometry(i, i + 1) (80)

As [39] suggests, optimization of a pose graph is no more than a plain nonlinear least squares
problem. What makes it call for extra cautious treatment is its susceptibility to false positive loop
closures. Even a single outlier made by the front-end has the potential to bring the optimization into
complete divergence or make the pose graph wrongly deform. One way to tackle this is to obviate
outliers as early as in the detection stage. By applying RANSAC or other similar strategies under
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geometric models, outliers can be fairly picked out and eliminated, making false loops less likely to be
carried over into the following optimization. Another relies on what is called the robust cost function
which bears much resemblance to the Huber function [40] and can mitigate the impact of outliers by
downgrading the cost functions to linear functions rather than quadratic ones, where the overall cost
is high enough to be deemed harhouring false loops. Neither of these is foolproof. Systems using
these methods are liable to suffer from wrongly detected closures all the same. False positive loop
constraints are as much problematic as they are difficult to combat. Erroneous edges in the pose graph
following detection of false loops can either lead the optimization to diverge or converge to a entirely
egregious solution.

Inspired by [39], we adopt the idea that the topology of the pose graph is subject to the
optimization with outliers being identified and removed automatically. To actualize this idea,
a weighting factor is put on every loop closure constraint as a way of distinguishing normal loop
closures from erroneous ones.

Epose graph = ∑
i,j

wij · Eloopclosure(i, j) + ∑
i

Eodometry(i, i + 1) (81)

In the above equation, wij is a weighting factor ranging from 0 to 1 corresponding to whether the
constraint is active or deactivated, or rather, removed. As the weighting factor holds influence on the
cost value, it indeed makes the topology itself subject to the optimization. The weighting factor is then
given by a sigmoid function:

wij = sig(sij) =
1

1 + e−sij
(82)

where sij is a switch variable switches on and off a loop closure constraint during the optimization
process, hence the name switch variable. These switch variables are to be optimized together with
others and are set to 10 initially, meaning all loop closure constraints are initially activated.

Switch functions alone are apparently not enough to attain what is intended. The optimization
module will simply drive all switch function costs to nearly 0 as a result of attempting to minimizing
the overall cost. Introducing a penalty cost for each switch variables could counter this phenomenon.
Penalty costs are to keep switch variables to the initial value and in the form of prior constraints:

||ξij − sij||Ξ (83)

where Ξ, the covariance matrix for the penalty cost, is empirically set to 202.
Switch functions and prior constraints together enable the optimization unit to winnow out

false loops, and the principle behind it is to tap into the knowledge that there’s a certain amount
of inconsistency between false and true loops and between false ones themselves in all likelihood
while true loops tend to be in agreement with each other, and so what the proposed mechanism does
essentially is to always slash the impact of loop closures that are incongruous with other loops.

8. Implementation Details and Experiments

8.1. Implementation Details

The navigation system’s software is programmed in C++ with recourse to ceres-solver on ROS
(Robot Operating System).

The system runs on a standard central processing unit (Intel R© NUC Kit NUC7i7BNH, Intel R©

CoreTM i7-7567U Processor, 16 GB RAM). The suite of sensors is rigidly installed on top of the vehicle
and collects data as it is moving.

Figures 4–6 are pictures of the sensors employed in the system.
Figure 7 is the sensor suite with the CPU.
Figure 8 is pictures of the vehicle used.
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Figure 4. The monocular camera (Point Grey Grasshopper3) used. It outputs grey images of 960× 600
at 20 Hz through USB 3.0.

Figure 5. The IMU (STIM300) used that outputs instant angular velocity and acceleration at 200 Hz.

Figure 6. The magnetometer (DMC-NT 10C10) used. The system requests from it the vector of magnetic
field 10 times a second.

Figure 7. The device we use for data acquisition. The camera and the inertial measurement unit (IMU)
are hardware-synchronized with the latter triggering the former through a synchronization signal.
The central processing unit is Intel R© NUC(Next Unit of Computing).
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(a) Front (b) Side

Figure 8. The vehicle used for carrying sensors. The sensors are raised up high away from the top of
the vehicle with a stand made of aluminium lest the magnetometer’s measurements be corrupted.

8.2. Experiments

We conducted three large-scale outdoor experiments each of which covers over 1 kilometer
by collecting and saving data into a bag file for later analysis. We examined the performance of
VI-SLAM (visual-inertial SLAM) and VIMO (the proposed visual-inertial-magnetic navigation system)
by running them on recorded datasets to glean quantitative results.

Figures 9–11 are three experiments on EUROC datasets “MH 01 easy”, “MH 03 medium” and
“MH 05 difficult” for VI-SLAM and OKVIS. VIMO is not compared with them, since the public datasets
do not contain magnetic measurements.

Figures 9–11 display estimated trajectories and absolute pose errors by VI-SLAM and OKVIS
for comparison.

Figures 12–14 are comparisons of 3 experiments together with error analysis. Manifest improvement
shown by VIMO on VI-SLAM in positioning accuracy is validated thought these comparisons.

As is illustrated by the pose error map in Figure 9, the absolute pose error by VI-SLAM is
(−0.046 (m) to −0.606 (m)) compared to that by OKVIS (−0.051 (m) to −1.184 (m)).

In Figure 10, for the dataset "MH 03 medium", absolute pose error is dragged down from
−1.714 (m) by OKVIS to −1.452 (m) by VI-SLAM.

In Figure 11, since the dataset is labeled ’difficult’, the accuracy has fallen for either system,
with −2.102 (m) by OKVIS and −1.686 (m) by VI-SLAM. An absolute decrease of 0.416 (m) in error
is shown.

Tables 1–3 show differences in accuracy between OKVIS [21] and VI-SLAM for EUROC datasets.
It is shown that VI-SLAM generally outperforms OKVIS.

Table 1. Error description of the experiment on EUROC dataset MH 01 easy.

Error Terms (m) Max Mean Median RMSE StD

OKVIS [21] 1.1844 0.632254 0.623834 0.666927 0.212242
VI-SLAM 0.606102 0.28583 0.260383 0.314019 0.130034

Table 2. Error description of the experiment on EUROC dataset MH 03 medium.

Error Terms (m) Max Mean Median RMSE StD

OKVIS [21] 1.71401 0.687552 0.623768 0.756585 0.315741
VI-SLAM 1.45192 0.597207 0.534837 0.656985 0.273813

Table 3. Error description of the experiment on EUROC dataset MH 05 difficult.

Error Terms (m) Max Mean Median RMSE StD

OKVIS [21] 2.10193 0.704724 0.661593 0.786519 0.34925
VI-SLAM 1.68566 0.498092 0.345175 0.599893 0.33433
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(a) Trajectory Comparison (b) Trajectories Projected onto XYZ axes

(c) The Absolute Pose Error (APE), mean and median of errors,
Root Mean Squared Error (RMSE), and Standard Deviation
(STD) of OKVIS

(d) The Error Map of OKVIS

(e) The Absolute Pose Error (APE), mean and median of errors,
Root Mean Squared Error (RMSE), and Standard Deviation
(STD) of VI-SLAM

(f) The Error Map of VI-SLAM

Figure 9. Experiment results on EUROC dataset MH 01 easy.
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(a) Trajectory Comparison (b) Trajectories Projected onto XYZ axes

(c) The Absolute Pose Error (APE), mean and median of errors,
Root Mean Squared Error (RMSE), and Standard Deviation
(STD) of OKVIS

(d) The Error Map of OKVIS

(e) The Absolute Pose Error (APE), mean and median of errors,
Root Mean Squared Error (RMSE), and Standard Deviation
(STD) of VI-SLAM

(f) The Error Map of VI-SLAM

Figure 10. Experiment results on EUROC dataset MH 03 easy.
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(a) Trajectory Comparison (b) Trajectories Projected onto XYZ axes

(c) The Absolute Pose Error (APE), mean and median of errors,
Root Mean Squared Error (RMSE), and Standard Deviation
(STD) of OKVIS

(d) The Error Map of OKVIS

(e) The Absolute Pose Error (APE), mean and median of errors,
Root Mean Squared Error (RMSE), and Standard Deviation
(STD) of VI-SLAM

(f) The Error Map of VI-SLAM

Figure 11. Experiment results on EUROC dataset MH 05 easy.

In Table 1, the root square mean error by VI-SLAM (0.314019 m) and that error by OKVIS is
(0.623834 m).
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In Table 2, all error terms except for root mean square error are smaller by VI-SLAM
(Max: 1.45192 m, Mean: 0.597207 m, Median: 0.534837 m, RMSE: 0.656985 m, StD: 0.273813 m )
than by OKVIS (Max: 1.71401 m, Mean: 0.687552 m, Median: 0.623768 m, RMSE: 0.756585 m, StD:
0.315741 m).

In Table 3, VI-SLAM (Max: 1.68566 m, Mean: 0.498092 m, Median: 0.345175 m, RMSE: 0.599893 m,
StD: 0.33433 m) outperforms OKVIS (Max: 2.10193 m, Mean:0.704724 m, Median: 0.661593 m, RMSE:
0.786519 m, StD: 0.34925 m) for all error terms.

In Figure 12a, the trajectory estimated by VI-SLAM (Max: 14.7041 m, Mean: 7.0558 m, Median:
7.2115 m, RMSE: 7.6135 m, StD: 2.8604 m) deviates greatly from the groundtruth thanks to a sudden
change in the vehicle’s direction, and the error in yawing has since remained, causing it to extend away
from the groundtruth, whereas for VIMO (Max: 7.5324 m, Mean: 3.4541 m, Median: 2.8337 m, RMSE:
3.8741 m, StD: 1.7543 m) that issue is so effectively ameliorated that not only the heading estimation is
corrected but the overall absolute pose error is better constrained.

In Figure 13a, the contrast becomes even more manifest. VI-SLAM’s trajectory (Max: 21.8827 m,
Mean: 11.0507 m, Median: 11.8128 m, RMSE: 12.4916 m, StD: 5.8243 m) goes wildly away from the
groundtruth in the wake of the vehicle turning around time after time. By comparison, the efficacy of
fusing magnetic information is accentuated. VIMO (Max: 5.0943 m, Mean: 2.3737 m, Median: 1.9370 m,
RMSE: 2.7394 m, StD: 1.3673 m) seems impervious to veering, generating much smaller absolute pose
error than it would otherwise do.

Figure 14a implies a similar phenomenon. The difference in accuracy between the two begins
to build up after the vehicle corners, and the error in VI-SLAM’s estimation (Max: 12.1847 m, Mean:
6.7346 m, Median: 6.7127 m, RMSE: 7.3614 m, StD: 2.9723 m) continues growing larger while VIMO’s
(Max: 10.6441 m, Mean: 6.2678 m, Median: 6.5150 m, RMSE: 6.6390 m, StD: 2.1889 m) keeps nearly
on groudtruth.

Figure 15 compares VIMO with OKVIS [21], a state-of-art method. Improvement in performance
is demonstrated.

Another phenomenon warranting consideration is that for VI-SLAM the absolute pose error is
larger (Max: 21.8827 m, Mean: 11.0507 m, Median: 11.8128 m, RMSE: 12.4916 m, StD: 5.8243 m) in
experiment 2 (Figure 13) than in other experiments, while for VIMO it is quite the contrary. We conjures
that it is because the shorter the vehicle travels along a straight line, the lesser error should have
been incurred if it were not for accretion in yawing estimation, and since VIMO is immune to yawing
deviation it is able to achieve much higher performance, which, again, brings to the fore the significance
of magnetic information and the superiority of VIMO.

Various error terms, including max absolute pose error, mean, median, min, root mean squared
error, standard deviation of errors, are arranged in Tables 4–6. Quantitative comparisons between
VI-SLAM and VIMO drawn from the tables reveal the potency of fusing magnetic information into
the system.

Tables 4–6 shows differences in accuracy among OKVIS [21], VI-SLAM and VIMO. As they
demonstrate, both VI-SLAM and VIMO are able to achieve better results than OKVIS do for every
error item. In Table 4, the root square mean error for VI-SLAM (7.6135 m) is about half that for OKVIS
(16.3864 m), and VIMO makes it even lower (3.8741 m). In Table 5, the difference between VI-SLAM
(12.4916 m) and OKVIS (19.9318 m) is not so pronounced as in Table 4, but for VIMO the error is nearly
20 times smaller (2.7394).

Table 4. Error description of Experiment 1.

Error Terms (m) Max Mean Median RMSE StD

OKVIS [21] 24.7357 12.1936 11.3733 16.3864 5.3875
VI-SLAM 14.7041 7.0558 7.2115 7.6135 2.8604

VIMO 7.5324 3.4541 2.8337 3.8741 1.7543
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(a) Trajectory Comparison (b) Trajectories Projected onto XYZ axes

(c) The Absolute Pose Error (APE), mean and median of errors,
Root Mean Squared Error (RMSE), and Standard Deviation
(STD) of VI-SLAM

(d) The Error Map of VI-SLAM

(e) The Absolute Pose Error (APE), mean and median of errors,
Root Mean Squared Error (RMSE), and Standard Deviation
(STD) of VIMO

(f) The Error Map of VIMO

Figure 12. Experiment 1.
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(a) Trajectory Comparison (b) Trajectories Projected onto XYZ axes

(c) The Absolute Pose Error (APE), mean and median of errors,
Root Mean Squared Error (RMSE), and Standard Deviation
(STD) of VI-SLAM

(d) The Error Map of VI-SLAM

(e) The Absolute Pose Error (APE), mean and median of errors,
Root Mean Squared Error (RMSE), and Standard Deviation
(STD) of VIMO

(f) The Error Map of VIMO

Figure 13. Experiment 2.
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(a) Trajectory Comparison (b) Trajectories Projected onto XYZ axes (c) The Absolute Pose Error (APE), mean
and median of errors, Root Mean Squared
Error (RMSE), and Standard Deviation
(STD) of VI-SLAM

(d) The Error Map of VI-SLAM (e) The Absolute Pose Error (APE), mean
and median of errors, Root Mean Squared
Error (RMSE), and Standard Deviation
(STD) of VIMO

(f) The Error Map of VIMO

Figure 14. Experiment 3.

(a) Trajectory Comparison (b) Trajectories Projected onto XYZ axes

Figure 15. Cont.



Sensors 2020, 20, 4386 27 of 30

(c) The Absolute Pose Error (APE), mean and median of errors,
Root Mean Squared Error (RMSE), and Standard Deviation
(STD) of OKVIS

(d) The Error Map of OKVIS

(e) The Absolute Pose Error (APE), mean and median of errors,
Root Mean Squared Error (RMSE), and Standard Deviation
(STD) of VIMO

(f) The Error Map of VIMO

Figure 15. Comparison with OKVIS [21].

Table 5. Error description of Experiment 2.

Error Terms(m) Max Mean Median RMSE StD

OKVIS [21] 26.4495 15.8417 16.7346 19.9318 8.7485
VI-SLAM 21.8827 11.0507 11.8128 12.4916 5.8243

VIMO 5.0943 2.3737 1.9370 2.7394 1.3673

Table 6. Error description of Experiment 3.

Error Terms (m) Max Mean Median RMSE StD

OKVIS [21] 20.8938 10.6794 9.2471 5.2168
VI-SLAM 12.1847 6.7346 6.7127 7.3614 2.9723

VIMO 10.6441 6.2678 6.5150 6.6390 2.1889

9. Conclusions

This paper presents a visual-inertial-magnetic navigation system with the originality of exploiting
EMF as yaw observation. Respective measurement models are presented in Section 4. Section 5
provides an overview of the system’s structure. We present mathematic fundamentals and theories
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concerned with visual-inertial-magnetic initialization and non-linear optimization in Sections 6 and 7,
together with other algorithmic details. Lastly, we demonstrate the validity and superiority of
our system over visual-inertial-only ones through 3 outdoor large-scale experiments with their
error analysis.

According to Section 8.2, VIMO performs localization more accurately than both VI-SLAM and
state-of-the-art methods such as OKVIS, slashing errors by half or more (from 16.3864 m to 1.7543 m in
Table 4; 19.9318 m to 2.7394 m Table 5; 11.8855 m to 6.6390 m Table 6 in terms of root mean square error).

The most significant implication of the proposed system is that it opens up new vistas for the
development of navigation systems with a new combination of sensors and new ways of information
fusion and state estimation.

Future research shall follow the line of designing installation mechanisms that can blot out
as much magnetic interference as possible, making better use of magnetometers for initialization
(for example applying magnetic measurements to the least squares problem in initialization for more
accurate estimation), further improving the system’s overall performance.
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Abbreviations

The following abbreviations are used in this manuscript:

(.)W the World Frame
(.)Bk the kth Body Frame
(.)Ck the kth Camera Frame
(.)Mk the kth Magnetometer Frame
wk the Gyroscope’s Readings
ak the Accelerometer’s Readings
hk the Magnetometer’s Readings
(u, v)k the Coordinates of a Feature Point in the kth Image
P the Position
q the Body Orientation Quaternion
V the Velocity
bg the Gyroscope’s Biases
ba the Accelerometer’s Biases
qBC the Transformation from Frame C to Frame B

LW a Landmark Expressed Homogeneously with LW =
[

x, y, z, 1
]

θ× the Askew Matrix of the Vector θ×

Jr the Right-hand Jacobian
Jl the Left-hand Jacobian
p1 p2 the Tangential Distortion
r the Distance of Point from the Origin of the Coordinate system
nw the Gyroscope’s White Noise
na the Accelerometer’s White Noise
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