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Abstract: In a real-world application, the images taken by different cameras with different conditions
often incur illumination variation, low-resolution, different poses, blur, etc., which leads to a large
distribution difference or gap between training (source) and test (target) images. This distribution
gap is challenging for many primitive machine learning classification and clustering algorithms such
as k-Nearest Neighbor (k-NN) and k-means. In order to minimize this distribution gap, we propose
a novel Subspace based Transfer Joint Matching with Laplacian Regularization (STJML) method for
visual domain adaptation by jointly matching the features and re-weighting the instances across
different domains. Specifically, the proposed STJML-based method includes four key components:
(1) considering subspaces of both domains; (2) instance re-weighting; (3) it simultaneously reduces
the domain shift in both marginal distribution and conditional distribution between the source
domain and the target domain; (4) preserving the original similarity of data points by using Laplacian
regularization. Experiments on three popular real-world domain adaptation problem datasets
demonstrate a significant performance improvement of our proposed method over published
state-of-the-art primitive and domain adaptation methods.

Keywords: domain adaptation; unsupervised discriminant analysis; transfer learning; classification;
feature learning; instance re-weighting

1. Introduction

Indoor–outdoor camera surveillance systems [1,2] are widely used in urban areas, railway
stations, airports, smart homes, and supermarkets. These systems play an important role in
security management and traffic management [3]. However, cameras with different properties and
positions deployed in these systems can create a distribution difference among the capturing images.
This difference leads to the system’s poor performance due to considering primitive machine learning
algorithms for recognition [4]. For example, if a classifier (or primitive algorithm) is trained from
source domain images (taken from a DSLR camera), then the trained classifier will not give as expected
results when tested on the images collected from some other target domain (taken from webcam
camera). A simple solution to improve the classifier’s performance is that it must only be trained
with target domain images. However, there are no labeled images in the target domain in practice,
and labeling the target domain images is a time-consuming process. Let us consider an example
shown in Figure 1 to discuss in detail how the images collected from different environments can
cause differences in distribution across domains. In Figure 1, various possibilities, which can cause
distribution differences, are presented, such as (1) the images (keyboards and headphones) as shown in
Figure 1a,b are collected from different quality cameras, i.e., low-quality camera (webcam camera) and
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high-quality camera (DSLR); (2) the images as shown in Figure 1c,d are taken with different weather
conditions, i.e., a day or clear weather and night or rainy season.

Webcam or low-resolution camera DSLR or high-resolution camera

Day view Night /Raining view

(a) (b)

(c) (d)

Figure 1. Shows different possibilities th at can cause distribution differences in the source domain
(training) or target domain (test) images: (a) Images captured from low-resolution camera such as
Webcam, (b) Images captured from high-resolution camera such as Digital Single-lens Reflex(DSLR),
(c) Images captured in day time, and (d) Images captured in night or raining time.

Recently, the literature [2,4] has seen a growing interest in developing transfer learning (TL)
or domain adaptation (DA) algorithms to minimize the distribution gap between domains, so that the
structure or information available in the source domain can be effectively transferred to understand
the structure available in the target domain. In previous work [5–12], two learning strategies for
domain adaptation are considered independently: (1) instance re-weighting [9–12], which reduces the
distribution gap between domains by re-weighting the source domain instances and then training
the model with the re-weighted source domain data; (2) feature matching [5,6,8,13,14], which finds
a common feature space across both domains by minimizing the distribution gap.

If the distribution difference between both domains is large enough, there will always be
a situation where the source domain instances are not relevant to the target domain instance, even after
finding a common feature location. In this situation, jointly optimizing instance re-weighting and
feature matching is an important and unavoidable task for robust transfer learning. To understand
a need for joint-learning instance re-weighting and feature matching more deeply, let us consider
an example in which we have source domain data with outlier data samples (or irrelevant instances)
as shown in Figure 2a and target domain data as shown in Figure 2b. In this case, if we lean only
the common feature space between both domains by existing methods such as Joint Geometrical and
Statistical Alignment (JGSA) [8] and Joint Distribution Adaptation (JDA) [6], the new representation of
the source and target domain data is shown in Figure 2c, where it can be seen that the domain difference
is still large for feature matching due to outlier data samples or irrelevant instances (the symbols
with circles). However, if we jointly learn feature matching and instance re-weighting, the data
representation is shown in Figure 2d, where it can be seen that all the outlier data samples are
down-weighted to reduce domain difference further.

Fortunately, in the literature, there is a method called Transfer Joint Matching (TJM) that performs
joint feature matching and instance re-weighting by down-weighting irrelevant features of the source
domain [7]. However, only performing feature matching and instance re-weighting is insufficient
to successfully transfer knowledge from the source domain to the target domain. Some other DA
and TL methods consider other essential properties to minimize distribution differences between
both domains. For example, the JDA method considers the conditional distribution in addition to
the marginal distribution, and this distribution is needed if the data is conditionally or class-wise
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distributed. Subspace Alignment (SA) [15] makes use of subspaces (composed of ‘d’ eigenvectors
induced by a Principle Component Analysis (PCA)), one for each domain and suggests minimizing the
distribution difference between subspaces of both domains rather than the original space data. JGSA
preserves source domain discriminant information, among other properties such as SA, marginal, and
conditional distributions, to further improve the performance of JDA. However, the feature space
obtained by JGSA is not notable because data samples in this space may lose their original similarity
so that they can be easily misclassified by the classifier. Kernelized Unified Framework for Domain
Adaptation (KUFDA) [16] improves JGSA by adopting the original similarity weight matrix term so
that the sample does not lose its original similarity in the learned space. KUFDA follows most of the
above discussed important properties but still suffers from outlier data samples, and this is due to not
considering instance re-weighting term.
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Figure 2. (a) Initial representation of source domain data with two classes (i.e., red plus (+) symbol and
blue minus (−) symbol) in 2-d space, where the symbols with circles are outlier data samples. (b) Initial
representation of target domain data with two classes (i.e., yellow plus (+) symbol and green minus
(−) symbol) in 2-d space. (c) Data representation after application of only feature learning. (d) Data
representation after application of jointly feature learning and instance re-weighting.

In this paper, to solve all of the above-discussed challenges and to efficiently transfer knowledge
from the source domain to the target domain, we propose a novel Subspace based Transfer Joint
Matching with Laplacian Regularization (STJML) method for visual domain adaptation by jointly
matching the features and re-weighting instances across both the source and the target domains.

The major contributions of this work can be listed as follows:

• The proposed method STJML is the first framework that crosses the limits of all the comparative
cutting edge methods, by considering all inevitable properties such as projecting both domain data
into a low dimensional manifold, instance re-weighting, minimizing marginal and conditional
distributions, and geometrical structure of both domains in a common framework.

• With the help of the t-SNE tool, to illustrate the reason for the inclusion of all the components
(or inevitable properties), we have graphically visualized the features learned by the proposed
method after excluding any component.

2. Related Work

Recently, various DA and TL approaches have been proposed for transferring structure
or information from one domain to another domain in terms of features, instances, relational
information, and parameters [4,9]. However, the TL approaches, which are closely related to our work,
can be divided into three types: feature-based transfer learning [6], instance-based transfer learning [7],
and metric-based transfer learning [9].

In the first type, the objective is to minimize the distribution difference between the source and the
target domains based on feature learning. For example, Pan et al. [17] proposed a new dimensionality
reduction method called maximum mean discrepancy embedding (MMDE) for minimizing the
distribution gap between domains. MMDE learns a common feature space on the domains where the
distance between distributions can be minimized while preserving data variance. Pan et al. [5] further
extended the MMDE algorithm by proposing a new learning method called Transfer Component
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Analysis (TCA). TCA tries to learn a feature space across domains in a reproducing kernel Hilbert
space using Maximum Mean Discrepancy (MMD). Therefore, with the new representation in this
feature space, we can apply standard machine learning methods such as k-Nearest Neighbor (k-NN)
and Support Vector Machine (SVM) to train classifiers in the source domain for use in the target
domain. Long et al. [6] extends TCA by considering not only marginal distribution but also conditional
distribution with the help of pseudo-labels in the target domain. Fernando et al. [18] introduced a
subspace centric method called Subspace Alignment (SA). SA aims to align the source domain vectors
(E) with the target domain one (F) with the help of a transformation matrix (M). Here, E and F can
be obtained by Principle Component Analysis (PCA) on the source domain and the target domain,
respectively. Shao et al. [19] proposed a low-rank transfer learning method to match both domain
samples in the subspace for transferring knowledge. Zhang et al. [8] proposed a unified framework
that minimizes the distribution gap between domains both statistically and geometrically, called Joint
Geometrical and Statistical Alignment (JGSA). With the help of two coupled projections E (for source
domain) and F (for target domain), JGSA projects the source domain and the target domain data into
low dimensional feature space, where both domain samples are geometrically and statistically aligned.

In the second type, the objective is to re-weight the domain samples so as to minimize the
distribution difference between both domain samples. The TrAdaBoost TL [10] method re-weights the
source domain labeled data to filter samples that are most likely not from the target domain. In this
way, the re-weighted source domain samples will create the same distribution found on the target
domain. Finally, the re-weighted samples can be considered as additional training samples for learning
the target domain classifier. As the primitive TrAdaBoost method is applicable to a classification
problem, Pardoe et al. [11] extended this method by proposing ExpBoost.R2 and TrAdaBoost.R2
methods to deal with the regression problem.

In the final type, the target domain metric is to be learned by establishing a relationship between
the source domain and the target domain tasks. Kulis et al. [20] introduced a method, called ARC-t,
to learn a transformation matrix between the source domain and the target domain based on metric
learning. Zhang et al. [21] proposed a transfer metric learning (TML) method by establishing the
relationship between domains. Ding et al. [22] developed a robust transfer metric learning (RTML)
method to effectively assist the unlabeled target learning by transferring the information from source
domain labeled data.

3. A Subspace Based Transfer Joint Matching with Laplacian Regularization

This section presents the Subspace based Transfer Joint Matching with Laplacian Regularization
(STJML) method in detail.

3.1. Problem Definition

To understand transfer learning or domain adaptation, the domain and the task must be explicitly
defined. A domain D consists of two parts: features space X and a marginal probability distribution
P(x), i.e., D = {X , P(x)}, where x ∈ X . If there is a difference in their feature space or marginal
distribution, the two domains are said to be different. Given a domain D, a task, that is denoted
by T , also consists of two parts: a label space Y and a classifier function f (x), i.e., T = {y, f (x)},
where y ∈ Y and classifier function f (x) predicts label of new instance x. This classifier function f (x)
can also be interpreted as the conditional probability distribution, i.e., Q(y|x).

Transfer learning, given a labeled source domain Ds = {(x1, y1), . . . , (xns , yns)} and unlabeled
target domain Dt = {(x1), . . . , (xnt)} under the assumptions Xs = Xt,Ys = Yt, Ps(xs) 6=
Pt(xt), Qs(ys|xs) 6= Qt(yt|xt), aims to improve the performance of the target domain classifier function
ft(x) in Dt using the knowledge in Ds.
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3.2. Formulation

To address the limitations of existing TL methods, the STJML method minimizes the distribution
gap statistically and geometrically by working on the following components: finding both domain
subspaces, matching features, instance re-weighting, and exploiting the similar geometrical property.
In our proposed STJML approach, first, we exploit the subspaces of both domains and then with the
help of common projection vector-matrix Z for both domains, perform feature matching, instance
re-weighting, and the similar geometrical property exploitation in a Reproducing Kernel Hilbert Space
(RKHS) to match both first and high-order statistics.

3.3. Subspace Generation

Even though both domain data lie in the same D-dimensional feature space, they are drawn
according to different marginal distributions. Consequently, according to [15], instead of working on
the original feature space, we need to work on more robust representations of both domain data to
allow it to induce stronger classification, which is not subject to local perturbations. For this subspace
generation, we use the Principle Component Analysis (PCA) technique, which selects ‘d’ eigenvectors
corresponding to the ‘d’ largest eigenvalues. These ‘d’ eigenvectors are used to project original space
data on it. For example, if a given input data matrix X = [x1, x2, . . . , xn] ∈ RD×n where n = ns + nt

and D is the dimension of each data sample in original space, then, the PCA generates the subspace
matrix X ∈ Rd×n by projecting input data matrix (X ) on selected ‘d’ eigenvectors.

3.4. Feature Transformation

As a dimensionality reduction method, such as PCA, can learn the transformed feature
representation by reducing the reconstruction error of given data, it can also be utilized for the data
reconstruction. Let us consider subspace data matrix X ∈ Rd×n, data centering matrix H = I − 1

n 1,
and 1 is a n× n matrix of ones. Thus, the covariance matrix of both domain subspace data matrix X
can be calculated as XHXT . The objective of PCA is to maximize both domain variances by finding
an orthogonal transformation matrix W ∈ Rn×σ, where σ is the selected number of eigenvectors on
which subspace data matrix X to be projected. Thus,

Max
WTW=I

tr(WTXHXTW) (1)

where tr(.) is the trace of a matrix and I is an identity matrix. As the problem in Equation (1) is an
eigendecomposition problem, it can easily be decomposed by eigendecomposition as XHXTW = WΦ,
where Φ = diag(Φ1, . . . , Φσ) is the σ largest eigenval matrix. After projecting subspace data matrix X
on the selected projection vectors matrix (Wσ) corresponding to top most σ largest eigenvalues matrix,
the optimal σ-dimensional learned projection matrix V = [v1, . . . , vσ] = WT

σ X
To achieve our goal, we need to work in RKHS using some kernel function like linear, polynomial,

Gaussian, etc. Let us consider the chosen kernel function θ, which maps the data sample x to θ(x), i.e.,
θ : x → θ(x), or θ(X) = [θ(x1), . . . , θ(xn)], and then the kernel matrix K = θ(X)Tθ(X) ∈ Rn×n. After
the application of the Representer theorem W = θ(X)Z, Equation (1) can be written as follows:

Max
ZT Z=I

tr(ZTKHKTZ) (2)

where Z ∈ Rn×σ is the transformation matrix, and the subspace embedding becomes V = ZTK.

3.4.1. Feature Matching with Marginal Distribution

However, even though maximizing the subspace data variance, the distribution difference
between both domains will still be quite large. Therefore, the main problem is to minimize
the distribution difference between them by applying an appropriate distance metric (or measure).
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There are many distance measures (such as the Kullback–Leibler (KL) divergence) that can be utilized to
compute the appropriate distance between both domain samples. However, many of these methods are
parameterized or require estimating the intermediate probability density [5]. Therefore, in this paper,
we adopt a non-parametric distance estimate method called Maximum Mean Discrepancy (MMD) [23]
to compare distribution difference in a Reproducing Kernel Hilbert Space (RKHS) [5]. MMD estimates
the distance between the sample means of both domain data in the σ-dimensional embedding,

Md =

∥∥∥∥∥ 1
ns

ns

∑
i=1

ZTki −
1
nt

n

∑
j=ns+1

ZTk j

∥∥∥∥∥
2

= tr(ZTKMdKTZ) (3)

where Md is the MMD matrix and can be determined as follows

Md
ij =


1

nsns
ki, k j ∈ Ds

1
ntnt

ki, k j ∈ Dt
−1

nsnt
otherwise

(4)

3.4.2. Feature Matching with Conditional Distribution

Minimizing the marginal distribution difference does not guarantee that the conditional
distribution between both source and target domains will also be minimized. However, for robust
transfer learning, minimizing the conditional distributions, i.e., Qs(ys|xs) and Qt(yt|xt) between both
domains is required [24]. Reducing the conditional distribution is not a trivial process because there is
no label data in the target domain. Therefore, we cannot model Qt(yt|xt) directly.

Long et al. [6] proposed a Joint Distribution Adaptation (JDA) method for modeling Qt(yt|xt) by
generating pseudo labels of the target data. Initial pseudo labels for the target data can be generated by
training the classifier with Xs and Ys of the source domain, and testing the classifier on target domain
subspace Xt. Now with Ys, Xs, and pseudo labels, the conditional distribution between both domains
can be minimized by modifying MMD to estimate distance between the class conditional distributions
Qs(xs|ys = c ∈ {1, ..., C}) and Qt(yt|xt = c ∈ {1, ..., C})

Cd =

∥∥∥∥∥∥ 1
nc

s
∑

ki∈Dc
s

ZTki −
1
nc

t
∑

kj∈Dc
t

ZTk j

∥∥∥∥∥∥
2

= tr(ZTKMcKTZ) (5)

where Dc
s = {ki : ki ∈ Ds ∧ y(ki) = c} is the set of samples belongs to cth class in the

source domain, y(ki) is the true label of ki, and nc
s = |Dc

s |. Similarly, for the target domain,
Dc

t = {k j : k j ∈ Dt ∧ ŷ(k j) = c} is the set of samples belongs to cth class in the target domain, ŷ(k j) is
the pseudo label of k j, and nc

t = |Dc
t |. Thus, the MMD matrix Mc with class labels of both domains can

be determined as follows:

Mc
ij =



1
nc

snc
s

ki, k j ∈ Dc
s

1
nc

snc
t

ki, k j ∈ Dc
t

−1
nc

snc
t

{
ki ∈ Dc

s k j ∈ Dc
t

k j ∈ Dc
s ki ∈ Dc

t

0 otherwise

(6)

By minimizing Equation (5) such that Equation (2) is maximized, the conditional distributions
between both the source and the target domains are drawn close with the new representation V = ZTK.
In each iteration, this representation V will be more robust till its convergence. As there is a difference
in both the marginal and conditional distributions, the initial pseudo labels of the target domain are
incorrect. However, we can still take advantage of them and improve the performance of target domain
classifiers iteratively.
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3.5. Instance Re-Weighting

However, matching features with marginal and conditional distributions is not sufficient for
transfer learning, as it can only match first- and higher-order statistics. In particular, when the domain
difference is significant enough, even in the feature learning, there will always be some source instances
or samples that are not related to the target instance. In this condition, an instance re-weighting method
with feature learning should also be included to deal with such a problem.

In this paper, we adopt a L2,1-norm structured sparsity regularizer as proposed in [7].
This regularizer can introduce row-sparsity to the transformation matrix Z. Because each entry of the
matrix Z corresponds to an example, row sparsity can substantially facilitate instance re-weighting.
Thus, instance re-weighting regularizer can be defined as follows.

Ir = ‖Zs‖2,1 + ‖Zt‖2
F (7)

where Zs := Z1:ns is the transformation matrix corresponding to the source samples, and Zt :=
Zns+1:ns+nt is the transformation matrix corresponding to the target samples. As the objective is to
re-weight the source domain instances, we only imposeL2,1-norm on source domain. Thus, minimizing
the Equation (7) such that Equation (2) is maximized, the source domain samples, which are similar (or
dissimilar) to the target domain, are re-weighted with less (or greater) importance in the new learned
space V = ZTK.

3.6. Exploitation of Geometrical Structure with Laplacian Regularization

However, matching features and instance re-weighting are not enough to convey knowledge
transfer by capturing the intrinsic structure of the source domain labeled samples and target domain
unlabeled samples. In particular, labeled data samples of the source domain combined with unlabeled
data samples of the target domain are used to construct a graph that sets the information of the
neighborhood data samples. Here, the graph provides discrete approximations to the local geometry
of the manifold data. With the help of the Laplacian regularization term L, the smooth penalty on the
graph can be included. Basically, the term regularizer L allows us to incorporate prior knowledge on
certain domains, i.e., nearby samples are likely to share same class labels [25].

Given a kernelized data matrix K, we can use a nn-nearest neighbor graph to establish
a relationship between nearby data samples. Specifically, we draw an edge between any two
samples i and j if ki and k j are “close”, i.e., ki and k j are among nn nearest neighbors of each other.
Thus, the similarity weight matrixW can be determined as follows:

Wij =

{
1 if ki ∈ Nnn(k j) or k j ∈ Nnn(ki)

0 otherwise
(8)

where Nnn(k j) represents the set of nn nearest neighbors of ki.
Here, two data samples are connected with an edge if they are likely to be from the same class.

Thus, the regularizer term L can be defined as follows:

L =∑
ij
(ZTki − ZTk j)

2Wij

=2 ∑
i

ZTkiDiikTZ− 2 ∑
ij

ZTkiWijkT
j Z

=2ZTK(D−W)KTZ

=2ZTKLKTZ (9)

where D is the diagonal matrix, i.e., Dii = ∑jWij and L is the Laplacian matrix; L = D−W ,
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3.7. Overall Objective Function

The objective of this work is to minimize the distribution difference between domains by jointly
matching the features of both domains and re-weighting the source domain samples, and preserving
original similarity of both domain samples. So, by incorporating Equations (3), (5), (7), and (9),
the proposed objective function can be obtained as follows:

max
ZTKHKT Z−1

tr(ZTK((δ− 1)Md + δCd + ηL)KTZ) + λ(‖Zs‖2,1 + ‖Zt‖2
F) (10)

where δ is a trade-off parameter, which balances the marginal and conditional distributions [13], η is
the trade-off parameter that regularizes the Laplacian term, and λ is the regularization parameter to
trade-off feature matching and instance re-weighting.

3.8. Optimization

By using the Lagrange multiplier Φ, Equation (10) can be written as follows:

L f = tr(ZTK((δ− 1)Md + δCd + ηL)KTZ) + λ(‖Zs‖2,1 + ‖Zt‖2
F) + tr((I − ZTKHKTZ)Φ) (11)

In order to find out an optimal value of the projection vector matrix Z, we partial derivative L f with
respect to Z and equate it to zero as

(K((δ− 1)Md + δCd + ηL)KT + λG)Z = KHKTZΦ (12)

‖Zs‖2,1 is a non-smooth function at zero and its partial derivative can be computed as
∂(‖Zs‖2,1+‖Zt‖2

F)

∂Z =

2GZ, where G is a diagonal subgradient matrix and its ith element can be calculated as

Gii =


1

2‖ai‖ , ki ∈ Ds, ai 6= 0

0, ki ∈ Ds, ai = 0
1, ki ∈ Dt

(13)

As the problem in Equation (12) is a generalized eigen decomposition problem, we can solve it
and find Φ = diag(φ1, . . . , φσ) (σ leading eigenvalues) and Z = (z1, . . . , zσ) (σ leading eigenvectors).
The pseudo code of our proposed method is given in Algorithm 1.

4. Experiments

In this section, we present a performance of the proposed STJML method by experimenting on
various visual domain classification problems.

4.1. Data Preparation

We have considered three publicly image datasets: Office + Caltech10 with Speeded Up Robust
Features (SURF), Office + Caltech10 with VGG-FC6 features, and Pose, Illumination, and Expression
(PIE) face Recognition for experimentation. These data sets are well known in the domain adaptation
methods and are widely considered in most recent works (such as [25,26]).

Caltech-256 has 30,607 images and 256 classes, while Office-31 is made of three object domains:
DSLR (D), Amazon (A), and Webcam (W). It contains a total of 4652 images with 31 classes. As images
in Office and Caltech-256 having different distributions, DA methods can help with cross-domain
recognition. Since both the datasets contains 10 common classes, we considered Office + Caltech
10 datasets from [8], which has 12 tasks: A → D, . . . , C → W. For the purpose of experimentation,
we considered both the SURF feature and Deep feature (VGG-FC6 features) of this dataset.

Carnegie Mellon University (CMU) PIE (Pose, Illumination, and Expression (PIE)) face dataset [27]
contains over 40,000 facial images of 68 people. The images of each person were taken across 13 different
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poses, under 43 different illumination conditions, and with 4 different expressions. As there are many
datasets of different poses, we considered only five poses such as C05, C07, C09, C27, and C29 for
experimentation. Here each pose contains images with illumination variation and expression variation.
Similar to Office + Caltech 10 datasets, 20 possible combinations of source and target domains or tasks
such as C05→ C07, . . . , C29→ C27 can be constructed.

In this paper, we use notation P→ Q to show knowledge transfer from source domain P to the
target domain Q.

4.2. t-SNE Representation of Feature Spaces Learned by the Proposed Method (STJML)

In order to visualize the learned feature space by our proposed method, we considered the
t-SNE tool [28], through which high dimensional data is projected to 2-D space (or low dimensional
space). To show t-SNE representation of feature spaces for tasks A→ D (SURF features) and A→W
(VGG-FC6 features), we randomly selected 150 samples from each domain and then used two different
symbols (such as circles and pluses) to represent different domains and 10- different colors (‘black’, ‘red’,
‘lime’, ‘blue’, ‘orange’, ‘cyan’, ‘magenta’, ‘green’, ‘chocolate’, and ‘maroon’) to represent 10 different
classes. Furthermore, to clearly understand the distribution differences between both domains, we used
different colored ellipses to represent different classes’ variances belonging to different domains.
We also used different colored lines to indicate the distribution gap between same class samples belong
to different domains and different symbols such as square and star to represent the average point (or
mean point) of each class in the source and target domains. For example, Figure 3a shows the initial
feature representation of A → D task with SURF feature, where it can be seen that different class
samples from different domains are too close together or there is no uniform cluster for different classes.
Therefore, the classification or clustering algorithms can easily misclassify the samples that are too
close or near the edge of their own clusters. However, due to the recent advancement in deep learning
approaches, by which we can obtain deep features like VGG-FC6 features for the Office + Caltech10
dataset. The deep features (VGG-FC6) representation of task A→W for the Office + Caltech10 dataset
is shown in Figure 3b. After comparing the representation of both types of features (as shown in
Figure 3a), i.e., VGG-FC6 and SURF, it can be seen that the representation of VGG-FC6 features is
much better than the SURF features (Figure 3a). Therefore, the performance of the primitive machine
learning algorithm is better for deep learning features. The t-SNE representation of feature spaces
learned by the proposed method (STJML) for both the tasks A → D (SURF features) and A → W
(VGG-FC6 features) is shown in Figure 4.

(a) A→ D ( SURF features) (b) A→W (VGG-FC6 features)

Figure 3. The t-SNE view of initial feature spaces on the tasks of Office + Caltech data set.
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(a) (b)

(c) (d)

Figure 4. The t-SNE view of learned features from the proposed method Subspace based Transfer Joint
Matching with Laplacian Regularization (STJML) after considering all the terms. (a) A → D (SURF
features) with the predicted class labels for the target domain. (b) A → D (SURF features) with the
given class labels for both domains. (c) A→W (VGG-FC6 features) with the predicted class labels for
the target domain. (d) A→W (VGG-FC6 features) with the given class labels for both domains.

To quantify misclassification samples in the learned feature space by the proposed method STJML
for the task (A→ D), we have shown two illustrations such as the first one with the predicted class
labels for the target domain (as shown in Figure 4a) and the second one with the given class labels
for both domains(as shown in Figure 4b). After carefully analyzing both the graphs, i.e., Figure 4a,b,
many samples (highlighted by asterisks (*) and arrows (→))) are being misclassified by the proposed
method STJML. However, If we compare the graph (as shown in Figure 3a) with the graph (as shown
in Figure 4a), it can be seen that the distribution difference between the source domain samples and
the target domain samples is minimized by a small margin. For example, in Figure 3a, it is visible
that there is a distribution gap between the red class samples of the circle domain (or source domain)
and the red class samples of the plus domain (or target domain). But, in Figure 4a, it can be seen that
our proposed method STJML minimizes this distribution gap.

Similar to A → D (SURF features) task, if we compare graphs in Figures 3a and 4c for
A → W (VGG-FC6 features), it is observed that the distribution difference between both domains
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is satisfactorily reduced by the proposed method STJML. However, after comparing Figure 4c to
Figure 4d, it can also be seen that there are only a few samples (marked by asterisks (*) and arrows
(→))) which are being misclassified by our proposed method STJML.

4.3. What Happens if One Component Is Omitted from the Proposed Method (STJML)

To reveal the importance of including all of the above discussed components in our proposed
method, we have experimented our proposed method on tasks A→ D (SURF feature) and A→ W
(VGG-FC6 feature) by omitting any of its components at once. Therefore, by excluding any one
component from our proposed method STJML, we can divide the proposed method into five new
methods: STJMLs(Omitting subspaces of both domains), STJMLw (Omitting instance-re-weighting
term), STJMLm (Omitting marginal distribution term), STJMLc (Omitting conditional distribution
term), and STJMLl (Omitting Laplacian regularization term).

4.3.1. Omitting Consideration of Subspaces of Both Domains (STJMLs)

If we execute STJMLs on the original VGG-FC6 features of the task A→W, the learned feature
representation is shown in Figure 5. In Figure 5, the first graph (i.e., Figure 5a) shows feature
representation learned by method STJMLs with the given source domain labels and predicted target
domain labels, while the second graph (i.e., Figure 5b) presents a representation of learned features
with given both domain label information.

(a) (b)

Figure 5. The t-SNE view of learned features from the proposed method after omitting the subspace of
both domains. (a) A → W (VGG-FC6 features) with the predicted class labels for the target domain.
(b) A→W (VGG-FC6 features) with the given class labels for both domains.

By comparing the representation of features for the task A → W (as shown in Figure 3b) with
that of features learned by STJMLs (as shown in Figure 5a), the feature space learned by STJMLs
is much better. From the comparison, it can also be seen that the distribution difference between both
domains is minimum, as well as the distance between samples, belong to the same class is minimum,
while the distance between different class samples is maximum. Thus, if this learned feature space
is given to a classification algorithm, such as 1-NN classifier, the performance of the classifier (in
terms of accuracy) will be 86.44%, which is accompanied by a 23% gain over the performance of
the trained classifier with original feature space. Although the learned feature space is much better
than the original feature space, there are some samples that are still being misclassified. In order to
investigate those samples that are being misclassified by STJMLs method, we have also visualized
these learned features (shown in Figure 5b) with the given both domain labels. If we compare the
graphs as shown in Figure 5a,b, it can be observed that some sample class labels (as indicated with
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asterisks(*) and arrows(→)) predicted by the STJMLs are incorrect. Again if we compare the learned
feature space (as shown in Figure 5a) by STJMLs method with the learned feature space (as shown in
Figure 4c) by the proposed method STJML, the clusters for different classes obtained by our proposed
method with all components are slightly better than those obtained by STJMLs method. For example,
a black class cluster obtained by the STJML method is slightly distant from the maroon class samples,
but that obtained by the STJMLs method collides with the samples with the maroon class. Similarly,
the orange class cluster obtained by the STJMLs method is the worst compared to that obtained by the
STJML method.

4.3.2. Omitting Instance-Re-Weighting Term (STJMLw)

Since, the results obtained by both STJMLw and STJML methods for the task A→W (VGG-FC6
features) were similar, we considered another task A → D (SURF features) to show the effect of
instance-re-weighting term. After executing STJMLw method on the task A → D (SURF features),
the learned feature spaces are shown in Figure 6a,b. After comparing both the plots (as shown in
Figure 6a,b), we can see that there are many samples (some of them we have highlighted by asterisks
(*) and arrows (→)) which are being misclassified by the STJMLw method.

(a) (b)

Figure 6. The t-SNE view of learned features from the proposed method after omitting the
instance-re-weighting term. (a) A→ D (SURF features) with the predicted class labels for the target
domain. (b) A→ D (SURF features) with the given class labels for both domains.

As the clusters obtained in Figure 6a,b by STJMLw method for the task A→ D (SURF features) are
not as good as obtained by the proposed method for the task A→W (VGG-FC6 features), we compare
the graph (as shown in Figure 6b) obtained by STJMLw method with the graph (as shown in Figure 4b)
obtained by the STJML method. After comparing both the plots in Figures 4b and 6b, it can be
concluded that some of the samples of source domain for ’lime’ colored class in Figure 6b (look at ‘lime’
colored ellipse) are not efficiently down weighted as compared to the graph in Figure 4b. Therefore,
the performance of STJMLwmethod (which is 41.70% accuracy) is not as good as the STJML method
(which is 49.10%).

4.3.3. Omitting Marginal Distribution Term (STJMLm)

If we omit consideration of the marginal distribution from our proposed method STJML, the t-SNE
views of learned feature spaces by STJMLm for A → W (VGG-FC6 features) task are shown in
Figure 7a,b. After excluding the marginal distribution, the STJMLm method achieves 90.85% accuracy,
which is similar to the accuracy achieved by the STJML method. Thus, it can be concluded here that
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even after dropping this distribution, the STJML method does not have much effect on its performance.
Moreover, after carefully looking the graphs learned by STJMLm (as shown in Figure 7a,b) and
STJML (as shown in Figure 4c,d) methods, we find that the graphs learned by both the methods are
almost similar.

(a) (b)

Figure 7. The t-SNE view of learned features from the proposed method after omitting the marginal
distribution term. (a) A→W (VGG-FC6 features) with the predicted class labels for the target domain.
(b) A→W (VGG-FC6 features) with the given class labels for both domains.

4.3.4. Omitting Conditional Distribution Term (STJMLc)

If we exclude consideration of the conditional distribution from our proposed method STJML,
the t-SNE views of learned feature spaces by STJMLc for A→W (VGG-FC6 features) task are shown
in Figure 8a,b. Without including this conditional distribution term in our proposed method STJML,
the STJMLc approach achieves 73.90% accuracy, which is much lower than the accuracy (90.85%)
achieved by the STJML method. Therefore, we can say that this term greatly impacts the performance
of the proposed STJML method if it is not included. If we compare the graph (as shown in Figure 4c)
obtained by the STJML method to the graph (as shown in Figure 8a) obtained by STJMLc, it can be
seen that the distribution difference between both domains has not been effectively reduced by the
STJMLc method. For example, the distribution difference between green colored class samples of both
domains (plus and circle) is not minimized in Figure 8a (i.e., all the green colored class samples are
distributed in different green colored circles), but it can be seen in Figure 4c that all green colored class
samples are with in a cluster. Because of not minimizing the distribution gap by the STJMLc method,
we can see that some samples that are being misclassified in Figure 8a (as highlighted by asterisks (*)
and arrows (→)) after comparing with the graph in Figure 8b.
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(a) (b)

Figure 8. The t-SNE view of learned features from the proposed method after omitting the conditional
distribution term. (a) A→W (VGG-FC6 features) with the predicted class labels for the target domain.
(b) A→W (VGG-FC6 features) with the given class labels for both domains.

4.3.5. Omitting Laplacian Regularization Term (STJMLl)

The samples that are supposed to loss their original similarity in the leaned feature space can
preserve their original similarity by adding the Laplacian regularization term. As a result, samples
that were supposed to go far away from their respective groups or clusters may come closer together.
Thus, in order to see the impact of this term, we omit this term from the proposed method STJML
and execute the algorithm. The t-SNE representation of learned feature spaces by STJMLl is depicted
in Figure 9a,b. If we compare the graphs generated by STJMLl (as depicted in Figure 9a,b) with the
graphs generated by STJML (as depicted in Figure 4c,d), it can be seen that the samples in each class
cluster generated by STJMLl are widely spread around their mean point, but they are less spread in
the cluster generated by STJML. Therefore, the performance (82.03% accuracy) of STJMLl method is
slightly lower than the STJML method. After comparing the graphs in Figure 9a,b, we can see that
some samples (highlighted by asterisks (*) and arrows (→))) are being misclassified by STJMLl method.

(a) (b)

Figure 9. The t-SNE view of learned features from the proposed method after omitting the Laplacian
distribution term. (a) A→W (VGG-FC6 features) with the predicted class labels for the target domain.
(b) A→W (VGG-FC6 features) with the given class labels for both domain.
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4.4. Comparison with State-Of-The-Art Methods

The proposed STJML method was verified and compared with many state-of-the-art primitive
and domain adaptation algorithms. A brief description of all the comparative methods is as follows:

• NN, PCA+1NN, and SVM: These are the traditional machine learning algorithms, which assume
that both training and test data should follow a uniform distribution.

• Transfer Component Analysis (TCA) [5]: TCA is a feature transformation technique that aligns
only the marginal distribution of both domains.

• Joint Distribution Alignment (JDA) [6]: This method aligns both the marginal and conditional
distributions of both domains.

• Geodesic Flow Kernel (GFK) [29]: In order to characterize the changes of geometric and statistical
properties from the source domain to the target domain, GFK integrates countless subspaces.

• Transfer Joint Matching (TJM) [7]: This method demonstrates both feature learning and instance
re-weighting for minimizing distribution differences between both domains.

• Subspace Alignment (SA) [15]: SA first projects both domain samples into lower-dimensional
subspaces, then aligns both domains.

• Scatter Component Analysis (SCA) [30]: This method is based on a simple geometrical measure,
i.e., scatter.

• CORAL [31]: It aligns both domain covariance matrices.
• Adaptation Regularization (ARTL) [14]: This method learns domain classifier in original space.
• Cross-Domain Metric Learning (CDML) [32]: It is a novel metric learning algorithm to transfer

knowledge in an information-theoretic setting.
• Close yet Discriminative DA(CDDA), Geometry Aware DA (GA-DA), and Discriminative and

Geometry Aware DA (DGA-DA) [33]: CDDA enhances the performance of the JDA method by
incorporating a new repulsive force objective into its model to improve the discriminative power of
the common feature subspace. Likewise, the GA-DA method includes the original parity of a data
point in CDDA to improve its performance. Then, finally, the GA-DA method involves preserving
the discriminative information term to improve the DGA-DA method performance further.

• Invariant Latent Space (ILS) [34]: This TL method makes use of the Riemannian optimization
methods to match statistical properties.

• Balanced Distribution Adaptation (BDA) [35]: It is a novel TL approach to adaptively balance
both the marginal and conditional distributions of both domain data.

• Joint Geometrical and Statistical Alignment (JGSA) [8]: It extends the JDA by adopting two projection
vector matrices and considering subspace alignment and source discriminant information.

• Robust Transfer Metric Learning (RTML) [22]: This method considers two directions, i.e., sample
space and feature space, to mitigate the distribution gap.

• Domain Invariant and Class Discriminative (DICD) [36]: This DA method is to learn a latent
feature space while preserving important data properties.

• Explicit Map-based Feature Selection (EMFS) [37]: It attempts to: (1) reveal high-order invariant
features by explicit feature map, (2) integrate feature learning and model learning, and (3) remove
non-discriminative features from invariant features.

• Domain Irrelevant Class clustering (DICE) [38]: This method specifically deals with the
intra-domain structure for the target domain in addition to other common properties.

• Linear Discriminant Analysis-inspired Domain Adaptation (LDADA) [39]: The key insight of this
approach is to leverage the discriminative information from the target task, even when the target
domain labels are not given.

• Kernelized Unified Framework for Domain Adaptation (KUFDA) [16]: This TL method improves
the JGSA method by adding the Laplacian regularization term.



Sensors 2020, 20, 4367 16 of 25

4.5. Parameter Sensitivity

Our proposed STJML method contains various parameters such as nn, k, σ, η, λ, and δ, along with
other state-of-the-art domain adaptation methods [5,8,13,16]. Similar to previous methods [14,40],
we also need to analyze the parameter sensitivity of the STJML method on all possible tasks of both
datasets to validate that an appropriate value of each parameter can be chosen to obtain satisfactory
performance. Analyzing the parameter sensitivity of STJML, we vary one parameter value and keep the
other parameter values constant. For example, we vary parameter value k from 1 to 10 with an interval
of 1 and keep other parameter values nn = 1, σ = 100, η = 10−1, λ = 10−3, and δ = 0.5 constant.
Here, we have provided a description of each parameter and performed a parameter sensitivity test
for all the considered datasets. But, we have shown parameter sensitivity analysis graphs for Office +
Caltech10 with VGG-FC6 features and PIE face datasets. The description and possible values of each
parameter are as follows:

4.5.1. k Parameter

In our proposed method, we considered the k-NN classifier to predict the label of the target
domain, and the performance of this classifier depends on an appropriate value of parameter k for
each task. Therefore, we need to find out its proper value for each task of the datasets. For each task of
the considered datasets, we varied k value from 1 to 10 with an interval of 1 and keep other parameter
values constant as shown in Figure 10a,b. The resultant graphs for Office + Caltech10 with VGG-FC6
features and PIE face datasets are shown in Figure 10a,b. From Figure 10a,b, it can be seen that the
STJML method outperforms at k = 1 for most of the tasks of both the datasets. Therefore, we keep k = 1
for most of the tasks of all the datasets except some tasks such as 9→ 7, 9→ 27, 9→ 29, 27→ 7, 27→
09, C → D(VGG-FC6 features task), C → A(SURF features task), C → W(SURF features task), D →
A(SURF features task), D → C(SURF features task), W → A (SURF features task), but for these tasks
k-parameter values are kept 9, 9, 5, 10, 10, 9, 3, 3, 10, 3, and 2, respectively.

(a) (b)

(c) (d)

Figure 10. Performance of the proposed STJML method, varying the values of the parameters ‘k’
and ‘nn’ on all tasks in both the datasets. (a) k-Pose, Illumination, and Expression (PIE) face dataset.
(b) k-Office + Caltech10 with VGG-FC6 features dataset. (c) nn-PIE face dataset. (d) nn-Office +
Caltech10 with VGG-FC6 features dataset.
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4.5.2. nn Parameter

Similar to the parameter k, we require an appropriate value of parameter nn for construing
the Laplacian graph as discussed in Section 3.6. So, we vary nn value from 1 to 10 and keep other
parameter values constant. Here also, in Figure 10c,d, there is no unique value of nn for which STJML
is outperforming for all tasks of Office + Caltech with the SURF features dataset. However, STJML is
outperforming for the values (1 and 2) of nn for the tasks of PIE dataset. Therefore, we keep nn = 1
for all tasks (except 5 → 27(nn = 2), 7 → 5(nn = 2), and 7 → 09(nn = 2)) of PIE face dataset.
Similarly, we keep nn = 3 for all tasks (except A → C(nn = 1) and A → W(nn = 7)) of Office +
Caltech with VGG-FC6 features dataset, but nn = 10 for all tasks (except A → D(nn = 1), A →
W(nn = 1), C → A(nn = 8), C → D(nn = 2), and W → C(nn = 1)) of Office + Caltech with SURF
features dataset.

4.5.3. δ Parameter

This parameter quantitatively evaluates the importance of aligning marginal and conditional
distributions in domain adaptation. In this evaluation, the existing work [6,8] in DA fails by the
assumption that both distributions are equally important. However, this assumption may not be true
for real-world problems. Wang et al. [13] introduced the adaptive factor parameter to measure the
importance of these two distributions dynamically. However, in this paper, we manually performed the
parameter sensitivity tests to ascertain a reasonable value of this factor for each task. Thus, we varied
its value from 0 to 1 with an interval of 0.1, and the resulted graphs are shown in Figure 11. It is
clearly shown in Figure 11, that STJML performs well for different values of δ for different tasks.
Thus, to achieve best performance of the STJML method, we keep δ = 0.5 for all tasks (except
5 → 7(δ = 0.9) and 7 → 29(δ = 0.6)) of PIE face dataset. Similarly, we keep δ = 0.5 for all tasks
(except A → W(δ = 0.9)) of Office + Caltech with VGG-FC6 dataset, but δ = 0.9 for all tasks
(except C →W(δ = 0.9)) of Office + Caltech with SURF features dataset.

(a) (b)

Figure 11. Performance of the proposed STJML method, varying the values of the parameter δ on all
tasks in both the datasets. (a) δ-PIE face dataset. (b) δ-Office + Caltech10 with VGG-FC6 features dataset.

4.5.4. Parameter: λ and η

As parameter λ is the trade-off parameter which regularizes the instance re-weighting term,
we vary its values from 10−9 to 102 and keep other parameter values constant as shown in Figure 12a,b,
where the x-axis represents numbers from ‘−n’ to ‘n’, which are actually numbers from 10−n to 10n.
In Figure 12a,b, it is shown that STJML performs well for 10−4 and 10−3 for most of the tasks of
both datasets. For better accuracy with respect to this parameter, we keep λ = 10−3 for all tasks
(except 5 → 7(λ = 10−7), 5 → 9(λ = 10−6), 7 → 29(λ = 10−7), and 27 → 29(λ = 10−6)) of PIE
face dataset. But, we keep λ = 10−4 for all tasks (except A → W(λ = 10−1)) of Office + Caltech
with VGG-FC6 features dataset and λ = 10−1 for all tasks (except A → D(λ = 10−3), A → W(λ =
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10−2), D → A(λ = 10−4), D → C(λ = 10−3), W → C(λ = 10−3), and W → D(λ = 10−3)) of Office +
Caltech with SURF features dataset.

(a) (b)

(c) (d)

Figure 12. Performance of the proposed STJML method, varying the values of the parameters λ and η

on all tasks in both the datasets. (a) λ-PIE face dataset. (b) λ-Office + Caltech10 with VGG-FC6 features
dataset. (c) η-PIE face dataset. (d) η-Office + Caltech10 with VGG-FC6 features dataset.

Similar to the parameter λ, we also vary η parameter values from 10−4 to 10−4 and keep other
parameter values constant as shown in Figure 12c,d. From Figure 12c,d, it can be determined that
STJML outperforms at 10−1 for all tasks of PIE face dataset, while at 10−1 for some tasks of Office
+ Caltech dataset with VGG-FC6 features. For better performance, we keep η = 10−1 for all tasks
(except C → A(η = 100) and W → A(η = 10−2) tasks of VGG-FC6 features, and D → W(η = 100)

and W → C(η = 100) tasks of SURF features) of considered datasets.

4.5.5. Parameter: σ

As the performance of the proposed STJML method depends on choosing the eigenvectors (σ)
corresponding to the leading eigenvalues, we ran STJML with varying values of σ (70 to 130 with
an interval of 5 for PIE dataset and 9 to 30 with an interval of 3 for Office + Caltech dataset ) and report
the results in Figure 13a,b. We plot classification accuracy graph with respect to different values of
σ in Figure 13a,b. In Figure 13a,b, it can be seen that proposed STJML the gives best accuracy for
different values of this parameter for different tasks of both the datasets. For better accuracy with
respect to this parameter, we keep σ = 100 for all tasks (except 5 → 29(σ = 115), 7 → 27(σ =

75), 9 → 05(σ = 105), 27 → 05(σ = 85), and 27 → 09(σ = 80)) of PIE face dataset. We keep
σ = 30 for all tasks of Office + Caltech with SURF features dataset, and σ = 14 for all tasks (except
A → C(σ = 27), A → D(σ = 20), A → W(σ = 20), D → W(σ = 30), D → C(σ = 13), and
W → A(σ = 13) of Office + Caltech with VGG-FC6 features dataset.
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(a) (b)

Figure 13. Performance of the proposed STJML method, varying the values of the parameter σ

on all tasks in both the datasets. (a) σ-PIE face dataset. (b) σ-Office + Caltech10 with VGG-FC6
features dataset.

4.5.6. Parameter: d

In order to find a low dimensional subspace for both the domains, we need to project original data
from D-dimensional space to a d-dimensional subspace. However, projecting data from D-dimensional
space to a d-dimensional subspace, it can lose some information. Therefore, we need to find the
appropriate value of d, so that the original information of both domains can remain in the low
dimensional space as well.

Like other parameters, we also vary its value and keep other parameter values constant, and find
that the proposed STJML method outperforms at d = 140 for all tasks of the PIE face dataset, while d =

100 for SURF features and d = 200 for VGG-FC6 features of the Office + Caltech datasets.

4.6. Experimental Setup

To show the strength of the STJML method over previous state-of-the-art methods, we considered
12 tasks of Office + Caltech10 with SURF feature, 12 tasks of Office + Caltech10 with VGG-FC6 features,
and 20 tasks of PIE face datasets. With the help of the parameter sensitivity test, we explored an
appropriate value of each parameter of the STJML method and then used those values to ascertain the
proposed method’s accuracy for each task of the considered dataset. Thus, after experimenting on the
proposed STJML method, the accuracy of each task of all datasets is stated in Tables 1–3. However,
for the accuracy of other comparative methods in Tables 1–3, we have derived directly from their
respective papers or previous papers [5,7,8,13,14,16,37,38].

Table 1. Accuracy (%) on the PIE face recognition dataset.

Tasks

Primitive
Algorithms Transfer Learning Algorithms

NN PCA TCA
[5]

GFK
[29]

JDA
[6]

CDML
[32]

TJM
[7]

TDA-AL
[41]

CDDA
[33]

BDA
[35]

GA-DA
[33]

DGA-DA
[33]

JGSA
[8]

RTML
[22]

EMFS
[37]

DICD
[36]

LDADA
[39]

KUFDA
[16]

DICE
[38]

STJML
Proposed

PIE 1
5→7 26.09 24.80 40.76 26.15 58.81 53.22 29.52 35.97 60.22 23.98 57.40 65.32 68.07 60.12 61.8 73.0 34.5 67.67 84.1 82.32

PIE 2
5→9 26.59 25.18 41.79 27.27 54.23 53.12 33.76 32.97 58.70 24.00 60.54 62.81 67.52 55.21 58.8 72.0 44.9 70.34 77.9 73.22

PIE 3
5→27 30.67 29.26 59.63 31.15 84.50 80.12 59.20 35.24 83.48 48.93 84.05 83.54 82.87 85.19 86.8 92.2 61.5 86.06 95.9 94.65

PIE 4
5→29 16.67 16.30 29.35 17.59 49.75 48.23 26.96 28.43 54.17 24.00 52.21 56.07 46.50 52.98 52.6 66.9 35.4 49.02 66.5 62.99

PIE 5
7→5 24.49 24.22 41.81 25.24 57.62 52.39 39.40 38.90 62.33 49.00 57.89 63.69 25.21 58.13 59.2 69.9 31.4 72.62 81.2 81.27

PIE 6
7→9 46.63 45.53 51.47 47.37 62.93 54.23 37.74 49.39 64.64 24.00 61.58 61.27 54.77 63.92 64.5 65.9 34.9 74.34 74.0 82.1

PIE 7
7→27 54.07 53.35 64.73 54.25 75.82 68.36 49.80 53.26 79.90 48.97 82.34 82.37 58.96 76.16 77.9 85.3 53.5 87.86 88.6 91.91

PIE 8
7→29 26.53 25.43 33.70 27.08 39.89 37.34 17.09 36.95 44.00 24.00 41.42 46.63 35.41 40.38 44.3 48.7 26.4 61.70 68.8 69.54

PIE 9
9→5 21.37 20.95 34.69 21.82 50.96 43.54 37.39 34.03 58.46 49.00 54.14 56.72 22.81 53.12 53.8 69.4 38.2 73.91 78.8 77.16

PIE 10
9→7 41.01 40.45 47.70 43.16 57.95 54.87 35.29 49.54 59.73 23.95 60.77 61.26 44.19 58.67 59.8 65.4 30.5 72.56 76.7 80.9

PIE 11
9→27 46.53 46.14 56.23 46.41 68.45 62.76 44.03 48.99 77.20 48.97 77.23 77.83 56.86 69.81 70.6 83.4 60.6 86.96 85.2 90.68
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Table 1. Cont.

Tasks

Primitive
Algorithms Transfer Learning Algorithms

NN PCA TCA
[5]

GFK
[29]

JDA
[6]

CDML
[32]

TJM
[7]

TDA-AL
[41]

CDDA
[33]

BDA
[35]

GA-DA
[33]

DGA-DA
[33]

JGSA
[8]

RTML
[22]

EMFS
[37]

DICD
[36]

LDADA
[39]

KUFDA
[16]

DICE
[38]

STJML
Proposed

PIE 12
9→29 26.23 25.31 33.15 26.78 39.95 38.21 17.03 39.34 47.24 24.00 43.50 44.24 41.36 42.13 41.9 61.4 40.7 69.85 70.8 71.01

PIE 13
27→5 32.95 31.96 55.64 34.24 80.58 75.12 59.51 42.20 83.10 49.00 79.83 81.84 72.14 81.12 82.7 93.1 61.3 90.00 93.3 95.55

PIE 14
27→7 62.68 60.96 67.83 62.92 82.63 80.53 60.58 63.90 82.26 23.96 84.71 85.27 88.27 8.92 85.6 90.1 56.7 88.40 95.00 93.01

PIE 15
27→9 73.22 72.18 75.86 73.35 87.25 83.72 64.88 61.64 86.64 24.00 89.17 90.95 86.09 89.51 88.2 89.0 67.8 84.62 92.3 90.37

PIE 16
27→29 37.19 35.11 40.26 37.38 54.66 52.78 25.06 46.32 58.33 24.00 53.62 53.80 74.32 56.26 57.2 75.6 50.4 75.24 81.1 82.65

PIE 17
29→5 18.49 18.85 26.98 20.35 46.46 27.34 32.86 32.92 48.02 49.00 52.73 57.44 17.52 29.11 49.4 62.9 31.3 54.05 73.8 63.17

PIE 18
29→7 24.19 23.39 29.90 24.62 42.05 30.82 22.89 37.26 45.61 23.89 47.64 53.84 41.06 33.28 45.1 57.0 24.1 67.46 71.2 75.5

PIE 19
29→9 28.31 27.21 29.90 28.49 53.31 36.34 22.24 36.64 52.02 24.00 51.66 55.27 49.20 39.85 55.9 65.9 35.4 70.77 74.1 76.83

PIE 20
29→27 31.24 30.34 33.64 31.33 57.01 40.61 30.72 38.96 55.99 48.94 58.82 61.82 34.75 47.13 59.6 74.8 48.2 76.78 81.8 82.9

Average 34.76 33.85 44.75 35.35 60.24 53.69 37.29 42.14 63.10 33.98 62.56 65.09 53.39 58.80 62.8 73.1 43.4 74.42 80.5 80.88

Table 2. Accuracy (%) on Office + Caltech dataset with VGG-FC6 features.

Primitive
Algorithms Transfer Learning Algorithms

Tasks
NN PCA SVM TCA

[5]
GFK
[29]

JDA
[6]

SA
[15]

TJM
[7]

CORAL
[31]

CDDA
[33]

ILS
[34]

BDA
[35]

JGSA
[8]

KUFDA
[16]

DICE
[38]

STJML
Proposed

A→C 70.1 76.49 74.2 80.14 77.73 82.01 77.1 82.45 79.0 82.1 78.9 80.23 81.12 85.12 83.6 84.14

A→D 52.3 59.87 51.7 65.60 59.23 70.06 64.9 72.61 67.1 68.2 72.5 64.97 68.78 78.34 66.0 78.34

A→W 69.9 69.15 63.1 76.94 73.89 83.72 76.0 82.71 74.8 78.1 82.4 76.61 78.30 80.16 76.6 91.11

C→A 81.9 86.43 86.7 86.63 86.01 88.10 83.9 85.80 89.4 86.5 87.6 86.01 86.22 89.83 89.5 90.51

C→D 55.6 61.14 61.5 69.42 62.42 72.61 66.2 75.79 67.6 66.1 73.0 66.88 77.07 80.13 69.9 87.89

C→W 65.9 74.23 74.8 74.91 74.91 80.67 76.0 77.96 77.6 77.1 84.4 75.93 76.61 87.83 79.8 89.15

D→A 57.0 67.43 58.7 75.15 68.58 77.13 69.0 80.79 75.6 82.6 79.2 74.32 86.95 85.21 83.2 86.84

D→C 48.0 58.50 55.5 69.18 59.57 70.52 62.3 74.44 64.7 76.1 66.5 69.72 78.09 80.38 78.7 82.63

D→W 86.7 95.59 91.8 96.61 95.93 97.62 90.5 96.94 94.6 93.7 94.2 97.63 97.62 98.87 95.8 98.3

W→A 62.4 75.15 69.8 80.27 79.01 84.2 76.6 82.25 81.2 86.5 85.9 80.79 90.81 91.56 88.8 90.51

W→C 57.5 69.01 64.7 75.24 70.16 74.79 70.7 78.45 75.2 80.1 77.0 76.22 76.66 84.12 82.0 83.17

W→D 83.9 94.90 89.4 93.63 94.90 96.81 90.4 94.90 92.6 92.8 87.4 92.36 92.99 100 88.1 100

Average 65.93 73.9 70.15 78.64 75.19 81.52 75.3 82.09 78.2 80.8 80.7 78.47 82.60 86.83 81.8 88.59

Table 3. Accuracy (%) on Office + Caltech dataset with SURF features.

Tasks

Primitive
Algorithm Transfer Learning Algorithms

1NN PCA SVM GFK
[29]

TCA
[5]

JDA
[6]

CORAL
[31]

TJM
[7]

SCA
[30]

JGSA
[8]

ARTL
[14]

ILS
[34]

RTML
[22]

DICD
[36]

LDADA
[39]

DICE
[38]

STJML
Proposed

C→A 23.7 39.5 53.1 46.0 45.6 43.1 52.1 46.8 45.6 51.5 44.1 48.5 49.3 47.3 54.8 50.2 49.69

C→W 25.8 34.6 41.7 37.0 39.3 39.3 46.4 39.0 40.0 45.4 31.5 41.4 44.7 46.4 60.2 48.1 46.1

C→D 25.5 44.6 47.8 40.8 45.9 49.0 45.9 44.6 47.1 45.9 39.5 45.9 47.6 49.7 41.5 51.0 50.32

A→C 26.0 39.0 41.7 40.7 42.0 40.9 45.1 39.5 39.7 41.5 36.1 40.0 43.7 42.4 38.4 42.7 41.85

A→W 29.8 35.9 31.9 37.0 40.0 38.0 44.4 42.0 34.9 45.8 33.6 39.0 44.3 45.1 49.3 52.2 53.22

A→D 25.5 33.8 44.6 40.1 35.7 42.0 39.5 45.2 39.5 47.1 36.9 40.1 43.9 38.9 39.1 49.7 49.04

W→C 19.9 28.2 28.8 24.8 31.5 33.0 33.7 30.2 31.1 33.2 29.7 31.2 34.8 33.6 31.7 37.8 33.21

W→A 23.0 29.1 27.6 27.6 30.5 29.8 36.0 30.0 30.0 39.9 38.3 37.6 35.3 34.1 35.1 37.5 43.01

W→D 59.2 89.2 78.3 85.4 91.1 92.4 86.6 89.2 87.3 90.5 87.9 86.0 91.0 89.8 74.6 87.3 93.9

D→C 26.3 29.7 26.4 29.3 33.0 31.2 33.8 31.4 30.7 29.9 30.5 34.6 34.6 34.6 29.9 33.7 33.3

D→A 28.5 33.2 26.2 28.7 32.8 33.4 37.7 32.8 31.6 38.0 34.9 41.2 33.3 34.5 40.6 41.1 39.35

D→W 63.4 86.1 52.5 80.3 87.5 89.2 84.7 85.4 84.4 91.9 88.5 85.8 89.0 91.2 74.7 84.1 93.22

Average 31.4 43.6 41.1 43.1 46.2 46.8 48.8 46.3 45.2 50.0 44.3 47.6 49.3 49.0 47.5 51.3 52.18

4.7. Experimental Results and Analysis

The recognition performance of the proposed method and the other compared state-of-the-art
methods on three widely used domain adaptation datasets is reported in Tables 1–3. From the results
reported in Tables 1–3, we can conclude the following observations:
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• Primitive machine learning approaches such as NN, PCA, and SVM are not performing well due
to the distribution gap between training (source data) and testing (target data) datasets.

• Among domain adaptation methods, the GFK method’s performance is worse for an average
accuracy of all tasks in the Office + Caltech dataset for both SURF and VGG-FC6 features.

• The JDA method’s performance for all the three datasets is higher than that of the TCA method
because it adopts the conditional distribution in addition to the marginal distribution.

• The ILS method works well compared to other subalignment methods (such as SA, GFK, and
CORAL) because of considering the more robust discriminative loss function for the Office +
Caltech dataset with deeper features.

• As TJM adopts the term instance re-weighting, its performance is better than other DA methods
such as TCA, GFK, JDA, SA, CORAL, ILS, and BDA for the deep features of Office + Caltech
dataset. However, for the SURF features, TJM gives better average accuracy than SCA, ARTL,
GFK, and TCA, but performs poorly compared to JGSA, CORAL, LDADA, DICE, RTML, ILS,
and JDA.

• The average accuracy (65.09%) of the DGA-DA method for all tasks in the PIE face dataset is higher
than that of other methods (i.e., TCA, JDA, CDML, TJM, TDA-AL, CDDA, BDA, RTML, EMFS,
and LDADA) because it involves novel repulsive force term and the Laplacian regularization term.

• Since JGSA improves JDA by considering two projection vector matrices and preserving source
domain discriminant information, the mean accuracy (82.60%) of the JGSA method for all tasks
in the Office + Caltech dataset with deep features is higher than other methods (i.e., TCA, JDA,
GFK, SA, TJM, ILS, BDA, DICE, and CDDA). Similarly, for the Office + Caltech dataset with SURF
features, it performs well compared to all other comparative methods except KUFDA and DICE.

• As KUFDA improves JGSA by considering the term Laplacian regularization, its average accuracy
is much higher than other methods for the deep features of the Office + Caltech dataset, but less
than the DICE method for most of the tasks in the PIE face dataset.

• For the PIE face and the Office + Caltech10 with SURF features datasets, DICE is performing better
than all other methods (except STJML) because it is taking care of the intra-domain structure,
especially for the target domain. However, its performance is abysmal for deep features of the
Office + Caltech 10 dataset.

• Since our proposed method covers all the important objectives, as well as works on the projected
subspaces of both the domains, the average accuracy of the proposed STJML method for all the
tasks in all the considered datasets, is higher than all the other comparative methods. However,
KUFDA beats our proposed algorithm for some tasks in the Office + Caltech dataset with deep
features such as A → C, D → W, W → A, W → C, and W → C. Similarly, DICE beats the
proposed method for eight tasks of the PIE face dataset.

4.8. Computational Complexity

Here, we analyze the computational complexity of Algorithm 1 by the O. The computational cost
is detailed as follows: O(D3 + nDd) for finding subspaces of both the source and the target domains,
where D < n, i.e., Line 1; O(n2d) for constructing Laplacian matrix, i.e., Line 2; O(n2d) for computing
kernel matrix, i.e., Line 3; O(n2) for generating initial pseudo labels, i.e., Line 5; O(t(dn2 + Cdn2))

for constructing marginal and conditional distribution matrices, i.e., Line 7; O(tn2d) for solving
the generalized eigendecomposition problem with dense matrices, i.e., Line 9; O(t(σnns + σnnt))

for computing X′s and X′t matrices, i.e., Line 11; O(tn2) for generating pseudo labels, i.e., Line 12;
O(tn2) for computing the subgradient matrix, i.e., Line 13. In total, the computational complexity
of Algorithm 1 is O(D3 + nDd + n2d + t(dn2 + Cdn2 + σnns + σnnt + n2)). The complexity of this
model can be greatly reduced by low-rank approximation.
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Algorithm 1: Subspace based Transfer Joint Matching with Laplacian Regularization (STJML)
Input : Input data: Xs, Xt, Ys, Yt, X

Trade-off factors: δ, η, λ, nn, σ, d,k
Number of iterations: t

Output : Projection Vector Matrix: Zσ.
Accuracy:Acc

Find subspaces Xs ∈ Rd×n and Xt ∈ Rd×n by projecting original space data Xs ∈ RD×n,
Xt ∈ RD×n on d leading eigenvectors of X , respectively;

Construct the Laplacian matrix L by using Equation (9);
Compute the kernel matrix K;
Initialize i = 0, G = I; /* where I is a identity matrix */
By using the information Xs,Ys and Xt, the k-NN classifier generates pseudo label Y s

t for
target domain;

while i < t do
With the help of Y s

t (use only for first iteration) or Ys
t and Ys, construct Md (marginal

distribution matrix) and Cd (conditional distribution matrix) by using Equations (3) and
(5), respectively ;

Put all these computed matrices (i.e., L, Md, and Cd) in Equation (10);
Z (a common projection vector matrix) is computed by solving the eigenvalue
decomposition problem as given in Equation (10);

Select Zσ (top most eigenvectors) from Z ;
Compute X′s = Zσ[1 : ns]TXs (projected source domain data) and X′t = Zσ[ns + 1 : n]TXt

(projected target domain data) by using Zσ ;
Generate new target domain pseudo label Ys

t by using k-NN classifier with the information
X′s,X′t, and Ys;

Update the subgradient matrix G by Equation (13);
i = i + 1;

end
Acc = yt

c/nt; /* where yt
c is the number of correctly classified samples by

comparing Yt and Ys
t */

4.9. Running Time Analysis

To analyze the actual running time taken by each algorithm, we considered three tasks for the
experiment such as C → A, C → D, and C →W, and reported the total time taken by the proposed
and some other comparative methods to execute all the three tasks in Table 4. If we use the 1-NN
classifier for the experiment, then the running time taken by it is minimal due to not performing any
feature transformation. As TCA first presents feature transformation and then uses the 1-NN classifier
for classification, it costs slightly more than the 1-NN classifier. Since GFK adds infinite subspaces for
feature changes, it takes a longer time than the TCA method. JDA method improves the performance of
TCA by considering the conditional distribution. To calculate the conditional distribution, we require a
pseudo label for the target domain till the tth iteration. Therefore, its computational cost is higher than
the TCA and GFK methods. The TJM method enhances JDA performance by considering additional
instance-weighting terms. Thus, the computation cost of TJM also increases compared to JDA. Since
the CORAL method first finds the co-variance matrices for both domains and then aligns the source
domain to the target domain, its computation cost is higher than that of TJM, JDA, GFK, and TCA.
JGSA includes two additional terms such as discriminative terms and subalignments and also uses two
projection vector matrices for both domains. Therefore, JGSA consumes much time compared to other
TJM, JDA, GFK, CORAL, and TCA. Since our proposed method improves the TJM by considering the
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subspace of both domains as well as adding the Laplacian term, it has a higher cost than TJM, but
lower than JGSA.

Table 4. Running time complexity of proposed method (STJML) and some other methods.

Methods Running Time (s) Methods Running Time (s)

1-NN 2.22 CORAL 47.05
TCA 3.42 JGSA 482.665
GFK 19.64 TJM 22.15
JDA 21.96 Proposed Method 72.74

5. Conclusions and Future Work

In this paper, we proposed a novel Subspace based Transfer Joint Matching with Laplacian
Regularization (STJML) method for efficiently transferring knowledge from the source domain
to the target domain. Because of jointly optimizing all the inevitable components, the proposed
STJML method is robust for reducing the distribution differences between both domains. Extensive
experiments on several cross-domain image datasets suggest that the STJML method performs much
better than state-of-the-art primitive and transfer learning methods.

In the future, there are several ways through which we can extend our proposed method STJML,
and some of them are:

Firstly, we will extend the STJML method to multi-task learning environments [42], where multiple
tasks may contain some label samples. Thus, by using the label information of all tasks, all of them’
generalization performance can be enhanced.

Secondly, since the STJML method has many parameters and conducting manual parameter
sensitive tests to find appropriate values is a hectic and time-consuming process. Furthermore, the
STJML method uses the original features to find a common feature space. Still, the original features
itself are distorted, then the STJML method will not become a robust classifier. Therefore, in the
future, we will use the particle swarm optimization [43] method to select the appropriate value of each
parameter and the proper subset of excellent features across both domains. So, the STJML method for
selecting parameters will be strengthened, and its performance will also improve due to the elimination
of distorted features.

Lastly, nowadays, there is increasing interest in neural-network-based learning models [44] due
to their outstanding performance; we will also extend the STJML method to deep learning framework.
In our deep learning STJML method, we will extract deep features concerning our proposed method
overall objective function.
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