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Abstract: Near-infrared (NIR) spectroscopy is widely used to predict soil organic carbon (SOC)
because it is rapid and accurate under proper calibration. However, the prediction accuracy of the
calibration model may be greatly reduced if the soil characteristics of some new target areas are
different from the existing soil spectral library (SSL), which greatly limits the application potential
of the technology. We attempted to solve the problem by building a large-scale SSL or using the
spiking method. A total of 983 soil samples were collected from Zhejiang Province, and three SSLs
were built according to geographic scope, representing the provincial, municipal, and district scales.
The partial least squares (PLS) algorithm was applied to establish the calibration models based on the
three SSLs, and the models were used to predict the SOC of two target areas in Zhejiang Province.
The results show that the prediction accuracy of each model was relatively poor regardless of the
scale of the SSL (residual predictive deviation (RPD) < 2.5). Then, the Kennard-Stone (KS) algorithm
was applied to select 5 or 10 spiking samples from each target area. According to different SSLs and
numbers of spiking samples, different spiked models were established by the PLS. The results show
that the predictive ability of each model was improved by the spiking method, and the improvement
effect was inversely proportional to the scale of the SSL. The spiked models built by combining the
district scale SSL and a few spiking samples achieved good prediction of the SOC of two target areas
(RPD = 2.72 and 3.13). Therefore, it is possible to accurately measure the SOC of new target areas by
building a small-scale SSL with a few spiking samples.

Keywords: soil organic carbon; near-infrared spectroscopy; soil spectral library; spiking; partial
least squares

1. Introduction

Soil is a natural resource that humans depend on for survival. Soil organic carbon (SOC) content
is an important indicator to evaluate soil fertility, which directly reflects the soil quality and affects
crop growth [1]. The measurement of SOC content is of great significance for accurate fertilization [2].
In addition, as a part of the global carbon cycle, studying the content and distribution of SOC helps
human society understand the problem of global warming [3].

In recent decades, as a rapid, nondestructive, and accurate technique, near-infrared (NIR)
spectroscopy has been widely used to predict soil nutrient information [4]. He et al. predicted soil
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macronutrient content using NIR spectroscopy, and showed that it is a very promising method for
assessing nitrogen (N), organic matter (OM), and pH in soil [5]. Reda et al. successfully predicted SOC
and total nitrogen (TN) content in four agricultural regions of Morocco using NIR spectroscopy [6].
However, in different geographic environments, the parent material, type, and usage of soil can be
quite different, which means the existing calibration model can only be used to predict specific types of
soil characteristics in certain areas. Therefore, if the existing calibration model was used to measure the
soil characteristics of new target areas, the prediction accuracy may be greatly reduced, which greatly
limits the application potential of the technology [7].

In order to improve the universality of the calibration model, some scholars suggested developing
large-scale soil spectral libraries (SSLs) to ensure that the established model contained as many
soil samples and types as possible [8]. Rossel and 45 other soil scientists developed a global
visible–near-infrared (vis–NIR) SSL containing 23,631 soil samples, and showed that it can be used
for both qualitative and quantitative analysis of soil [9]. Nocita et al. developed a European Union
vis–NIR SSL with 19,969 topsoil samples within the framework of the Land Use/Cover Area frame
Survey (LUCAS), and showed that a large-scale SSL can be used to predict SOC at continental scale
with reasonable accuracy [10]. However, it requires much time, manpower, and financial resources to
establish a global or national scale SSL containing many different types of soil samples. In addition,
a unified spectral library depends on the same spectrometer measurement and spectral processing
methods, making it difficult to establish a reliable large-scale library by sharing data.

Compared with the global and national scale, the provincial, city, and district scale SSLs are
relatively easier to establish. In the past few years, 983 soil samples were collected across Zhejiang
Province, and the NIR spectra and chemical SOC reference values of the soil samples were obtained.
In this work, three SSLs of different scales were established: (1) a provincial soil spectral library (PSSL)
containing 714 soil samples from Zhejiang Province, (2) a city soil spectral library (CSSL) containing
167 soil samples from Jinhua City, and (3) a district soil spectral library (DSSL) containing 102 soil
samples from Wencheng District, Wenzhou City. The calibration models based on the three libraries
were used to predict the SOC content of samples from two new target areas in Zhejiang Province.
Therefore, the first objective of this paper was to compare and analyze the SOC predictive ability of the
calibration models based on the three SSLs at different scales.

However, as the calibration model established by a small-scale SSL may be insufficient to predict
a new target area, some scholars suggested adding soil samples from the target area to correct the
calibration model by means of spiking [11]. The spiking method involves selecting representative soil
samples from the target area, measuring their NIR spectra and chemical SOC reference values, adding
the data of spiking samples to the calibration set, and then recalibrating the calibration model with the
expanded dataset [12]. Guerrero et al. spiked models of different sizes with local samples of a target
area and recalibrated them to predict the nitrogen content in soil samples, and the results showed
that the small-scale model may be useful for local prediction after spiking [13]. Therefore, the second
objective of this paper was to compare the prediction capability between unspiked models (UMs) and
spiked models (SMs).

It was assumed that a recalibrated model after spiking would better adapt to the characteristics
of soil samples in the target area, thereby improving the predictive ability of the model. However,
the addition of spiking samples implies additional analytical testing, because the samples need to be
analyzed for the chemical reference values [14]. If a small-scale SSL combined with a small number
of spiking samples could achieve or even surpass the performance of a large-scale SSL, then the
spiking method might be a more economical choice, because it could avoid the development of large
libraries. Gogé et al. spiked national library models with 50 samples from target areas and significantly
improved the models’ ability to estimate SOC [15]. Therefore, the third objective of this paper was
to find a spiking strategy that would use as few spiking samples as possible to achieve an accurate
prediction of new target area SOC based on a small-scale SSL.
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This work explored how to use small-scale SSLs to predict the SOC of new target areas and
studied the feasibility of the spiking method. It was expected that we would find an effective spiking
strategy by adding different amounts of spiking samples and comparing the improvement effect of the
predictive ability of the models, based on SSLs of different scales. In this work, three issues were mainly
discussed and studied: (1) Does a larger SSL, on which the model is based, provide better prediction
for new target areas? (2) Can the method of spiking improve the predictive ability of models built by
SSLs of different scales? (3) What effect does the number of spiked samples have on the predictive
ability of the model?

2. Materials and Methods

2.1. Soil Samples

The study area is located in Zhejiang Province (27◦02′–31◦11′ N, 118◦01′–123◦10′ E), People’s
Republic of China. Zhejiang is located in the middle of the subtropical zone, which belongs to the
subtropical monsoon climate. According to Chinese standard GB/T 17296–2009 (classification and
codes for Chinese soil) [16], the soil of the province is classified as mainly yellow and red soil, mostly
distributed in hilly and mountainous areas. In addition, paddy soil is distributed in the plain area,
and some saline and desalinized soils are distributed along the coastal area.

First, 714 surface soil samples were collected from 11 prefecture-level cities in Zhejiang Province
to form the PSSL. The soil types included red, yellow, paddy, and saline soil. At each collection point,
five soil samples were collected from the surface layer (0–20 cm) according to the “plum blossom”
sampling method [17]. After picking out the straw and stones, the five soil samples were mixed evenly
as an experimental soil sample. In order to reduce the influence of particle size and moisture on the
measurement results, each sample was sequentially processed by drying, grinding, and sieving (2 mm
aperture). Each processed sample was divided into two parts: one part was sent to the Institute of Soil
Fertilizer (Zhejiang Academy of Agricultural Sciences) to measure the chemical reference value of SOC
content (g kg−1) by the Walkley-Black method [18], and the other part was stored in a Petri dish for
NIR spectroscopy measurement and analysis. Then 167 CSSL soil samples were collected by the same
method from Jinhua City (28◦32′–29◦41′ N, 119◦14′–120◦46′ E). The soil types in the CSSL were mainly
red, yellow, and paddy soil. In addition, 102 DSSL soil samples were similarly collected from farmland
in Wencheng District (27◦34′–27◦59′ N, 119◦46′–120◦15′ E), Wenzhou City. The soil type in the DSSL
was mainly paddy soil.

The first target area (TA1) was located in fields in Daoxu Town (30◦00′–30◦05′ N,
120◦43′–120◦48′ E), Shaoxing City. A total of 60 soil samples were collected. The typical soil type in
TA1 was paddy soil, and the target fields in the area were mainly planted with double-season
rice. The second target area (TA2) was located in fields in Hengdian Town (29◦05′–29◦13′ N,
120◦14′–120◦22′ E), Jinhua City. A total of 66 soil samples were collected. The typical soil types
in TA2 were red, yellow, and paddy soil. The target fields in the area were mainly used for growing
vegetables, soybeans, medicinal herbs, rice, corn, sweet potatoes, and other crops. A map showing the
three soil libraries and two target areas, and the distribution of sampling points is shown in Figure 1.

In this work, the setting of the three soil libraries and the selection of the two target areas mainly
considered two factors: first, the geographic scope covered by the soil libraries was from large to
small, covering the provincial, municipal, and district scales in turn, and the corresponding soil sample
quantity was also from large to small. In addition, as shown in Figure 1, the geographic scope of
the PSSL included TA1 and TA2. The geographic scope of the CSSL included TA2, but not TA1.
The geographic scope of the DSSL included neither TA1 nor TA2. Second, from the perspective of soil
types, the PSSL contained all soil types in the province, but the proportion of paddy soil was not high
(approximately 20%). Therefore, the target area with mainly the paddy soil type was selected as TA1 to
study the universality of the large soil library. The soil types of the CSSL included both TA1 and TA2,
but the number of soil samples was not as large as in the PSSL. The soil type of the DSSL was the same
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as TA1, but different from TA2. The main characteristics of all soil samples for the soil libraries and
target areas are shown in Table 1.Sensors 2020, 20, x FOR PEER REVIEW 4 of 14 
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Table 1. Main characteristics of soil organic carbon (SOC) for all soil samples from the three soil libraries
and two target areas.

Sample Set Soil Type Number Range (g kg−1) Mean (g kg−1) SD (g kg−1) Skew

PSSL Red, yellow, paddy, and saline soil 714 6.6–46.3 24.9 7.28 0.14
CSSL Red, yellow, and paddy soil 167 9.8–42.0 25.2 5.91 −0.20
DSSL Paddy soil 102 7.5–40.0 22.2 6.07 0.50
TA1 Paddy soil 60 14.2–38.8 23.4 4.98 0.83
TA2 Red, yellow, and paddy soil 66 12.6–39.9 24.7 6.65 0.32

SD, standard deviation; PSSL, provincial soil sample library; CSSL, city soil sample library; DSSL, district soil
sample library; TA, target area.

2.2. NIR Spectral Data Measurement

In this work, a Bruker Fourier-type NIR spectrometer (Matrix-I, Bruker Optics Inc., Ettlingen,
Germany) was used to measure the NIR spectral data of soil samples. The spectrometer was performed
in the reflectance mode, the spectral measurement range of the instrument is 1000–2500 nm and the
spectral resolution is 8 cm−1. Each spectrum contained 1555 wavelength variables. Further, each soil
sample was evenly dispersed in the sample cup so that the thickness of the sample reached the height
of the sample cup, which was 20 mm. The NIR light source penetrated the quartz window from bottom
to top to illuminate the soil sample placed in the sample cup with a diameter of 50 mm. During the
measurement, the soil sample rotated with the sample cup to obtain the average spectrum. The rotation
speed of the sample cup was 4 cm/s, and each soil sample was scanned 64 times in 40 s. These scans
were arithmetic averaged and the result used as the soil sample spectrum. The background spectrum
of the spectrometer was obtained by the OPUS software when the sample cup was empty, and the
background spectrum was recalibrated every 10 samples. All soil samples in this work followed the
same procedure. The Matrix-I was directly connected to a computer via a network cable, and OPUS
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software (Bruker Optics Inc., Ettlingen, Germany) was used to control the spectrometer to collect data
and process the data.

2.3. Modeling Methods

In the quantitative detection of SOC with NIR, the calibration set of representative soil samples
should be selected first, and then the NIR spectrum and chemical SOC reference values of the soil
samples in the calibration set are measured. In the NIR spectral data of soil samples obtained by the
spectrometer, the information of various components was superimposed at each wavelength point.
Due to the wide range of NIR spectral data and the serious overlap of spectral peaks, it is difficult to
analyze directly. Therefore, it is necessary to extract effective information from the spectral data by
chemometrics [19]. The calibration model between the NIR spectrum and the SOC reference values of
soil samples was established by the chemometric method, so there was a certain statistical relationship
between the spectrum and the corresponding SOC reference values. After establishing the calibration
model, the NIR spectrum data of the new soil sample can be substituted into the model to predict the
corresponding SOC.

The partial least squares (PLS) algorithm is a linear regression method commonly used in spectral
data analysis [20]. The PLS algorithm simultaneously considers the spectral information and the
corresponding physicochemical value information during modeling, and converts the original data
into new variables termed latent variables (LVs), which are mutually orthogonal and uncorrelated
through linear transformation. In this work, the optimal LVs used in the PLS model were determined
by cross-validation with Unscrambler 9.7 software (CAMO Inc., Oslo, Norway).

Three original calibration models without the target area samples added were established by the
PLS method based on the data in the three SSLs, called the unspiked models (UMs). Then, in order to
study the effect of spiking, the Kennard-Stone (KS) algorithm was applied to select the spiking subset
from each target area [21]. The specific steps were as follows. First, principal component analysis (PCA)
was performed on the NIR spectra of the samples in sets TA1 and TA2. Then, two principal components
were generated in each case based on the predefined interpretation variance threshold (>99%). Second,
five spiking samples were selected from the sample set of a target area by the KS algorithm, so that
they were evenly distributed in the space defined by the first two principal components. Furthermore,
in order to compare the effect of different numbers of spiking samples on the model, the KS algorithm
was also used to select 10 spiking samples from the sample set in a target area. Score plots of the two
target area samples in principal component space defined by the first two principal components are
shown in Figure 2.
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Finally, the remaining sample set of the target area was used as a prediction set to investigate the
prediction capability of different models. Since for each target area at most 10 samples were selected for
the original calibration model, the predicted sets of TA1pre and TA2pre consisted of 50 and 56 samples,
respectively. The main characteristics of the two prediction sets are shown in Table 2.

Table 2. Main characteristics of the two prediction sets.

Prediction Set Soil Type Number Range (g kg−1) Mean (g kg−1) SD (g kg−1) Skew

TA1pre Paddy soil 50 14.2–38.8 24.0 5.11 0.74
TA2pre Red, yellow, and paddy soil 56 14.0–39.9 24.7 6.63 0.37

2.4. Model Evaluation

In this work, the decision coefficient (R2
p), root mean square error of prediction (RMSEP), bias,

and residual predictive deviation (RPD) were used to evaluate the predictive ability of the model.
R2

p was used to indicate the correlation between the predicted and the actual value of the model.
The larger the R2

p, the higher the correlation between predicted and actual value, and the better the
model prediction effect [22]. The RMSEP was used to measure the deviation between predicted and
the actual value. The smaller the RMSEP, the better the model prediction effect [23]. The RPD is an
intuitive indicator used for evaluating a model’s predictive ability in soil spectroscopy. Specifically,
when the RPD is less than 1.5, it indicates that the model effect is poor. When the RPD is 1.5–2.0,
it indicates that the model effect is moderate, i.e., it can only distinguish physical and chemical values.
When the RPD is 2.0–2.5, it indicates that the model effect is relatively good and it can be used for
quantitative analysis. When the RPD is 2.5–3.0, it indicates that the model is very effective and can be
used for quantitative analysis. When the RPD is greater than 3, it indicates that the model has a very
good prediction effect [24].

2.5. Stastical Analysis

The RPD allowed us to compare the accuracy obtained in different prediction models. In order to
analyze whether the difference between the RPD obtained based on different scales SSL is effective,
the one-way analysis of variance (ANOVA) was performed using three scales of SSL as the single
factor. The specific method is as follows: First, 70% of the soil samples in PSSL were randomly selected
for modeling, and then the model was used to predict the two prediction sets to obtain the RPD,
respectively. Second, the same operations such as 70% random sampling, modeling and prediction
were repeated 50 times, and the mean and standard deviation of the RPD were calculated. The third
step was to perform the same operations as PSSL on the CSSL and DSSL models. Finally, the one-way
ANOVA was performed to check if the differences between the results obtained with the different
scales SSLs were effectively significant.

3. Results and Discussion

3.1. Soil Spectrum

Before establishing the calibration models, a preprocessing method of standard normal variate
(SNV) combined with a detrending method with a polynomial order of 2 were used to eliminate the
scattering effects in the spectra. The average NIR spectra after preprocessing of soil sample sets used
in this work are shown in Figure 3.
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3.2. ANOVA Test

Based on 70% samples randomly selected from the three SSLs′ sample sets, each model PSSL,
CSSL, and DSSL was established by PLS. After 50 predictions were performed by each model on two
prediction sets, the statistical results of the R2, RMSEP, and RPD are shown in Table 3.

Table 3. Statistical results of prediction performance of the different scale SSL models. RMSEP, root
mean square error of prediction; RPD, residual predictive derivation; SD, standard deviation.

Model

TA1pre TA2pre

R2 RMSEP (g kg−1) RPD R2 RMSEP (g kg−1) RPD

Mean SD Mean
(g kg−1)

SD
(g kg−1)

Mean SD Mean SD Mean
(g kg−1)

SD
(g kg−1)

Mean SD

PSSL 0.67 0.066 2.83 0.478 1.83 0.274 0.77 0.041 3.26 0.487 2.08 0.302
CSSL 0.51 0.048 3.52 0.504 1.45 0.198 0.81 0.032 2.88 0.301 2.32 0.233
DSSL 0.71 0.038 2.66 0.216 1.95 0.158 0.71 0.027 3.76 0.446 1.78 0.202

Then, the one-way ANOVA test was performed using three scales of SSL as the single factor,
and the results of the ANOVA to evaluate the effect of different scale SSLs on the RPD are shown in
Table 4. The results show that different scales of SSLs have a significant impact on the predicted RPD
(p < 0.001, Table 4), so the difference between the RPD obtained by different scales of SSL is valid.

Table 4. Results of the ANOVA to evaluate the effect of different scale SSLs on the RPD.

Prediction Set Source Sum of Squares Degrees of Freedom Mean Square F P

TA1pre
SSL 5.333 2 2.666 57.41 0.000

Error 6.828 147 0.046

TA2pre
SSL 7.272 2 3.363 58.47 0.000

Error 9.142 147 0.062

3.3. Unspiked Models

Based on the three SSLs, each unspiked model (UM), PSSL-UM, CSSL-UM, and DSSL-UM,
was established by PLS. Then, these models were used to predict the SOC contents of the samples in
the two prediction sets, TA1pre and TA2pre. The statistical results for the prediction performances of
the UMs are shown in Table 5.
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Table 5. Statistical results of prediction performance of the unspiked models (UM). RMSEP, root mean
square error of prediction; RPD, residual predictive derivation.

Model
TA1pre TA2pre

R2 RMSEP (g kg−1) Bias RPD R2 RMSEP (g kg−1) Bias RPD

PSSL-UM 0.72 2.69 −0.47 1.90 0.78 3.06 0.45 2.17
CSSL-UM 0.52 3.50 −0.28 1.46 0.82 2.81 0.18 2.36
DSSL-UM 0.76 2.49 −0.48 2.05 0.70 3.62 −0.11 1.83

First, when the PSSL-UM established by the largest SSL was used to predict TA1pre and TA2pre,
the RPD was 1.90 and 2.17, respectively. This may be because the large-scale PSSL covered the
geographic range and soil types of TA2pre, so a relatively good prediction effect was obtained.
Meanwhile, when the soil type of TA1pre was insufficient in the PSSL, the prediction effect was poor.
These conclusions are similar to the results of Guerrero et al., indicating that large-scale soil libraries
need to include the similar characteristics of soil samples in the target area to ensure a good prediction
effect [25].

Second, the best prediction effect (RPD = 2.36) was obtained when using the CSSL-UM to predict
TA2pre. Although the PSSL contained many more soil samples, CSSL may contain more samples
similar to the soil characteristics in TA2pre due to geographic location, so that the CSSL-UM achieved
better prediction performance for TA2pre. Other researchers found similar results. Zeng et al. reported
that samples used in the calibration model were geographically close to the target area, so the modeled
soils were likely to have similar characteristics and spectra to the target area samples [26]. Furthermore,
compared with a calibration model using all samples of a large-scale SSL, Liu et al. selected samples
with similar spectral characteristics to the prediction set samples from the large-scale SSL for calibration
modeling, and the ability to predict SOC content was significantly improved [27]. However, when the
CSSL neither covered the geographical range of TA1pre nor contained enough samples of the same soil
type, the prediction effect of the CSSL-UM on TA1pre was very poor (RPD = 1.46).

Third, when using the DSSL-UM established by the smallest SSL to predict TA1pre and TA2pre,
although the DSSL did not cover the geographic range of both target areas, the DSSL-UM had a
moderate to good predictive ability (RPD = 2.05) for TA1pre because the soil sample type in the DSSL
was the same as TA1pre. Araújo et al. found similar results; when the types and spectra of soil samples
in the calibration set and the target area were similar, quantitative analysis of the target area could be
carried out even if it was based on a small SSL [28]. However, when some soil types in TA2pre were
missing in the DSSL, the prediction effect of the DSSL-UM on TA2pre was poor (RPD = 1.83).

Comparing the performance of the UMs, we believe that it was a relatively stable method to
use a large-scale SSL covering a wide geographic range and containing a full range of soil types to
model, which can generally achieve better prediction results for target areas. However, among all
the UMs, the CSSL-UM provided the best prediction results for TA2pre (R2 = 0.81, RMSEP = 2.81,
bias = 0.18, RPD = 2.36), indicating that the predictive ability of the model could be improved when
the SSL contained more soil samples similar to the soil spectrum in target areas. Therefore, in order
to obtain a better prediction effect, we studied whether the predictive ability of the model could be
improved by means of spiking.

3.4. Spiked Models

The KS algorithm was used to select 5 or 10 spiking samples from each target area to establish the
spiked calibration model. Then, based on different SSLs and numbers of spiking samples, each spiked
model (SM), PSSL-SM, CSSL-SM, and DSSL-SM, was established by PLS, and these models were used
to predict the SOC content of the samples in prediction sets TA1pre and TA2pre. The statistical results
of the prediction performances of the SMs are shown in Table 6.
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Table 6. Statistical results of prediction performance of spiked models (SM).

Model No.
TA1pre TA2pre

R2 RMSEP (g kg−1) Bias RPD R2 RMSEP (g kg−1) Bias RPD

PSSL-SM
5 0.72 2.66 −0.45 1.92 0.79 3.01 0.54 2.20

10 0.73 2.62 −0.46 1.95 0.79 2.99 0.36 2.22

CSSL-SM
5 0.81 2.23 −0.21 2.29 0.86 2.46 0.43 2.70

10 0.86 1.92 −0.15 2.66 0.85 2.51 0.12 2.64

DSSL-SM
5 0.86 1.88 −0.31 2.72 0.87 2.39 0.55 2.77

10 0.86 1.91 −0.25 2.67 0.90 2.10 0.21 3.16

No., number of spiking samples.

To formulate a more intuitive comparison before and after spiking, we needed to determine
the differences between the prediction effects of spiking on the models established by the three SSLs
containing different soil samples, soil types, and geographic ranges. Figures 4 and 5 show scatter
plots of the models’ predicted values for soil samples in prediction sets TA1pre and TA2pre, and the
corresponding SOC laboratory reference value for each sample. Each row in the figures represents a
model based on the same SSL. The left, middle, and right-hand columns show the prediction effect of
the UMs, the SMs with 5 spiking samples from the target area, and the SMs with 10 spiking samples
from the target area, respectively.
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Three significant results are shown in Figures 4 and 5. First, the prediction effect of each model
was improved with the addition of spiking samples from the target areas, which indicates that the
spiking method increased the predictive ability of the model. Other researchers also obtained similar
results. Hong et al. found that adding spiking samples to the original model increased the accuracy of
the prediction model [29]. In addition, compared with the UMs, improvements in the predictive ability
of SMs was inversely proportional to the scale of the SSL. This may be because the smaller the original
SSL, the higher the corresponding proportion of spiking samples in the SSL. Therefore, the established
prediction model was more consistent with the soil characteristics of the target area, thus obviously
improving its predictive ability. Guerrero et al. found a similar phenomenon by comparing eight
SSLs of different sizes; the improvement effect of spiking was weaker in the large-scale SSL models,
but more obvious in the small-scale SSL models [30].

Second, the method of spiking can solve the problem of poor prediction effect of the original model
due to the lack of soil type samples in the target area. Comparing Figure 4d–f, it can be seen that when
the CSSL contained a low proportion of soil types in TA1, after adding 5 and 10 spiking samples of the
target area, the prediction effect of the CSSL models on TA1pre was continuously improved (the RPD
increased from 1.46 to 2.29 and 2.66). In addition, comparing Figure 5g–i shows that even when
the DSSL lacked some soil type samples in TA2, after adding 5 and 10 spiking samples of the target
area, the prediction effect of the DSSL models on TA2pre was also continuously improved (the RPD
increased from 1.83 to 2.77 and 3.16). However, when the original SSL already contained sufficient
soil samples of similar characteristics to the target area, the predictive ability of the model was not
significantly improved by spiking, and decreased due to saturation with the excessive number of
spiking samples. For example, comparing Figure 4h,i shows that when 10 spiking samples were added,
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the predictive ability of the DSSL model on TA1pre was reduced compared with 5 spiking samples
(the RPD decreased from 2.72 to 2.67). In addition, the predictive ability of the CSSL model on TA2 pre

was also reduced when 10 spiking samples were added, compared with 5 spiking samples, as shown in
Figure 5e,f (the RPD decreased from 2.70 to 2.64). Seidel et al. found a similar result; when the number
of spiking samples reached 15–20, the predictive ability of the model declined due to saturation [31].

Third, the method of spiking caused the original SSL to not be affected by the geographic scope,
so the model based on the small-scale SSL could be applied to the measurement of the target area
outside the geographic scope of the SSL [32]. For example, the geographic scope of the DSSL did
not include TA1 and TA2, but after adding 5 and 10 spiking samples, respectively, the corresponding
prediction models achieved good results (RPD > 2.5), as shown in Figure 4h,i.

In my opinion, the number of spiking samples is firstly related to the method of selecting spiking
samples. Guerrero et al. used the KS algorithm and selected 10% of the samples from the target area
as the spiking samples according to the principle of uniform distribution of the principal component
scores of the spectral data [30]. Seidel et al. used the KS algorithm and selected 12.5% of the samples
from the target area as the spiking samples according to the principle of maximum differentiation based
on the Mahalanobis distance of spectral data [31]. The results showed that these spiking samples had
greatly improved the prediction accuracy of the model. Second, in order to make the spiking samples
as representative of the soil characteristics of the target area as possible, the number of spiking samples
should account for approximately 10% of the target set samples. In this work, for the small-scale SSL
model DSSL-SM, the KS algorithm was used to select five spiking samples from two different target
areas at a time (approximately 10% of the target set samples), the corresponding prediction models
achieved good results (RPD > 2.5), as shown in Figures 4h and 5h. Third, for the calibration model
based on large-scale SSL, when the number of spiking samples is not enough to improve the prediction
accuracy of the model, it is also considered to increase the weight of spiking samples to enhance their
influence on the calibration model. Jiang et al. built the calibration model based on 608 soil samples,
and selected 10 spiking samples from the target area. The results showed that the prediction accuracy
of the model gradually improved as the weight of spiking samples was increased by 1, 5, and 10
times [33].

Overall, for TA1pre, the DSSL-SM with five spiking samples achieved the best prediction effect in
all models, with an R2 of 0.86, RMSEP of 1.92, bias of −0.15, and RPD of 2.72, as shown in Figure 4h.
For TA2pre, the DSSL-SM with 10 spiking samples achieved the best prediction effect in all models,
with an R2 of 0.90, RMSEP of 2.10, bias of 0.21, and RPD of 3.16, as shown in Figure 5i. In comparison,
Castaldi et al. used 12,128 samples from the large-scale LUCAS soil library to predict the SOC of three
target sites in Belgium and Luxembourg, and the best prediction accuracy of the model was an RPD
of 2.54 and R2 of 0.8 [34]. This indicates that the prediction performance of the model based on the
small-scale SSL can also be compared with that of the large-scale SSL model after adding a few (5–10)
spiking samples.

4. Conclusions

In this work, three SSLs of different scales (PSSL, CSSL, and DSSL) were constructed using NIR
spectral data, and prediction models were established through the PLS algorithm to predict the SOC of
two target areas. Since SOC is affected by regional climatic conditions, vegetation, land use, and other
factors, the feasibility of the spiking method was further studied in order to improve the universality
of the prediction model. For the new target area, it was expected that a model with high prediction
accuracy could be built by using the existing SSL with the fewest spiking samples.

The results show that there was no correspondence between the model’s predictive ability and
the scale of the SSL on which the model was based. In addition, the UMs (PSSL-UM, CSSL-UM,
and DSSL-UM) established by the original SSLs were not accurate enough to predict the SOC of the new
target areas. Then, the KS algorithm was used to select 5–10 spiking samples evenly distributed in the
space defined by the first two principal components from the sample set of the target area. The results
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show that with the help of spiking samples, the predictive ability of each model was improved, and the
improvement effect of the model based on the small-scale SSL was more obvious than that of the
large-scale SSL. In this work, the DSSL-SM established by combining the original small-scale DSSL
and a few spiking samples achieved good prediction of the SOC of two target areas. Therefore, it may
not be necessary to build a large-scale SSL when using NIR spectroscopy to detect the SOC in a new
target area. By building a small-scale SSL and measuring the chemical reference values of a few spiked
samples, the SOC in a new target area can be accurately predicted.
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