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Abstract: Automatic fine registration of multisensor images plays an essential role in many remote 
sensing applications. However, it is always a challenging task due to significant radiometric and 
textural differences. In this paper, an enhanced subpixel phase correlation method is proposed, 
which embeds phase congruency-based structural representation, L1-norm-based rank-one matrix 
approximation with adaptive masking, and stable robust model fitting into the conventional 
calculation framework in the frequency domain. The aim is to improve the accuracy and robustness 
of subpixel translation estimation in practical cases. In addition, template matching using the 
enhanced subpixel phase correlation is integrated to realize reliable fine registration, which is able 
to extract a sufficient number of well-distributed and high-accuracy tie points and reduce the local 
misalignment for coarsely coregistered multisensor remote sensing images. Experiments 
undertaken with images from different satellites and sensors were carried out in two parts: tie point 
matching and fine registration. The results of qualitative analysis and quantitative comparison with 
the state-of-the-art area-based and feature-based matching methods demonstrate the effectiveness 
and reliability of the proposed method for multisensor matching and registration. 

Keywords: image registration; subpixel matching; phase correlation; multisensor remote sensing 
images; fine registration 

 

1. Introduction 

Image registration, which is the process of geometrically aligning two or more images of the 
same scene taken at different conditions, is essential to image analysis tasks involving information 
extraction from different overlapping images [1]. With the rapid development of sensor technology, 
remote sensing images have attracted more and more attention due to their increasing spatial and 
spectral resolution, convenience, and coverage [2]. Remote sensing images from different sensors are 
able to provide useful complementary information. Multisensor image registration is a fundamental 
preprocessing step for utilizing these images in a wide variety of applications, such as image fusion, 
change detection, and environmental monitoring [3–5]. However, due to the temporal difference and 
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the diverse properties of sensors or regions in the scene, the image pairs acquired from different 
optical sensors exist the issues of non-linear intensity differences, textural changes and local 
distortions [6]. Therefore, automatic registration of multisensor images is a challenging task. 

Image registration can be generally divided into coarse registration and fine registration. The 
coarse registration stage pre-registers the reference and sensed images to eliminate significant 
rotation and scale differences and shorten the search range through a global transformation model, 
while the fine registration stage corrects the misalignment and refines the registration performance 
commonly through a more local or higher-order transformation model [7,8]. Most current remote 
sensing images are usually attached with georeferencing information that can be employed to  
remove the obvious geometric differences between images, such as rotation, scale, and global  
translation [9,10]. In other words, coarse registration of remote sensing images can be achieved by 
direct georeferencing using sensor models, and the pre-registered image pairs only exist an offset of 
several or dozens of pixels that require the fine registration stage to compensate. In this study, we 
focus exclusively on fine registration of remote sensing images. 

A typical image registration method consists of two basic steps, i.e., image matching and image 
warping [11]. The former step extracts and matches the tie points between reference and sensed 
images that are the distinctive and representative points of the investigated scenes, while the latter 
step estimates a transformation model from the set of corresponding tie points and then transforms 
the sensed image to the reference image using image resampling. In order to realize precise and 
reliable fine registration of multisensor remote sensing images, the image matching part that 
determines the correspondence relationship of the tie points plays the most crucial role. In the 
literature, there are two major types of image matching methods: feature-based methods and  
area-based methods [1,12,13]. The feature-based methods match the features detected separately 
from each image based on their spatial structure or distance of invariant descriptor vectors. The most 
widely used local invariant features applied in image registration are the scale-invariant feature 
transform (SIFT) feature and its variants [14–17]. However, one of the main limitations of  
feature-based methods is that they require a sufficient number of highly repeatable features extracted 
from both images, which is especially difficult in the multisensor cases with obvious radiometric and 
textural changes. 

In contrast, area-based methods rely on the similarity measure directly calculated from the 
intensity in the corresponding window pairs or even the entire images, which usually outperform 
feature-based methods in the aspect of precision, distribution, and robustness [18]. These merits 
enable the area-based methods more effective in fine registration of multisensor remote sensing 
images [19]. Phase correlation (PC) is an area-based matching technique according to the image 
information and operation in the frequency domain. By means of fast Fourier transform (FT) and 
phase information, PC can achieve outstanding performance in theoretical accuracy, computational 
efficiency, and robustness against the frequency-dependent noise and illumination changes [20]. 
These merits make it quite feasible for multisensor image registration. When used in coarse 
registration, PC can be extended to deal with rotation and scale estimation without the need for 
initialization and iteration using the Fourier-Mellin transform [21–23]. For fine registration, PC can 
be adopted in local template matching even pointwise dense matching with subpixel estimation. 
Additional operations that ensure the best approximation of the theoretical phase difference model 
play an important role in the subpixel PC methods. In this study, an enhanced subpixel PC method 
calculated in the frequency domain is proposed. Three additional operations are embedded into the 
conventional line fitting-based PC method to improve the practical performance of tie point 
matching: (1) phase congruency information is adopted as feature representations to reduce the 
influence of nonlinear intensity differences in multisensor cases; (2) a L1-norm-based robust low-rank 
matrix factorization algorithm is used with effective frequency masking to find the best rank-one 
approximation of the normalized cross-power spectrum matrix in the presence of corrupted 
components; and (3) a stable robust estimation algorithm is employed to effectively eliminate the 
residual outliers during line fitting. In addition, a fine registration method on the basis of the 
enhanced subpixel PC method is introduced, which is able to reduce the local misalignments between 
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multisensor and multisource remote sensing images. The experiments carried out on remote sensing 
images from different satellites demonstrated the feasibility and reliability of the proposed method. 
In summary, the main contributions of this paper are: (1) an accurate and robust subpixel PC method 
for translation estimation is proposed, additionally embedding phase congruency-based structural 
representation, robust masked rank-one matrix approximation and robust model fitting using higher 
than minimal subset sampling; and (2) based on the enhanced subpixel PC matching, an automatic 
and reliable fine registration method for multisensor remote sensing images is presented, combining 
with the block-based phase congruency feature detector and local warping model. 

The remainder of this paper is organized as follows. Related work is briefly reviewed in Section 2. 
The details of the proposed subpixel PC method and fine registration method are described in Section 3 
and Section 4, respectively. Section 5 presents the experimental results and analysis, including the tie 
point matching experiment and fine registration experiment. Finally, the concluding remarks and 
considerations for future work are given in Section 6. 

2. Related Work 

2.1. Fine Registration Using Area-Based Methods 

Area-based matching methods directly utilize intensity-based information to match images or 
regions. This type of matching method is widely used to optimize the coarse registration of remote 
sensing images due to the superiority in accuracy [24]. The adopted similarity measure is a decisive 
component of area-based methods. The conventional ones mainly include the sum of squared 
difference, the sum of absolute difference, the normalized cross correlation (NCC) [25], but are 
sensitive to nonlinear intensity changes [26]. In order to enhance the illumination robustness, several 
more sophisticated similarity measures such as mutual information (MI) [27], cross cumulative 
residual entropy [28], Jeffrey’s divergence [29], and matching by tone matching (MTM) [30] have been 
developed and broadly applied in remote sensing image registration [31,32]. In [33] and [34], MI-
based metrics were utilized in optimization procedure to refine the coarse results of feature-based 
registration. In [35], normalized gradient field was adopted as a similarity measure to align the 
georeferenced airborne light detection and ranging (LiDAR), hyperspectral and photographic 
imagery. Moreover, some structure and shape features have been recently adopted as the 
replacement of image intensity and combined with the conventional similarity measure to reduce the 
influence of complicated radiometric difference on image registration [19,36]. The histogram of 
orientated phase congruency (HOPC) descriptor and the scene shape similarity feature descriptor 
were proposed in [9] and [37] respectively, and combined with NCC to achieve multimodal remote 
sensing image registration. In [38], a novel similarity measure was developed for optical-to-synthetic 
aperture radar (SAR) image matching as the NCC between dense rank-based local self-similarity 
descriptors. However, these similarity measures are somewhat computationally expensive or merely 
determine the subpixel measurement through simple polynomial fitting [39]. 

2.2. Phase Correlation 

PC is a special area-based method calculated through frequency-domain operation. The 
theoretical basis of PC matching is the translation property of FT that links the shift of two relevant 
images in the spatial domain with the phase difference in the frequency domain. Assuming an image 

( , )f x y  and another shifted image ( , ) ( , )g x y f x x y y= −Δ −Δ , the normalized cross-power spectrum 
can be calculated by [40]: 

*

*

( , ) ( , )
( , ) exp( ( ))

( , ) ( , )
f g

f g

u v u v
Q u v i u x v y

u v u v
= = − Δ + Δ
 
 

 (1) 

where ( , )f u v  and ( , )g u v  are the corresponding frequency representations of two images after FT, i 

is the first solution to the equation 2 1i = − , and *  denotes the complex conjugate. The correlation 
function of PC is derived as the inverse FT of the normalized cross-power spectrum. In the ideal case of 
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integer shifts, this correlation function corresponds to a Dirac delta function centered at ( , )x yΔ Δ . 
Accordingly, the pixel-level results of PC can be obtained by locating the peak of the correlation function. 

In the case of subpixel shifts, the signal power of PC is not concentrated in a single peak, and 
leads to a downsampled 2-D Dirichlet kernel [40]. The existing subpixel PC methods can be found in 
two categories [20]. The first category is implemented in the spatial domain. The objective is to 
determine the fractional peak location of the correlation function with maximum correlation value, 
similar to the pixel-level matching. This can be achieved through similarity fitting with a certain set 
of neighbors using analytical derivations [40] or empirical fitting models [41], as well as upsampling 
the correlation function to a desired resolution in the frequency domain [42]. These methods have 
been successfully applied in the fine registration of multisensor remote sensing images [10,43], but 
they are vulnerable to the actual noise and aliasing. 

The second category is realized in the frequency domain, which relies on the phase difference 
between two images, which is defined as the phase angle of the complex normalized cross-power 
spectrum. According to Euler’s formula, the phase difference can be expressed by: 

( , ) ( , ) ( )u v Q u v u x v yϕ = ∠ = − Δ + Δ . (2) 

It can be found that the phase difference is a linear function of the shift vector, and the shifts  
can thus be estimated from the slope of phase difference. In this case, subpixel PC methods  
in the frequency domain are calculated by plane fitting [44,45], line fitting [46,47], or nonlinear  
optimization [48] with the linear phase difference between images. Note that the phase difference is 
2π wrapped when dealing with discrete image signals, and phase unwrapping is needed in practice 
when estimating the shifts greater than 0.5 pixels. Due to avoiding the inverse FT process and relying 
on a theoretical expression, the second category usually has advantages in matching accuracy and 
robustness over the first category [49]. 

3. Enhanced Subpixel Phase Correlation 

3.1. Workflow of the Enhanced Subpixel Method 

The proposed subpixel PC method calculates the translation parameters in the frequency 
domain by means of the phase difference between input images. The overall workflow of the 
proposed method, which mainly consists of four steps, is depicted in Figure 1 and introduced in  
the following. 

(1) Construction of phase congruency-based structural representation. In order to minimize the 
influence of complicated intensity differences and emphasize the useful structural information 
for matching, we adopt the phase congruency [50] to generate a complex structural 
representation. The magnitude and orientation of the phase congruency features are combined 
to replace the original image intensity for the following image matching. 

(2) Calculation of normalized cross-power spectrum. The structural representations are transferred 
to the frequency domain using discrete FT. However, the periodicity of discrete FT induces the 
edge effect that affects the performance of PC. Therefore, we use an image decomposition 
algorithm [51] to extract the periodic component to eliminate the edge effects. Compared with 
the conventional windowing operation, this decomposition avoids narrowing the effective 
matching region and loss of image information [52]. The normalized cross-power spectrum 
matrix Q is then calculated as Equation (1). 

(3) Frequency masking and rank-one matrix approximation. In uncontrolled conditions, noise, 
aliasing, and other interference factors will contaminate the spectral components and degrade 
the following rank-one approximation and line fitting processing. In this case, we apply an 
adaptive frequency masking operation to filter out the corrupted frequency components [48]. 
Subsequently, two 1-D column vectors are factorized from the normalized cross-power 
spectrum matrix by determining the best rank-one approximation using a low-rank matrix 
approximation algorithm [53] which is robust to missing masked data and outliers. 
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(4) Estimation of translation parameters. With the low-rank vectors obtained, the phase difference 
is separately extracted in each dimension after 1-D phase unwrapping. The correct slopes 
( , )x ys s  of the unwrapped phase angles are identified by a robust estimation algorithm using 

higher than minimal subset sampling [54] in the presence of residual outliers, and finally 
converted to the results of translation parameters according to 2xx s M πΔ = , 2yy s N πΔ = − , 

where M and N denote the size of the input images. 

 
Figure 1. Overall workflow of the enhanced subpixel phase correlation method. 

3.2. Details of the Enhanced Subpixel Method 

To ensure the high accuracy and robustness, the enhanced subpixel PC method additionally 
integrates phase congruency-based structural representation, robust rank-one matrix approximation 
with adaptive frequency masking, and stable robust line fitting. All of these operations aim to 
guarantee that the practical phase difference calculated in tie point matching better agrees with the 
theoretical model in Equation (2). 

3.2.1. Phase Congruency-Based Structural Representation 

Although PC is insensitive to image content and intensity changes to some extent since it relates 
solely to phase information, the complicated radiometric changes can still deteriorate the linear 
relationship of the phase difference between input images [55]. The illumination robustness can be 
improved by constructing a structural representation combining the magnitude and orientation of 
phase congruency [56]. Phase congruency is a feature measure based on local frequency analysis, 
which perceives the corner and edge features where the Fourier components are maximal in phase. 
Phase congruency conforms to the human visual perception of image features, and has been widely 
applied in multimodal registration and matching [9,11,36]. By convolving a 2-D image ( , )f x y  
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through log-Gabor filters over several scales and orientations, the magnitude noA  and phase noφ  of 
the filter responses at a scale n and orientation o are given by: 

[ ]

2 2( , ) ( , )
atan2( ( , ), ( , ))

( , ), ( , ) ( , ) , ( , )

n n n

n n n

e o
n n n n

A e x y o x y
e x y o x y

e x y o x y f x y M f x y M

φ
= +
=

 = ∗ ∗ 

, (3) 

where e
nM  and o

nM  denote the log Gabor even-symmetric and odd-symmetric wavelets that are the 

real and imaginary components of log-Gabor filters, respectively, noe  and noo  denote the convolution 
results of these two wavelets. The magnitude of the phase congruency can be expressed as [50]: 

( , ) ( , ) ( , )
( , )

( , )

( , ) cos( ( , ) ( , )) sin( ( , ) ( , ))

o no noo n

noo n

no no no

W x y A x y x y T
PC x y

A x y

x y x y x y x y x y

ε

φ φ φ φ

ΔΦ −  =
+

ΔΦ = − − −

 
  , (4) 

where φ  is the mean phase, W is a weighting term based on the frequency spread, T is a noise 
threshold, ε  is a small constant and the symbol     denotes that the enclosed quantity is equal to 
itself when its value is positive, or is zero otherwise. The orientation of the phase congruency  
can be calculated using the log Gabor odd-symmetric wavelets of multiple directions, which is  
expressed as: 

( , ) atan2( ( ( , ) sin( )), ( ( , ) cos( )))no nox y o x y o x y
θ θ

θ θΦ =   , (5) 

where θ  is the orientation angle. Then, the phase congruency-based structural representation is 
constructed as: 

( , ) ( , ) cos( ( , )) ( , ) sin( ( , ))PCR x y PC x y x y iPC x y x y= Φ + Φ . (6) 

The following subpixel PC is performed on the complex structural representations of both 
images instead of the original intensity. Both phase congruency and PC matching take advantage of 
the phase information of the image and are independent of magnitude information. Phase 
congruency relies on the local phase of images to preserve local topological information, while PC 
matching relies on the global phase difference to estimate the translation and similarity between 
images. Therefore, PC matching with phase congruency-based representations combines the global 
and local phase information to underline the frequency response of structural features and improve 
the robustness to local radiometric differences for translation estimation. 

3.2.2. Robust Rank-One Matrix Approximation with Adaptive Frequency Masking 

According to the expression in Equation (1), the normalized cross-power spectrum matrix Q is 
theoretically a rank-one matrix [46], i.e., T

x yQ q q= , where qx and qy are complex column vectors. This 

implies that the 2-D translation estimation can be converted to two separate 1-D problems by finding 
the dominant rank-one subspace of Q. The most straightforward way is to use the singular value 
decomposition algorithm. However, the corrupted spectral components caused by noise, aliasing, 
and other interference factors in practice will potentially bias the ideal rank-one computation and the 
final estimation results [48,57]. Therefore, an effective frequency masking operation to remove the 
corrupted components and a robust low-rank matrix approximation algorithm to deal with missing 
data and outliers are adopted. 

Since the high frequencies and the frequencies with small spectral magnitude that are most likely 
to be corrupted, the masking operation firstly masks out the high-frequency components at each 
periphery (e.g., 15% as suggested in [44]) of Q. Then, the unreliable frequency components with small 
magnitude are identified according to the normalized log-spectrum [48]. Therefore, the frequency 
mask is defined as: 
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*
10

0, 0.15 ; 0.85 ; 0.15 ; 0.85
( , ) 0, NLS( , ) mean{NLS( , )}

1, others

LS( , ) log ( , ) ( , )

NLS( , ) LS( , ) max{LS( , )}
f g

u M u M v N v N
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< > < >
= ≤ ⋅



=

= −

  , 
(7) 

where p is a specific parameter, we fix p = 0.9 the same as [48] for all the experiments. 
The robust rank-one approximation is formulated as an optimization problem based on L1-norm 

loss and nuclear-norm regularizer [53], which is able to effectively handle the masked data and 
residual outliers. The objective function is written as: 

1,
min ( )
x y

T T
x y x yq q

W Q q q q qλ
∗

− + , (8) 

where λ  is a balancing parameter, W is the frequency masking matrix, the operator  denotes the 
element-by-element matrix product, the symbol 

1
 denotes L1-norm, and 

*
 denotes nuclear-

norm which is defined as the sum of singular values. The regularized optimization problem can be 
solved by an augmented Lagrange multiplier method. By introducing a matrix T

x yE q q=  and some 

constraints, Equation (8) becomes: 

1, ,
min ( )

. ., , 1
x y

T
yE q q

T T
x y x x

W Q E q

s t E q q q q

λ
∗

− +

= =
. (9) 

The unconstrained augmented Lagrange function after adding a penalty term and a Lagrange 
multiplier L is given by: 

2

1( , , , , ) ( ) ,
2

T T T
x y y x y x yF

f E q q L W Q E q E q q L E q qμμ λ
∗

= − + + − + − , (10) 

where μ  is a penalty parameter, the symbol 
F

 denotes Frobenius norm, and ,A B  is 

equivalent to the trace of TA B. The complex column vectors can be solved by Gauss-Seidel iteration 
that iteratively solve one set of variables in , ,x yE q q  while fixing the other two with the Lagrange 

multiplier L and the penalty parameter μ  updated in each iteration. More details of the 
optimization and implementation settings can be found in [53]. 

3.2.3. Stable Robust Line Fitting 

To automatically exclude the corrupted phase angle values when fitting the slopes of the 
unwrapped phase angle vectors, a robust estimation algorithm using higher than minimal subset 
sampling (HMSS) [54] is introduced. Compared with the conventional random sample consensus 
algorithm [58], HMSS has two refinements: (1) it increases the initial sampling size beyond the minimal 
size to ensure the closeness of the hypothesis generation to the true model; (2) it is not a pure random 
sampling strategy, but a greedy strategy that starts from a random hypothesis and is iterated towards 
an optimized solution using the least k-th order statistic cost function until a stopping criterion is 
reached. These enable HMSS to achieve advantages on stability, accuracy, computational efficiency, 
and parameter insensitivity. The routine of our HMSS fitting is presented as follows. (1) For 2-D line 
fitting, five points (minimal size three plus two) from the unwrapped phase angle vectors are randomly 
selected to generate an initial model using a least-squares fitting. (2) In each iteration l, the residuals of 
all points are calculated and sorted, and the least k-th order statistic is calculated as a cost function: 

,

2( ) ( )
k ll i lF r

δ
δ δ= , (11) 
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where 2 ( )ir δ  denotes the i-th squared residual regarding model δ , ,ki δ  denotes the index of k-th 

sorted squared residual regarding model δ , and k is an inlier parameter fixed at 0.2k TN= ⋅ , where 
TN is the total data number. The model of next iteration 1lδ +  is updated using the new five sample 
points around the k-th sorted square residual. (3) Iterations are continued until reaching a stopping 
criterion. The criterion is designed to check if the samples selected in consecutive iterations are from 
similar models, and is given by: 

, , , ,1 2

2 2 2 2

5 1 5 1

1 1( ) ( ) ( ) ( )
5 5k j k jl l l l

k k

stop i l i l i l i l
j k j k

F r r r r
δ δ δ δ

δ δ δ δ
− −

= − + = − +

   
= < ∧ <   
   

  , (12) 

where 
, 1

2 ( )
j li lr

δ
δ

−
 and 

, 2

2 ( )
j li lr

δ
δ

−
 denote the residuals of the sample points selected in two previous 

iterations with regard to the model lδ  in iteration l. If the current cost function is lower than the 
average residuals of those sample points, the sample points selected in the last three iterations are 
likely to belong to the same structure and the iteration can stop. (4) To decrease the probability of 
accident erroneous estimation, steps (1)–(3) are repeated for reinitialization of random hypothesis 
generation until there is no decreasing of the cost function in consecutive runs. (5) The model with 
the minimal cost function is selected and refined using all the inliers by least-squares method, and 
the algorithm output the final slope. 

4. Multisensor Fine Registration 

The enhanced subpixel PC method can provide accurate and robust translation estimation as 
local template matching. In this section, an automatic registration method for precisely aligning 
coarsely coregistered remote sensing images from different sensors is extended based on the 
enhanced subpixel PC method. The flowchart of the fine registration method is illustrated in Figure 2, 
which is divided into four steps as follows. 

(1) Interest point extraction. To improve the localization performance in the presence of complicated 
radiometric conditions, phase-congruency corner detector is applied to detect the interest points 
on the reference image. According to Equation (4), we can obtain a phase congruency map. The 
moment analysis is performed on the phase congruency maps with different orientations, and 
the minimum moment m is given by [59]: 

( )2 2

2

2

1 ( )
2

( ( ) cos( ))

2 ( ( ) cos( ))( ( )sin( ))

( ( ) sin( ))

o

o

o

m c a b a c

a PC

b PC PC

c PC

θ θ

θ θ θ θ

θ θ

= + − + −

=

=

=







, 
(13) 

where ( )PC θ  is the phase congruency value determined at orientation angle θ . The minimum 
moment is equivalent to the cornerness measure. In order to extract the interest points uniformly 
distributed over the scene, a block-based strategy is adopted [19]. The image is partitioned into 
s × s nonoverlapping blocks, and the top h points with the largest minimum moment values are 
regarded as the interest points for each block. 

(2) Tie point matching. The corresponding points on the sensed image are determined by PC-based 
template matching. A template window is selected surrounding each interest point. The 
translation parameters between template windows are estimated by the pixel-level PC matching 
and then refined using the enhanced subpixel PC method. Note that the phase congruency 
calculated in the last step can be reused in the subpixel PC matching. 

(3) Mismatch elimination. There inevitably exist false matches in the results of tie point matching 
due to shadow and featureless areas. These mismatched tie points can be filtered by considering 
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two aspects: the similarity measure and geometric consistency. The peak value of PC function 
provides a measure to assess the correctness of the match. The unreliable measurements with 
small PC peak values are firstly removed. Then, the residual outliers are eliminated by an 
iterative consistency check of tie points based on a global transformation [19]. In each iteration 
of consistency check, a transformation model is estimated using all the tie points with the 
transformation residuals calculated. The tie point with the largest residual is excluded, and the 
transformation model is estimated again on the remaining points. The procedure is repeated until 
the largest residual is less than a given threshold (e.g., 1.5 pixels). The three-order polynomial 
model is selected in this study since it can better handle the local deformations resulted from 
sensor error and terrain relief especially for high-resolution images. 

(4) Image warping. With the refined tie points, a transformation model that maps the sensed image 
to the reference image can be determined. We employ a piecewise linear model that is known to 
be appropriate for mitigating local geometric distortions between satellite images [60]. This 
function divides the image into triangular regions by the Delaunay’s triangulation algorithm 
using all the tie points, and estimates an affine transformation for each triangular region. For 
warping the regions outside the convex hull of the points, we estimate a global transformation 
model from the points defining the convex hull [61]. 

 
Figure 2. Flowchart of the fine registration method based on the enhanced phase correlation (PC) 
matching. 
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5. Experiments and Discussion 

In order to verify the effectiveness of the proposed method, experiments were conducted in two 
parts, a tie point matching experiment and a fine registration experiment. The tie point matching 
experiment evaluates the matching performance of the enhanced subpixel PC method, and the fine 
registration experiment analyzes the alignment performance of the presented registration method 
based on the enhanced PC matching. 

5.1. Tie Point Matching Experiment 

5.1.1. Experimental Details 

In this experiment, the enhanced subpixel PC method was assessed and compared with other 
PC methods and area-based matching methods. The block-based phase congruency detector was first 
applied to extract 400 interest points (top four points in each 10 × 10 nonoverlapping blocks) 
uniformly distributed over the reference image, whose corresponding points were then determined 
by template matching. The results obtained from the proposed method were compared with those 
from five state-of-the-art Fourier-based correlation methods including PC with quadratic fitting 
(PC_QF), Foroosh’s method [40], upsampled cross correlation (UCC) [42], Hoge’s method [46], and 
SVD-RANSAC (singular value decomposition-random sample consensus) [49], as well as five other 
representative area-based matching methods including NCC [25], MI [27], MTM [30], HOPCncc 
(NCC of the HOPC descriptors) [9] and enhanced correlation coefficient (ECC) [62]. PC_QF, NCC 
and MI are available in MATLAB; the codes of UCC, MTM, HOPCncc, and ECC are provided by the 
authors, and the others are our re-implementations. For the Fourier-based correlation methods, the 
image decomposition algorithm was adopted to mitigate the influence of edge effects. For PC_QF, 
NCC, MTM, and HOPCncc, the subpixel measurements were obtained by fitting the similarity 
function using a quadratic polynomial model. Three sizes of template windows (40 × 40, 60 × 60, 80 × 80 
pixels) were tested to analyze the matching performance under different template sizes, and the size 
of search region was set as 20 × 20 pixels. 

Three sets of remote sensing image pairs acquired from different satellites and sensors were 
used. The basic information about these multisensor images are given in Table 1. Each image pair 
contains a reference image (upper) and a sensed image (lower) captured by different sensors with 
diverse spatial resolution and imaging data. All these image pairs have been coarsely registered 
based on the metadata and georeferencing information, and resampled to the same ground sampling 
distance. For the image pair with large deviation due to the sensor positioning error (e.g., 
approximate 70 pixels for Data 1), the global translations between images were compensated using 
the pixel-level PC with inputs of the entire image. Therefore, the test image pairs are free of obvious 
scale, rotation, and translation differences, but still show significant intensity and textural changes 
due to various resolution, imaging time, and spectrum. 

Table 1. Basic information about the images used in the tie point matching experiment. 

Data No. Image Sources Size Sensor Resolution Date Location 

1 
ZiYuan-3 PAN 1920 × 1980 2.1 m 2012/02 

Dengfeng, Henan, China 
THEOS PAN 1990 × 1992 2 m 2011/12 

2 
Sentinel-2 MSI Band 3 1800 × 1800 10 m 2015/08 

Munich, Germany 
Landsat 8 OLI Band 8 1805 × 1805 15 m 2014/06 

3 
Mapping-1 PAN 1720 × 1720 5 m 2013/05 

Dengfeng, Henan, China 
ZiYuan-3 MUX Band 3 1725 × 1725 5.8 m 2012/02 

For each test data, 40–50 evenly distributed check points were manually selected from the 
reference and sensed images, and a three-order polynomial model can be estimated from the check 
points. The matching errors of tie points were then measured according to this transformation model, 
and the correct matches were identified as the tie points with matching errors smaller than a 
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threshold. This threshold was set as 1 pixel for Data 2 and Data 3, and set as 1.5 pixels for Data 1 
because of more severe local distortions and higher spatial resolution. The evaluation criteria used in 
this experiment include the precision and root mean square error (RMSE) of tie points. The precision 
refers to the correct match rate calculated as the number of correct matches divided by the total 
number of matches. The RMSE between transformed points and matched points was calculated from 
both the correct matches and total matches to evaluate the matching accuracy and stability. 

5.1.2. Results and Discussion 

Figure 3 displays the tie points achieved by the block-based phase congruency detector and the 
enhanced subpixel PC method. It can be seen that the image pair represents significant radiometric 
and textural differences. The enhanced subpixel PC method is able to identify enough well-
distributed tie points in multisensor remote sensing images, and the locations of tie points correctly 
correspond to each other. This will be beneficial for the following multisensor fine registration. 

 
Figure 3. Tie points achieved by the enhanced subpixel PC method with the template size of 80 × 80 
pixels for three test image pair. (a) Data 1; (b) Data 2; and (c) Data 3. 

Since the proposed method embeds three additional operations, first the performance gain of 
each individual operation was demonstrated. Besides the baseline of Hoge’s method and the final 
proposed method, two variants were also evaluated using Data 1: Variant 1 combines Hoge’s method 
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with structural representation; Variant 2 combines Variant 1 with robust model fitting; and the final 
proposed method further embeds robust masked rank-one matrix approximation. The precisions and 
RMSEs of the total matches of these four methods are shown in Table 2. It can be seen that the 
matching performance gradually improves from the baseline method to Variant 1, Variant 2, and the 
final proposed method by integrating different additional operation. This indicates that the phase 
congruency-based structural representation, robust masked rank-one matrix approximation and 
stable robust model fitting are all effective to enhance the matching accuracy and robustness. 

Table 2. Matching performance of the baseline, two variants and the proposed method (root mean 
square error (RMSE) unit: pixels). 

Criterion Hoge Variant 1 Variant 2 Proposed 

40 
Precision 53.38% 56.14% 63.16% 64.66% 

RMSE 2.928 2.631 2.245 2.147 

60 
Precision 60.9% 63.91% 68.92% 70.43% 

RMSE 2.436 2.193 1.813 1.693 

80 Precision 63.25% 66% 70% 71% 
RMSE 2.032 1.912 1.641 1.607 

The comparative results of different template matching methods in terms of matching precision 
are shown in Figures 4–6 for three test data, respectively, and the RMSEs of the correct matches and 
total matches of various matching methods with three different template sizes are presented in Table 3. 
As can be seen from the figures and table, the enhanced subpixel PC method, SVD-RANSAC, and 
HOPCncc generate the overall best results, achieving higher values of matching precision and lower 
RMSEs. The performances of other methods are negatively affected by the complicated radiometric 
and textural changes in multisensor images, which are manifested by more false matches and inferior 
matching accuracy in the results. With regard to the RMSEs of the correct matches, the proposed 
method reaches the lowest values for Data 2 and 3, but is not obviously better for Data 1. The possible 
explanation for Data 1 is due to the severe local distortions. Since the correct matches are identified 
using the manual check points by thresholding, the RMSEs of the correct matches will be close to the 
accuracy of check points in the case of severe local distortions, and are less dominated by the accuracy 
of matching algorithms. Compared with other line fitting-based PC methods, such as Hoge’s,  
SVD-RANSAC, and other Fourier-based correlation methods, the proposed method improves the 
accuracy and robustness of subpixel translation estimation by integrating phase congruency-based 
structural representation, L1-norm-based rank-one matrix approximation with frequency masking 
and robust model fitting using higher than minimal subset sampling. Based on the resistance of phase 
congruency to nonlinear intensity difference [9], HOPCncc obtains the comparable results in most 
cases. In general, the proposed method performs better than HOPCncc method. The improved correct 
match rate and subpixel capability benefit from the use of pixelwise structure representation and 
theoretical model based on the translation property of FT. The experimental results demonstrate the 
superiority and reliability of the proposed method in tie point matching of multisensor remote 
sensing images. 

It can be found that the matching performance of all methods is related to the template sizes. The 
matching precision and accuracy become worse with the decreasing template sizes due to less structural 
information for matching. Frequency-based image correlation methods are hypothesized to be more 
limited in small template sizes following the Heisenberg’s uncertainty principle [20]. In this case, several 
obviously erroneous measurements exist in the matching results that affect the RMSEs. In addition, the 
local geometric distortions degrade the matching results. For Data 1 with higher resolution and larger geo-
positioning errors, the success match ratio is significantly lower than for the other two datasets. Therefore, 
a potential refinement point of the proposed method in future work is to mitigate the influence of local 
geometric deformations, especially in the case of a small template. 
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Figure 4. Precision values of different methods for Data 1. NCC, normalized cross correlation; MI, 
mutual information; MTM, matching by tone matching; HOPCncc, NCC of the HOPC descriptors; 
ECC, enhanced correlation coefficient; PC_QF, PC with quadratic fitting; UCC, upsampled cross 
correlation; SVD-RANSAC, singular value decomposition-random sample consensus. 

 
Figure 5. Precision values of different methods for Data 2. 

 
Figure 6. Precision values of different methods for Data 3. 
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Table 3. RMSEs of the correct matches (CM) and total matches (TM) of various matching methods with three different template sizes (unit: pixels). 

No. Template Size NCC MI MTM HOPCncc ECC PC_QF Foroosh UCC Hoge SVD- 
RANSAC 

Proposed 

Data 1 

40 
CM 0.756 0.775 0.762 0.788 0.759 0.813 0.800 0.749 0.802 0.783 0.775 
TM 3.477 3.705 3.446 2.266 4.344 3.695 4.408 4.421 2.928 2.379 2.147 

60 
CM 0.754 0.738 0.732 0.750 0.787 0.783 0.790 0.749 0.765 0.750 0.755 
TM 2.977 2.907 2.256 1.842 4.135 2.811 3.036 3.555 2.436 1.825 1.693 

80 
CM 0.780 0.735 0.743 0.752 0.782 0.757 0.765 0.752 0.766 0.753 0.748 
TM 2.247 2.186 2.146 1.591 3.652 2.483 2.158 2.988 2.032 1.659 1.607 

Data 2 

40 
CM 0.404 0.429 0.408 0.424 0.406 0.431 0.465 0.391 0.376 0.392 0.385 
TM 3.435 2.970 2.597 0.732 3.903 2.340 2.649 3.875 1.808 0.914 0.822 

60 
CM 0.405 0.409 0.401 0.414 0.413 0.405 0.462 0.383 0.371 0.377 0.369 
TM 3.154 2.752 1.711 0.461 3.352 2.103 1.846 3.711 1.497 0.744 0.558 

80 
CM 0.388 0.401 0.396 0.377 0.407 0.397 0.460 0.363 0.359 0.359 0.350 
TM 2.418 1.998 1.307 0.383 3.205 1.977 1.309 3.587 0.942 0.457 0.358 

Data 3 

40 
CM 0.425 0.469 0.466 0.492 0.447 0.456 0.450 0.421 0.409 0.434 0.389 
TM 1.608 1.983 3.062 0.998 1.619 2.540 2.631 2.345 2.113 1.760 1.218 

60 
CM 0.408 0.427 0.410 0.459 0.400 0.442 0.430 0.395 0.380 0.409 0.381 
TM 1.044 0.977 1.603 0.586 1.127 1.920 1.091 1.524 1.215 0.685 0.702 

80 
CM 0.380 0.414 0.387 0.442 0.386 0.418 0.415 0.376 0.374 0.382 0.361 
TM 0.671 0.566 0.543 0.498 1.054 1.201 0.512 1.248 0.874 0.470 0.396 
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5.2. Fine Registration Experiment 

5.2.1. Experimental Details 

In this experiment, the fine registration method presented was validated and compared with feature-
based methods. Besides the above-mentioned HOPCncc and SVD-RANSAC methods, three state-of-the-art 
feature detectors and descriptors, namely SIFT [14], ORB (oriented features from accelerated segment test 
and rotated binary robust independent elementary features) [63], and RIFT (radiation-variation insensitive 
feature transform) [59] were used for comparison. SIFT detects keypoints based on the Difference-of-
Gaussian scale space and generates a float-type descriptor for each feature based on the orientation of image 
gradient. ORB identifies keypoints using an oriented version of FAST corner detector and computes a 
binary-type feature vector using the rotation-aware BRIEF descriptor. RIFT extracts radiation-robust 
features based on phase congruency and log-Gabor convolution of different orientations. For the feature-
based methods, the nearest neighbor distance ratio strategy [14] and random sample consensus algorithm 
[58] were adopted to eliminate the outliers in the matched features. For the area-based methods, the fine 
registration pipeline introduced in Section 4 was adopted, wherein a set of 600–700 evenly distributed 
tie points were extracted and matched based on the block-based phase congruency detector and the 
corresponding template matching methods. The piecewise linear transformation model was employed to 
warp the sensed image according to the tie points obtained by different methods. 

As shown in Table 4, three sets of multisensor optical image pairs were tested in this experiment. These 
images range from very high resolution (submeter) to medium resolution (dozen of meters), and cover 
different scenes including urban and suburban areas. A temporal difference also exists between reference 
and sensed images with the maximum gap for more than three years. Similarity, all these image pairs have 
been preregistered though direct georeferencing and resampled to the same resolution of reference image 
to remove the obvious rotation, scale, and translation differences. 

Table 4. Basic information about the images used in the fine registration experiment. 

Data No. Image Sources Size Sensor Resolution Date Location 

1 
SPOT-5 PAN 1750 × 1700 5 m 2013/06 

Zhangye, Gansu, China 
Sentinel-2 MSI Band 3 1791 × 1716 10 m 2015/08 

2 
GeoEye-1 RGB 1040 × 1010 2 m 2010/02 

Shanghai, China 
ZiYuan-3 PAN 1044 × 1011 2.1 m 2013/07 

3 
Hongqi-1-H9 PAN 2120 × 2140 0.75 m 2020/02 

Shanghai, China 
Google earth 2124 × 2148 1.19 m 2019/10 

The distribution quality of tie points and final registration performance were assessed for all four 
methods. The distribution quality was measured by an index considering the area and shape of the triangles 
formed by tie points [64], which can be defined as: 
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where t is the number of triangles, iA  denotes the area of the i-th triangle, and max( )iJ  denotes the largest 
internal angle of the i-th triangle. The smaller value of DQ indicates in Equation (14) the better distribution 
of tie points. To evaluate the quantitative registration performance, 40–50 evenly distributed check points 
were manually selected between each image pair, and the RMSE and standard deviation (STD) of the check 
points after registration was calculated. 

5.2.2. Results and Discussion 

In our registration method, the tie points were matched by the enhanced subpixel PC and filtered by 
the correlation values and iterative consistency check, and the warped sensed images were generated by 
the combination of piecewise linear functions and a global transformation. The registration results, 
including the Delaunay triangulations constructed from the filtered tie points and the chessboard images 
generated from the reference images and warped sensed images, are shown in Figure 7, and the enlarged 
subsets corresponding to the sample regions in the third column of Figure 7 are presented in Figure 8. It can 
be seen that the scenes accord well in two images after fine registration for all test cases with a simple visual 
inspection of the registration results, which qualitatively confirms the satisfactory registration performance 
of the presented method based on the enhanced PC matching. 

 
Figure 7. Registration results of the presented method for three test image pair. (a) Data 1; (b) Data 2; and  
(c) Data 3. 
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Figure 8. Enlarged subsets of the reference images and warped sensed images corresponding to the boxes I, 
II, and III in Figure 7. 

In order to further validate the effectiveness, the number of matches, distribution quality index, RMSE, 
and STD of check points obtained from different methods are reported in Table 5. From the comparative 
results, it can be seen that the registration method presented significantly outperforms the other three 
feature-based methods in terms of distribution quality and registration accuracy. The presented method 
obtains tie points with the minimum value of DQ index indicating better distribution over the entire image. 
This is attributed to adopting the block-based strategy and limiting the search range, which is one of the 
advantages of area-based matching methods. The excellent distribution and high matching accuracy of tie 
points facilitate a good registration using a nonrigid piecewise linear model. Therefore, the presented 
method achieves a higher and more uniform registration accuracy with the minimum values of both RMSE 
and STD in the numerical analysis compared with the other three feature-based methods. Moreover, the 
presented method using the enhanced subpixel PC matching also obtains consistently lower values of RMSE 
and STD than the HOPCncc and SVD-RANSAC methods. It is worth noting that the RMSEs of three test 
data are all less than 1 pixel for our registration method, but grow with the decreasing spatial resolutions. 
The qualitative and quantitative analyses indicate that the presented method has the capability to offer an 
automatic and reliable solution to fine registration of multisensor remote sensing images. 
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Table 5. Registration performance of different methods. TN, the number of total matches; RN, the number 
after outlier removal. The unit of RMSE and STD is pixels. 

No. Criterion SIFT ORB RIFT HOPCncc SVD-RANSAC Proposed 

Data 1 

RN/TN 1538/2689 1312/2121 502/1403 669/711 657/711 662/711 
DQ 2.648 3.911 1.4231 0.841 0.855 0.852 

RMSE 0.918 0.898 1.227 0.527 0.520 0.494 
STD 0.471 0.422 0.571 0.290 0.284 0.272 

Data 2 

RN/TN 178/865 456/1306 332/1040 498/600 486/600 495/600 
DQ 1.684 2.437 1.083 0.882 0.816 0.821 

RMSE 1.361 1.480 1.220 0.691 0.686 0.642 
STD 0.695 0.797 0.572 0.341 0.347 0.330 

Data 3 

RN/TN 56/849 67/565 165/907 391/713 378/713 399/713 
DQ 1.652 2.127 1.167 1.152 1.196 1.131 

RMSE 1.894 1.822 1.538 0.771 0.809 0.711 
STD 0.709 0.837 0.695 0.375 0.366 0.351 

6. Conclusions 

In this paper, we propose an enhanced subpixel PC method and perform fine registration of 
multisensor remote sensing images based on this subpixel PC matching. The enhanced subpixel PC method 
achieves accurate and reliable template matching by adopting phase congruency-based structural 
representation, L1-norm-based rank-one matrix approximation with masking data, and stable robust model 
fitting. These operations ensure the calculated phase difference in practice better agree with the theoretical 
linear model based on the translation property of FT. The fine registration method combines the enhanced 
subpixel PC matching with block-based phase congruency feature detector, iterative consistency check, and 
image warping using piecewise linear transformation to precisely coregister the images from different 
satellites and sensors. Tie point matching and fine registration experiments were conducted, each using 
three sets of multisensor image pairs. In the tie point matching experiment, the enhanced subpixel PC 
method outperformed other state-of-the-art PC and area-based methods with a higher correct match rate 
and better matching accuracy. In the fine registration experiment, the proposed fine registration method 
outperformed state-of-the-art feature-based methods in terms of distribution quality and registration 
performance. The promising results indicate that the proposed method is robust and effective for 
multisensor fine registration. 

Local deformation is an impact factor degrading the matching performance. The proposed method 
may be less effective in the presence of severe relief displacements, which is a common issue for high-
resolution image registration. In future work, the proposed method will be refined to mitigate the influence 
of local deformation and utilize the prior knowledge from digital surface model and shadow map. In 
addition, this study mainly presents fine registration of multisensor optical remote sensing images, future 
works will explore the performance in more complicated multimodal applications. 
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