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Abstract: Land surface temperature (LST) is a critical state variable of land surface energy equilibrium
and a key indicator of environmental change such as climate change, urban heat island, and freezing-
thawing hazard. The high spatial and temporal resolution datasets are urgently needed for a variety
of environmental change studies, especially in remote areas with few LST observation stations.
MODIS and Landsat satellites have complementary characteristics in terms of spatial and temporal
resolution for LST retrieval. To make full use of their respective advantages, this paper developed a
pixel-based multi-spatial resolution adaptive fusion modeling framework (called pMSRAFM). As an
instance of this framework, the data fusion model for joint retrieval of LST from Landsat-8 and
MODIS data was implemented to generate the synthetic LST with Landsat-like spatial resolution and
MODIS temporal information. The performance of pMSRAFM was tested and validated in the Heihe
River Basin located in China. The results of six experiments showed that the fused LST was high
similarity to the direct Landsat-derived LST with structural similarity index (SSIM) of 0.83 and the
index of agreement (d) of 0.84. The range of SSIM was 0.65–0.88, the root mean square error (RMSE)
yielded a range of 1.6–3.4 ◦C, and the averaged bias was 0.6 ◦C. Furthermore, the temporal information
of MODIS LST was retained and optimized in the synthetic LST. The RMSE ranged from 0.7 ◦C to
1.5 ◦C with an average value of 1.1 ◦C. When compared with in situ LST observations, the mean
absolute error and bias were reduced after fusion with the mean absolute bias of 1.3 ◦C. The validation
results that fused LST possesses the spatial pattern of Landsat-derived LSTs and inherits most of the
temporal properties of MODIS LSTs at the same time, so it can provide more accurate and credible
information. Consequently, pMSRAFM can be served as a promising and practical fusion framework
to prepare a high-quality LST spatiotemporal dataset for various applications in environment studies.
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1. Introduction

Land surface temperature (LST) is the measurement of the radiative skin temperature over the
earth’s surface [1]. As a crucial variable associated with the energy balance, LST is highly responsive to
land surface energy equilibrium [2,3], which may contribute to explore a variety of phenomena taking
place at the surface-atmosphere interface [4]. Therefore, it becomes valuable for various scientific
studies [1], such as climatology [5], drought monitoring [6], urban heat island [7–9], hydrology [10,11],
infrastructure [12], agriculture [13,14], public health [15], and permafrost mapping [16]. However,
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the remote areas have limitations of using in situ automatic meteorological stations because it is
cost-intensive due to involved instrumentation and maintenance, which makes the spatial continuity of
data-sparse [17]. Especially, in remote mountainous areas where the in situ measurements are of scarcity
and uneven, satellite-derived LSTs can serve as an efficient proxy for air temperature estimation [18].
Thus, understanding and monitoring the dynamics of LST and its links to human-induced changes are
critical for modeling and predicting environmental change and climate variability [19].

LST varies significantly over time and space, while the ground LST measurements can only
provide the observation for the surrounding area of influence within the observation stations of
view [4,20]. The LSTs derived from Landsat, MODIS, AVHRR, and other thermal infrared (TIR)
satellites have been widely and effectively used to monitor and understand LST changes at regional
and global scales [21,22], particularly in remote and large areas. The satellite-derived LSTs are suited
equally to both quick pilot studies as well as long-term monitoring [5], which are publicly available
for characterizing the spatiotemporal variations of the thermal condition at spatial resolutions of
60 m to 10 km and temporal resolutions of hour to month [23]. The most common LST products are
those derived from the MODIS instruments on board of Terra and Aqua satellites, which have been
popularly used all over the world [20]. However, due to technical constraints, the existing satellite
platforms have a trade-off between temporal and spatial resolutions. The higher spatial resolution of
the satellite sensor causes swath observation to be narrower and thus exceeds the revisit time, and vice
versa [24]. As a result, none of the available satellites can provide concurrently high spatial resolution
and high temporal resolution products [25], which significantly restricts the potential application
of satellite-derived LST in various fields [26–29]. As a result, a high-quality LST dataset is urgently
needed for monitoring the thermal dynamics with high spatial and temporal variability [2,20,30].

Data fusion is an effective way to improve the temporal and spatial resolution of satellite-derived
data products. Thus, many scholars have been committed to developing various techniques to enhance
the spatial and temporal resolution of remote sensing data [2,31–33]. Existing techniques have been
named differently [34,35]. In this study, we used ‘fusion’ as defined by Zhang et al. [34]. To be specific,
multi-sensor data fusion is a synthesis processing of making full use of the spatial details of high
spatial resolution (HSR) data to integrate the temporal information of low spatial resolution (LSR)
data to generate a synthetic data product of which information is more credible and more reliable
than that of a single sensor source [34]. Intrinsically, it is also a form of downscaling for LSR data,
because the fused data has a spatial pattern of HSR data and preserves the temporal attribute of
LSR data. According to the results of fusion, these existing techniques can be broadly grouped into
spatial fusion and spatiotemporal fusion. The spatial fusion techniques have been largely developed
to disaggregate LSR LST to HSR LST based on HSR auxiliary dataset. For example, the Pixel Block
Intensity Modulation (PBIM) method was proposed by Liu and Moore [36] to improve the spatial
resolution of the Landsat-5 thermal band from 120 m to 30 m by adding spatial detail of topographic
variations. Then, the modulation method has been used to fuse the brightness temperature of ASTER
with SPOT-5 [37] and downscale AVHRR LSTs into Landsat-5 pixel size by employing different
scaling factors [38]. Besides, there are some methods for single-sensor TIR data including Generalized
Laplacian Pyramid [39], Bayesian fusion approach [39], Co-kriging interpolation [40], and TsHARP [41].
The spatial fusion techniques are designed to allocate LSR pixel value to each HSR pixels, and the
allocation factors usually include ratio, topography, normalized difference vegetation index (NDVI),
and emissivity. However, some methods ignore the physical basis of TIR remote sensing and spatial
dependence and heterogeneity [42]. The spatiotemporal fusion simultaneously enhances the temporal
and spatial resolution of TIR data for a comprehensive analysis of the thermal variations. Gao et al. [43]
proposed the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) to generate daily
synthetic surface reflectance images at 30 m spatial resolution. As a widely used data fusion model,
it was later adjusted and revised for specific applications under different scenarios [11,15,27,44–46].
Although widely used, some critical issues of STARFM and its variants applied to LST prediction have
not been solved [30,47], such as the need for more HSR and LSR imagery pairs, the complexity of



Sensors 2020, 20, 4337 3 of 23

calculation, and the dynamics of the land surface was treated statically or linearly [25,28,35]. As for
LST fusion, they are mainly from the perspective of surface reflectance [27,29,45,48,49], and few studies
formulate a common framework for generating synthetic LST products.

To date, a variety of fusion methods have been proposed to achieve both high spatial and temporal
resolutions based on the combination of Landsat and MODIS [50,51]. MODIS and Landsat-8 have
complementary characteristics in terms of spatial and temporal resolution, especially the two TIR
bands. The two TIR channels of Landsat-8 are band 10 and band 11, and the central wavelengths are
10.9 µm and 12 µm, respectively, which are very similar to Band 31 and Band 32 of MODIS. It lay
the foundation for the LST fusion of these two satellites at the product level. MODIS LST products
are excellent in temporal resolution, and the spatial resolution is adequate to study the global LST
variations, but it may not be appropriate for regional research [52]. On the contrary, the 30 m spatial
resolution, multispectral bands, and freely available data constitute an excellent utility for a wide range
of applications based on Landsat satellites, which provide sufficient spatial details for monitoring land
surface changes at the regional scale [53]. However, the 16-day revisit-cycle, even longer because of
inferior atmospheric conditions, has limited further applications [51,54]. Beyond that, it is relatively
difficult to automatically retrieve accurate and valid LST from Landsat TIR bands, although there are
several algorithms available [21,55]. When using these direct retrieval algorithms, the preparation of
the corresponding parameters and auxiliary data (such as emissivity, atmospheric parameters, etc.) is
rather complicated and tedious [50]. Meanwhile, there is not yet a universal LST product derived from
Landsat-8. It is a practical solution to combine MODIS and Landsat to learn more about the temporal
and spatial variations of LST [9,30]. The common idea of these methods is to disaggregate LSR data
into HSR data based on a pair of co-registered imageries to produce high spatiotemporal products.
Each method has its own strengths and limitations, and some reviews on best practices of these
methods were briefly described by Hazaymeh and Hassan et al. [47], Zhu et al. [2], and Zhao et al. [28].

The continuous monitoring of the LST dynamics is helpful in assessing the impact of climate
change and human activities on environmental change. Thus, it is necessary to develop a practical
method to generate the high-quality LST spatiotemporal dataset for exploring the spatial pattern and
temporal variations by aggregating multi-source satellite data. Despite the fusion method progresses,
the development of new techniques in the LST fusion should be further enhanced. In this paper,
we mainly focus on how to generate a synthetic LST by blending the Landsat-8 TIR data and MODIS
LST product. Specifically, a pixel-based multi-spatial resolution adaptive fusion modeling framework
(named pMSRAFM) is proposed for generating the high-quality synthetic LST in an automated manner.
The pMSRAFM uses MODIS LST as prior knowledge to solve the parameters of the Landsat-8 retrieval
algorithm for generating LST at Landsat-like resolution on the MODIS observation time. In a sense, it is
a disaggregation approach of MODIS LST products with the main difference in the decomposition of
the mixed pixels. The remainder of this paper is organized as follows. Section 2 first describes the test
region and the dataset used for experiments. Then, it presents a brief introduction to the fundamental
theory and the details of the proposed framework. The results of comparison and validation are
presented in Section 3. Finally, conclusions and suggestions for future work are provided in Section 4.

2. Materials and Methods

2.1. Study Area

The southeastern area (40◦10′–42◦00′ N and 100◦10′–112◦10′ E) of Heihe River Basin (HRB) was
selected as the study area to test the performance of pMSRAFM (Figure 1). HRB is the second-largest
endorheic basin with unique landscapes and coexisting cold and arid regions in northwestern China [56].
It features glaciers, frozen soil, alpine meadows, forests, irrigated crops, riparian ecosystems, and deserts
from upstream to downstream [57]. The regional environment variation and monitoring investigation
require the support of high spatial and temporal resolution LST datasets. The study area covers
3285 km2 and ranges in elevation from 2538 to 4615 m. As a climatic and geographical transition zone,
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the study area provides an ideal testing ground with complex land surface characteristics for verifying
the rationality of the proposed LST fusion framework. Many scholars have verified the applicability
of satellite-derived LSTs in this region, and the results showed that root mean square error (RMSE)
was generally within 5K [42,58–60]. Besides, a large number of aeronautical experiments have been
carried out in the HRB [61], and some ground observations can be provided to validate the fusion
result and analyze the uncertainty. In situ observations were measured by the automatic TIR stations
with an SI-111 infrared radiometer (8–14 µm). The information of seven LST stations operated by
HiWATER [61] is described in Table 1 and displayed in Figure 1.
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Figure 1. The study area (red rectangle line) and locations of land surface temperature (LST) stations.

Table 1. Geolocation and surface type information of LST stations located in the study area.

Station Longitude Latitude Altitude (m) Land Cover Variable/Instrument

A’rou superstation
(ARC) 100.46◦ E 38.05◦ N 3033 Alpine

meadow

Surface temperature/
SI-111(Apogee, USA)

Yakou Station
(YKZ) 100.24◦ E 38.01◦ N 4148 Alpine

meadow
Jingyangling
station (JYL) 101.12◦ E 37.84◦ N 3750 Alpine

meadow

E’bao station (EBZ) 100.92◦ E 37.95◦ N 3294 Alpine
grassland

A’rou north-facing
station (ANF) 100.41◦ E 37.98◦ N 3536 Alpine

grassland
A’rou south-facing

station (ASF) 100.52◦ E 38.09◦ N 3529 Alpine
grassland

Huangzangsi
station (HZS) 100.19◦ E 38.23◦ N 2612 Farmland

2.2. Data Collection and Processing

2.2.1. Auxiliary Data

The auxiliary data can provide key information about spatial details to optimize the disaggregation
and distribution of LSR pixels. The proper classification of HSR pixels is the most critical for the
disaggregation of LSR pixels. For efficiency and convenience, pMSRAFM in this study assigns a unique
type code to each HSR pixel based on the land cover category. Therefore, the accuracy of land cover data
is the primary consideration. The FROM-GLC (Finer Resolution Observation and Monitoring-Global
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Land Cover, http://data.ess.tsinghua.edu.cn/) data was selected because of its excellent performance.
FROM-GLC is the first 30 m resolution global land cover maps produced using Landsat Thematic
Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data [62]. The FROM-GLC data contains
ten base classes (1-Cropland, 2-Forest, 3-Grassland, 4-Shrubland, 5-Wetland, 6-Water, 8-Impervious,
9-Bareland, 10-Snow and ice), and the overall accuracy of global land cover was above 65% [62].
Image refinement was executed to manually correct certain confusing pixels to further improve the
classification accuracy. Since the latest FROM-GLC data only includes products for 2015 and 2017,
the selection of satellite data was limited to these two years. The Shuttle Radar Topography Mission
(SRTM) 1 Arc-Second Global elevation data was downloaded from the USGS EarthExplorer website
(https://earthexplorer.usgs.gov/). These data were reprojected and resampled to match Landsat data.

2.2.2. Satellite Data

The satellite data with minimal cloud cover and clear-sky conditions will be used to evaluate the
proposed framework. Finally, Landsat-8 OLI/TIRS C1 Level-1 (L1TP) products of Path 133, Row 34,
acquired on 13 September, 2015 (acquisition time 10:45 a.m.) and 16 July, 2017 (acquisition time
10:28 a.m.) were selected as the HSR data. As the highest quality Landsat data, the L1TP products
are suitable for pixel-level time series analysis, which have been radiometrically calibrated and
orthorectified using ground control points and DEM data to correct for relief displacement [63]. Besides,
NDVI can be calculated based on the red and near-infrared bands of Landsat-8. Two types of MODIS
daily LST products, MOD11_L2 version 6 swath product and the MOD11A1 version 6 product, were
selected and used as the LSR LST data. These MODIS LST products provide daily per-pixel LST
and emissivity with a 1 km spatial resolution. The MOD11_L2 is produced daily in 5-min temporal
increments of satellite acquisition using the generalized split-window algorithm, and the MOD11A1 is
derived from the MOD11_L2 swath product by projecting MOD11_L2 pixels to Earth locations on a
sinusoidal mapping grid. These MODIS LST products and Landsat-8 L1TP data were collected from
the USGS EarthExplorer. Note that the Landsat-8 TIRS bands provided by the USGS were resampled
to 30 m to match multispectral bands. The MODIS products were converted and projected by the
HDF-EOS to GeoTIFF Conversion Tool (HEG) [64] to the UTM projection the same as Landsat data.

To ensure the validity of the pixel values, quality control was performed on each input data.
A shared quality assurance mask was created for both Landsat and MODIS data to select the valid pixels
for the computation. First, a filter screened out the pixels that had the LST values beyond reasonable
expectations according to the LST changes during that month. Second, quality flags from both MODIS
and Landsat data were used to ensure that only high-quality pixels were selected and involved in fusion.
The data quality of MODIS was controlled by built-in quality control flags. In practice, the selection
criteria of MOD11A1 pixels was that the daytime LST quality indicators equal to 0. As for MOD11_L2,
the LST error was constrained to less than 0.5 °C. The data quality of Landsat-8 was controlled based
on the Landsat Collection 1 Level-1 Quality Assessment 16-bit Band to select the clear pixels.

2.2.3. Reference LST

To prepare HSR reference LST, we directly retrieved LST from Landsat-8 using the split-window
algorithm (SWA) described by Du et al. [65] to obtain comparable high-quality reference LST (LSTSWA

HSR ).
The SWA could obtain LST with an accuracy of better than 1.0 k [65]. Furthermore, we prepared the
second HSR reference LST (LSTSC

HSR) using the single-channel (SC) method based on Landsat-8 band
10 and FROM-GLC data. The Landsat-derived LSTs in the HRB have been verified with the in situ
LSTs estimated from the flux measurements at HiWATER stations and the RMSE ranges from 1.12 ◦C
to 3.67 ◦C [42,60]. These two HSR reference LSTs are complementary to each other, and both are
useful to quantify and characterize the accuracy of the HSR fused LST. In addition, the corresponding
observational records were collected from the LST stations located in the study area (Figure 1 and
Table 1). These observational records were calibrated using the Stefan Boltzmann law as described in
Duan et al. [22] to assess the accuracy of satellite-derived LSTs.

http://data.ess.tsinghua.edu.cn/
https://earthexplorer.usgs.gov/
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2.3. Methodology

In this study, two aspects are considered in advance when constructing the fusion framework.
First, the fusion framework is expected to be mathematically simple, robust, and computationally
efficient. Due to the fusion process requires ancillary data and is implemented for each pixel in
sequential mode, it should be simple and efficient. The development of temporal-spatial fusion
techniques has provided a foundation for establishing the basic framework for multi-source data
fusion. The overview of the pMSRAFM framework for multi-source data fusion is described in Figure 2.
Our proposed framework relies on the assumption that the LST derived from the different satellites
with similar spectral bandwidth and wavelength in the same region at the same time should be highly
consistent or linearly correlated. As a form of physical downscaling, the LSR pixel can be considered
as an aggregated block of HSR pixels. That is, the LSR pixel value can be approximately expressed by
a transfer function of a block of HSR pixel values. The pMSRAFM aims to minimize the global error
and estimate an optimal transfer function by joint utilizing the spatiotemporal information derived
from multi-source satellites. The solving process consists of three key steps. First, calculate the same
physical variables from the multi-resolution data according to their respective retrieval algorithms and
extract the multi-dimensional attributes from HSR input data as pixel features. Second, establish the
corresponding relationship at the pixel-level between two kinds of data based on the characteristic of
the land surface and automatically solve the equation that describes the corresponding relationship.
Finally, apply the solved parameters to the retrieval algorithm of the HSR data to generate a new
synthetic data product. The following uses LST fusion as a practical case to introduce the application
of the pMSRAFM.
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2.3.1. LST Fusion with pMSRAFM

The basic idea of LST fusion based on the pMSRAFM is that LSR LST can be estimated by a
weighted sum of the HSR LSTs. Essentially, the proposed LST fusion method is designed to integrate
the temporal information from the LSR sensor with the spatial pattern of the HSR sensor to generate
the high spatiotemporal LST data. It has been proved that different satellite-derived LSTs with different
spatial resolutions exist a correlation at the low spatial resolution. In general, the LSR pixel can be seen
as an aggregated block of the corresponding HSR pixels at the same time at the same location [35,66,67],
as shown in Figure 3. So, the relationship between LSTs from two satellites over the homogeneous
land surface can be expressed by the linear transfer function:

LSTLSR(x, y, t) = f (LSTHSR(x, y, t)) = a× LSTHSR(x, y, t) + b + ε(t) (1)
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where LSTLSR and LSTHSR define low-resolution LST and high-resolution LST, respectively. (x, y)
represents a given location, and t is the acquisition time. a and b are the coefficients used to adjust the
observational differences, ideally set to 1 and 0, respectively [44,51]. ε(t) is the residual representing the
observational difference between these two satellite platforms. It is mainly due to the discrepancy in
acquisition time, bandwidth, orbit parameters, geolocation errors, effective pixel coverage, and spectral
response function. To handle the heterogeneous characteristics, we employ a similar method to the
linear spectral mixture analysis [66–68] to distribute the temporal information of LSTLSR according to
the spatial details of LSTHSR. Thus, each HSR pixel may have different parameters of a and b. Then the
Equation (1) is reformed as:

LSTLSR(t) = a1,t

 1
N

N∑
i=1

(a2,iLSTHSR,i(t) + b2,i)

+ b1,t + ε(t) (2)

where LSTLSR(t) is LSR pixel value at time t. a1,t and b1,t are regression coefficients between two
satellites of the first layer at coarse resolution. N is the total number of HSR pixels corresponding to an
LSR pixel. LSTHSR,i(t) is the i-th HSR pixel value at time t. a2,i and b2,i are parameters of the second
layer for each HSR pixel at fine resolution. The pixel value of LSR LST can be considered as a two-layer
linear combination of HSR LSTs [34]. In the practical calculation, Equation (2) can be simplified by
merging the two-layer parameters as:

LSTLSR(t) =
1
N

N∑
i=1

(aiLSTHSR,i(t) + bi) + ε(t) (3)

Then, pMSRAFM requires at least two pairs of LSR and HSR imageries to solve Equation (3)
pixel by pixel within the LSR imagery. That is, the relationship between MODIS and Landsat-8 can be
conveniently expressed by Equation (3) in the following matrix form:

LSTMOD
LSR =

1
n2




LSTLat
1,1 LSTLat

1, j LSTLat
1,n

...
. . .

...
LSTLat

n,1 LSTLat
n, j LSTLat

n,n

×


a1,1 a1, j a1,n
...

. . .
...

an,1 an, j an,n

+


b1,1 b1, j b1,n
...

. . .
...

bn,1 bn, j bn,n


+ ε (4)

where n is the spatial resolution scaling factor between MODIS and Landsat-8, LSTLat
i, j is the pixel value

at location [i,j] in the Landsat-8 scene, and LSTMOD
LSR is the MODIS LST pixel value. Equations (3) and (4)

show the correspondence between LSTs at different spatial resolutions under ideal conditions. In order
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to solve Equation (4), the HSR pixels must be classified according to their response characteristics
to LST. Furthermore, given the complexity of LST retrieval from Landsat-8 data, we replace the
real HSR LST with the physical retrieval algorithm. To keep MODIS and Landsat-8 LST retrieval
algorithms consistent, the practical split-window algorithm (SWA) [69,70], as described by Du et al. [65],
was selected. The split-window algorithm is well-proven and widely used in LST retrieval from the
TIR sensor [71]. Then, the LST value of a Landsat-8 pixel with pixel type k can be approximated by
SWA as a multivariate quadratic equation:

LSTSWA
k = ak,0 + ak,1

(
BTi + BT j

)
+ ak,2

(
BTi − BT j

)
+ ak,3(BTi − BT j)

2 + εSWA (5)

where ak,0, ak,1, ak,2, and ak,3 are equation parameters related to the pixel type k. BTi and BTj are brightness
temperatures converted from the spectral radiance of Landsat-8 band 10 and band 11, respectively.
εSWA is the adjustment term due to the effects of spatial heterogeneity. For more information about this
SWA algorithm, please refer to Du et al. [65]. The LST retrieval algorithm generally relies on ground
surface information to characterize the spatial pattern [4]. As the most common environmental factors,
NDVI and DEM data can provide complementary information about the spatial variability of LST.
They are not only easy to obtain but also directly affect spatial distribution [72]. These two factors are
incorporated into the transfer function as covariables to minimize fusion error. Finally, the relationship
between MODIS LST and Landsat-8 data can be expressed mathematically by the equation as follows:

LSTMOD
LSR = 1

N

N∑
i=1

M∑
k=1

(
ak,1(BT10i + BT11i) + ak,2(BT10i − BT11i)

+ak,3(BT10i − BT11i)
2 + ak,4NDVIi + ak,5DEMi + bk

)
+ ε

(6)

where ak,1, ak,2, ak,3, ak,4, ak,5, and bk are the parameters of the transfer function. M is the total
number of HSR classifications. The parameters are determined by the least square method. Once the
optimal solution is determined, the HSR fused LST for the whole study area can be calculated by the
following equation:

LSTDF
HSR ≈

M∑
k=1

(
a′k,1(BT10k + BT11k) + a′k,2(BT10k − BT11k)

+a′k,3(BT10k + BT11k)
2 + a′k,4NDVI + a′k,5DEM + b′k

) (7)

where a′k,1, a′k,2, a′k,3, a′k,4, a′k,5, and b′k denote the optimal solution of Equation (6).

2.3.2. Adjustment for HSR Comparison

In order to analyze the relationship between the HSR fused LST and the Landsat-derived LST
under the same space-time basis, the value range of the HSR fused LST needs to be adjusted. Since the
HSR fused LST aims to preserve the temporal information of MODIS LST and capture the spatial
details of the Landsat-8, there is an observational difference between the HSR fused LST and reference
LST derived from Landsat. The difference mainly includes two sources: the first is satellite differences
in bandwidth, acquisition time, spectral response functions, geolocation errors, and atmospheric
correction [73]. The second is the accumulation of simulation errors, which arises from data quality
and the rationality of the transfer function. So, it is necessary to adjust the value range of the HSR fused
LST for a quantitative analysis of the relationship between the fused LST and Landsat-derived LST.
However, it is difficult to accurately estimate the distribution of differences without the corresponding
high-resolution reference LST. In this study, we use an indirect method to adjust the discrepancy to
fully verify the accuracy of the fusion result. We first calculate the LSR fused LST (LSTDF

LSR) of Landsat
and MODIS at low spatial resolution and use it as LSR reference LST. The LSTDF

LSR is generated based
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on MODIS emissivity and Landsat-8 brightness temperature according to the single-channel (SC)
method [50,74] as follow:

LSTDF
LSR =

BTLSR

1 + (λBTLSR/ρ) ln εLSR
(8)

BTLSR =
1
N

N∑
i=1

BTHSR,i (9)

ρ = h
c
σ

(10)

where εLSR is the MODIS Band 31 emissivity. BTLSR is the average brightness temperature of N pixels
of Landsat-8 band 10. λ is the center wavelength. σ is Boltzmann’s constant, 1.38 × 10−23 J/K, h is
Planck’s constant, 6.626 × 10−34 J, c is the velocity of light. The difference between the HSR fused LST
and Landsat-derived LST is estimated by analyzing the relationship between LSTDF

LSR and MODIS LST
LSTMODIS

LSR as follow:

LSTDF
HSR − LSTRe f

HSR ∝ LSTMOD
LSR − LSTDF

LSR (11)

To summarize, pMSRAFM is applied to LST fusion based on Landsat-8 and MODIS data. It involves
three major steps to solve the transfer function. The first is to calculate brightness temperatures and
NDVI from Landsat-8 data. The second step is to extract MODIS LST pixels according to the Landsat-8
scene acquisition date and geolocation. The final step is to determine the parameters of the transfer
functions and downscale MODIS LST into Landsat-8 spatial resolution while preserving the original
temporal properties. The detailed steps of pMSRAFM implemented for the LST fusion of Landsat-8
and MODIS data are described in Figure 4.
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2.3.3. Accuracy Assessment

There are many challenges in the evaluation of the satellite-derived LSTs. Compared to the
relatively large pixel observed by the satellite, most of the in situ LST observations are measured within
a very small area and may introduce significant differences to the satellite measurements [4]. Besides,
it is not sufficient to simply compare the fused LST with the ground measurements due to the scarcity
and uneven distribution of in situ stations with the lack of observations at satellite overpass time.
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To fully evaluate the performance of pMSRAFM for generating Landsat-like daily LST, a comprehensive
evaluation has been made with three types of reference data. First, LSTDF

HSR is resampled and compared
with MODIS LST product. Second, LSTDF

HSR is direct pixel-by-pixel comparison with the reference LST
derived from Landsat. Finally, the satellite-derived LSTs are compared with the in situ observations.
Evaluation metrics included the correlation coefficient (R), bias, standard deviation (STD), root mean
square error (RMSE), structural similarity index (SSIM) [75], and the index of agreement (d) [76].
Bias, RMSE, STD, and d are used to quantitatively validate the difference between the selected LST
product and reference LST. SSIM is used to describe the closeness of spatial similarity. They are
calculated using the following equations:

Bias =
1
S

S∑
i=1

(
LSTre f

i − LSTobj
i

)
(12)

STD =

√√√
1

S− 1

S∑
i=1

∣∣∣∣∣∣∣LSTobj
i − LSTre f

i −
1
S

S∑
i=1

(
LSTobj

i − LSTre f
i

)∣∣∣∣∣∣∣ (13)

RMSE =

√√√
1
S

S∑
i=1

(
LSTobj

i − LSTre f
i

)2
(14)

d = 1−
ΣS

i=1

(
LSTobj

i − LSTre f
i

)2

ΣS
i=1

(∣∣∣∣LSTobj
i − µre f

∣∣∣∣+ ∣∣∣∣LSTre f
i − µre f

∣∣∣∣)2 (15)

where LSTobj
i is the selected LST to be evaluated, LSTre f

i is the reference LST. i denotes the pixel index.
S is the number of samples. µref was the mean of LSTref. The d is a standardized measure of the
degree of model simulation error and varies between 0 and 1. A value of 1 indicates a perfect match,
and 0 indicates no agreement at all [77]. The SSIM is a measure of the structural similarity of two
images [78–80]. It considers similarity degrees of luminance, contrast, and structure of two images [75].
The larger the SSIM value, the better, and the maximum is 1. To standardize the LST range, x and y are
divided by their maximum value, respectively. Mathematically, the modified SSIM is defined as:

x =
LSTobj

max
(
LSTobj, LSTre f

) , y =
LSTre f

max
(
LSTobj, LSTre f

) (16)

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C1

) (17)

where σ and σxy denote the standard deviation and cross-correlation between x and y, respectively. C1

and C2 are two positive stabilizing constants [80].

3. Results

The performance of pMSRAFM was evaluated by comparing the HSR fused LST with MODIS
LST products, and the LSTs directly derived from Landsat-8 and in situ observations. The evaluation
methods involved visual comparison and statistical indicators. Two pairs of MODIS and Landsat images
acquired on 13 September 2015 and 16 July 2017 were used as the primary inputs, named Case 1 and
Case 2, respectively. In each case, the MOD11A1 and MOD11_L2 were used to be fused with Landsat-8,
respectively. To analyze different types of MODIS data, we conducted a comparative experiment
based on MOD11_L2 data, which was divided into two scenarios and labeled “MOD11L2_a” and
“MOD11L2_b”. A total of six experiments were conducted to evaluate the performance of pMSRAFM.



Sensors 2020, 20, 4337 11 of 23

For visual comparison, all spatial maps were rotated clockwise by 18◦. In each case, pMSRAFM shared
the same HSR data, but the MODIS data was different. Therefore, we named each experiment with the
MODIS LST product name to distinguish each fusion result below.

3.1. Fusion Results of Case 1

The LST fusion of MOD11A1 and Landsat-8 was constrained to pixels that: the local time of
MOD11A1 pixel observation was limited to 11:42 ~ 11:48 a.m., the zenith angle was within the range
from 60◦ to 63◦, and there was no invalid value in the corresponding Landsat pixel block. The final
selected pixels accounted for 80.15% of the total number of MODIS pixels. The number of land cover
classes was set to 7 according to the FROM-GLC data. The observation time of MOD11L2_a was limited
to 10:06~10:12 and the difference with LSTDF

LSR was less than 0. The final selected pixels accounted
for 44.68% of the total. As for MOD11L2_b, the observation time was limited to 11:42~11:48 and the
difference with LSTDF

LSR was greater than 0. The final selected pixels accounted for 36.04% of the total.
Because all the fused LSTs shared the same model and auxiliary data, their comparisons with reference
LSTs were feasible. The temporal and spatial accuracy of the fusion results in Case 1 were evaluated
from the following three aspects:

3.1.1. Comparison with MODIS LST

A pixel-by-pixel comparison between the HSR fused LSTs and the MODIS LSTs was conducted
to quantify the fusion accuracy at the low spatial resolution. To ensure the consistency of spatial
resolution, the HSR fused LSTs were aggregated to MODIS-like resolution. Figure 5 illustrates the
comparison results between the HSR fused LSTs(y-axis) and their corresponding MODIS LST products
(x-axis): Figure 5a LSTDF1

HSR vs. MOD11A1 LST, Figure 5b LSTDF2
HSR vs. MOD11L2_a LST, and Figure 5c

LSTDF3
HSR vs. MOD11L2_b LST on 13 September 2015, respectively. The results show an overall good

agreement between the HSR fused LSTs and MODIS LSTs with R2 > 0.7 and d > 0.9. MOD11A1 has the
most samples but the lowest accuracy with R = 0.85, STD = 1.31, bias = 0.04, and RMSE =1.31. Figure 5b
shows that the difference between the LSTDF2

HSR and MOD11L2_b is minimal with RMSE = 0.76, bias = 0,
and d = 0.91. Most of the evaluation indicators in Figure 5c are the best with R = 0.93, d = 0.96,
and RMSE = 0.92, which indicates that the LSTDF3

HSR retains most of MODIS LST information. MOD11L2
LST has a better precision compared to MOD11A1. Although a few pixels show significant differences,
the HSR fused LSTs and MODIS LSTs maintain a high consistency at low spatial resolution.
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Figure 5. Scatter plots of the HSR fused LST (LSTDF
HSR) against its corresponding MODIS LST product in

Case 1 on 13 September 2015. (a) MOD11A1 vs LSTDF1
HSR. (b) MOD11L2_a vs LSTDF2

HSR. (c) MOD11L2_b
vs LSTDF3

HSR. The HSR fused LST is resampled to match the spatial resolution of MODIS LST.

The spatial distributions of the HSR fused LSTs and reference LSTs of Case 1 are mapped and
shown in Figure 6. Figure 6a,c,e and Figure 6b,d,f are MODIS LSTs and their corresponding HSR
fused LSTs, respectively. The SSIM ranges from 0.66 to 0.86, indicating a significant spatial similarity.
Figure 6g,h are the resampled reference LSTs. Visually, it can be clearly seen that the spatial pattern
of the HSR fused LST is closer to that of reference LST. The HSR LSTs present more delicate spatial
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details and show a high correlation between them. Figures 5 and 6 indicate that the spatiotemporal
information of the MODIS LST is well reflected in the HSR fused LST.
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Figure 6. The spatial distributions of the MODIS LSTs (a,c,e), HSR fused LSTs (b,d,f), and reference
LSTs (g,h) of Case 1 on 13 September 2015. The HSR fused LSTs and reference LSTs are resampled to
match the spatial resolution of MODIS LST.

3.1.2. Comparison with Landsat-Derived LST

Since the primary goal of pMSRAFM is to improve the spatial resolution of the LSR data meanwhile
retaining its temporal information, we pay more attention to the spatial pattern of the HSR fused
LSTs at high spatial resolution. The spatial distribution and frequency histogram of the HSR fused
LSTs and reference LSTs are shown in Figure 7, and the comparison results are summarized in
Table 2. It can be seen from Figure 7 that the LST spatial variations of the five maps are highly similar.
Compared with Figure 6, the spatial pattern of the fused LST, especially the fusion result of MOD11L2,
is visually improved and more similar to that of the reference LST. The fused LST and reference LST
are approximately the same in spatial variation with the terrain. Although the LST ranges (maximum
and minimum) are different, the reference LST and fused LST match well in terms of the spatial details.
It is observed from the frequency histogram that the reference LST is significantly higher than the
fusion LST. Figures 6 and 7 illustrate the fused LST captures the spatial pattern of Landsat LST and
retains the original value range of MODIS LST.
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Figure 7. The spatial distribution and frequency histogram of reference LSTs (a,b) and the fused LSTs
(c–e) in Case 1 on 13 September 2015.

Table 2. The comparison results of the fused LSTs and MODIS LSTs with reference LSTs in Case 1.

LST Product Reference LST SSIM d STD Bias RMSE R Sample

MOD11A1 LSTSWA
LSR 0.50 0.75 2.18 1.95 2.92 0.71 2633

MOD11A1 LSTSC
LSR 0.51 0.76 2.07 1.68 2.67 0.70 2633

LSTDF1
HSR LSTSWA

HSR 0.65 0.76 3.00 1.79 3.49 0.73 3,490,550
LSTDF1

HSR LSTSC
HSR 0.77 0.79 2.66 1.55 3.08 0.76 3,490,550

MOD11L2_a LSTSWA
LSR 0.69 0.57 1.12 2.71 2.93 0.83 1323

MOD11L2_a LSTSC
LSR 0.70 0.61 1.01 2.30 2.51 0.82 1323

LSTDF2
HSR LSTSWA

HSR 0.83 0.84 2.22 1.64 2.76 0.91 3,481,102
LSTDF2

HSR LSTSC
HSR 0.85 0.87 1.93 1.41 2.39 0.92 3,481,102

MOD11L2_b LSTSWA
HSR 0.80 0.93 1.48 −0.47 1.55 0.91 1184

MOD11L2_b LSTSC
HSR 0.81 0.93 1.37 −0.62 1.50 0.90 1184

LSTDF3
HSR LSTSWA

HSR 0.80 0.92 1.99 −0.20 2.00 0.91 3,495,457
LSTDF3

HSR LSTSC
HSR 0.88 0.94 1.69 0.03 1.69 0.92 3,495,457

As shown in Table 2, SSIM, d, bias, and R are improved after fusion, and the best agreement
occurs in MOD11L2_b with SSIM ≥ 0.8 and R ≥ 0.9. Figure 7 and Table 2 indicate that the fused LST is
substantially the same as the reference LST in the spatial pattern, despite the observational differences.
From the perspective of SSIM and d, the fused LSTs are closer to LSTSC

HSR. The SSIM ranges from 0.77 to
0.88, and the d ranges from 0.79 to 0.94. The LSTDF3

HSR is the best fused LST in terms of SSIM and d. It is
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suggested that pMSRAFM will be practically useful for the LST fusion when the relationship between
the paired satellite data can be linearly modeled. Overall, the fusion results of MOD11_L2 are better
than that of MOD11A1. Other indicators are also calculated as measures of accuracy. It is found that
the bias is less than 2 ◦C, and RMSE ranges from 1.7 to 3.5 ◦C. Further contrastive analysis is discussed
in Section 3.3.

3.1.3. Validation with In Situ Observations

The HSR fused LST was also compared with in situ observations at the same time. Four stations in
the study area were available to evaluate the accuracy of fusion results in Case 1. The error probability
was estimated through the Gaussian distribution of the difference between the LSR fused LST and
MODIS LST. In addition, the MODIS LSTs and in situ observations were compared to analyze the
accuracy under different spatial resolutions. The results are shown in Figure 8. From Figure 8a,
the bias of the fused LSTs and MODIS LSTs is in the acceptable range (−2.1~0.6 ◦C). The mean absolute
errors between the fused LSTs and in situ observations are 2.1 ◦C, 0.6 ◦C, and 0.6 ◦C, respectively.
After fusion, the absolute value of bias of MOD11A1 becomes larger, while that of MOD11L2 becomes
smaller. Figure 8b shows that the fusion error of MOD11L2 is relatively stable and smaller than that of
MOD11A1 LST. The fusion result of MOD11L2_b is the best. By contrast, there is some uncertainty in
the fusion result of MOD11A1, which underestimates the real LST by 2 ◦C. Overall, most of the errors
are concentrated in the range −22 ◦C, so the fusion results are satisfactory. From the probability of
error occurrence, the smaller the absolute value of the error, the higher the probability. The maximum
probability is 0.38, and the minimum probability is 0.09. The comparisons with in situ observations in
Case 1 indicate that the LST generated by pMSRAFM could depict the spatial distribution of the real
LST within a reasonable error range.
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3.2. Fused Results of Case 2

Similar to Case 1, the pixels of each MODIS LST product of Case 2 were also filtered under
different constraints. The pixel of MOD11A1 was constrained to that: the local time of MOD11A1 pixel
observation was limited to 11:42 ~ 11: 48, the zenith angles were within the range from 60◦ to 62◦,
and there was no invalid value in the corresponding Landsat pixel block. The final selected pixels
accounted for 85.48% of the total. The number of land cover classes was set to 9 according to the
FROM-GLC data. The observation time of MOD11L2_a pixel was limited to 10:06 and the difference
with LSTDF

LSR was less than 0. The final selected pixels accounted for 62.34% of the total. The observation
time of MOD11L2_b pixel was limited to 11:42. The final selected pixels accounted for 38.99% of the
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total. Based on the above dataset, we used pMSRAFM to generate three kinds of daily LST with 30 m
resolution to further verify its universality.

3.2.1. Comparison with MODIS LST

Figure 9 shows the pixel-by-pixel comparisons between HSR fused LSTs and MODIS LSTs.
As expected, there is a significant correlation between them. The d ranges from 0.75 to 0.89, and the
range of R2 is 0.65~0.77. Overall, the R is greater than 0.8, bias is less than 0.05 ◦C, and RMSE yields a
range of 0.93~1.53 ◦C. The spatial distributions of the fused LSTs and their corresponding MODIS LST
products are shown in Figure 10. Figure 10g,h is the resampled reference LSTs. As can be seen from
Figure 10, the spatial patterns of the fused LSTs and MODIS LST products are similar, especially in
‘hot’ areas, and the range of SSIM is from 0.66 to 0.83. Another proof that the fused LST retains most of
the spatial and temporal information of MODIS LST and is closer to the spatial pattern of reference
LST at the low spatial resolution.
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Figure 9. Scatter plots of the HSR fused LST (LSTDF
HSR) against its corresponding MODIS LST product

in Case 2 on 16 July 2017. (a) MOD11A1 vs LSTDF1
HSR. (b) MOD11L2_a vs LSTDF2

HSR. (c) MOD11L2_b vs
LSTDF3

HSR. The HSR fused LST is resampled to match the spatial resolution of MODIS LST.
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Figure 10. The spatial distributions of the MODIS LSTs (a,c,e), HSR fused LSTs (b,d,f), and reference
LSTs (g,h) of Case 2 on 16 July 2017. The HSR fused LSTs and reference LSTs are resampled to match
the spatial resolution of MODIS LST.
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3.2.2. Comparison with Landsat-Derived LST

The spatial distributions with frequency histogram of reference LST and the fused LST in Case 2
are shown in Figure 11. As can be seen from the five maps, their spatial patterns are highly coherent
and consistent. Intuitively, the spatial pattern of the fused LST is substantially similar to that of the
reference LST. Although each LST has a unique value range, most of its data is concentrated in the
range of 20 ◦C ~ 40 ◦C. Table 3 summarizes the statistical results of the fused LSTs and MODIS LSTs
compared with reference LSTs at different spatial resolutions. As expected, pMSRAFM performs well
in the spatial pattern simulation of Case 2, in which the SSIM ranges from 0.80 to 0.88. Table 3 and
Figure 11 show the fused LST tends to share a similar spatial pattern of reference LST derived by the SC
algorithm. Again, the fusion result of MOD11L2_b has the best evaluation indicators, and MOD11L2 is
better than MOD11A1.

Sensors 2020, 20, x FOR PEER REVIEW 16 of 23 

 

3.2.2. Comparison with Landsat-Derived LST 

The spatial distributions with frequency histogram of reference LST and the fused LST in Case 
2 are shown in Figure 11. As can be seen from the five maps, their spatial patterns are highly coherent 
and consistent. Intuitively, the spatial pattern of the fused LST is substantially similar to that of the 
reference LST. Although each LST has a unique value range, most of its data is concentrated in the 
range of 20 °C ~ 40 °C. Table 3 summarizes the statistical results of the fused LSTs and MODIS LSTs 
compared with reference LSTs at different spatial resolutions. As expected, pMSRAFM performs well 
in the spatial pattern simulation of Case 2, in which the SSIM ranges from 0.80 to 0.88. Table 3 and 
Figure 11 show the fused LST tends to share a similar spatial pattern of reference LST derived by the 
SC algorithm. Again, the fusion result of MOD11L2_b has the best evaluation indicators, and 
MOD11L2 is better than MOD11A1. 

 

Figure 11. The spatial distribution and frequency histogram of reference LSTs (a,b) and the fused 
LSTs (c,d,e) in Case 2 on 16 July, 2017. 

The fused LSTs and MODIS LSTs were compared pixel-by-pixel with the reference LSTs to 
explore changes in evaluation indicators before and after fusion. As shown in Table 3, MODIS LSTs 
are also relatively consistent with the reference LSTs generated by the SC algorithm. Indicators for 
evaluating the spatial pattern are improved by the fusion process. SSIM, d, and R increase by an 
average of 30%, 19%, and 9%, respectively. STD, bias, and RMSE are partially improved, but not 
significantly. MODIS LST and fused LST are roughly similar in these indicators. It is found both the 
average values of bias and RMSE are above 4 °C at the low spatial resolution before fusion, which 
indicates Landsat-derived LSTs are 4 °C higher than MODIS LSTs. The average value of bias after 
fusion is 3.7 °C, which is slightly smaller than that of the original MODIS LSTs, suggesting a minor 
improvement. Furthermore, it indicates that the fused LST not only possess the spatial pattern of 
Landsat-derived LST but also inherits most of the temporal properties of MODIS LST at the same 
time. From the above visual comparison and statistical results, pMSRAFM substantially improved 
the spatial pattern of MODIS LST products with higher accuracy. 
  

Figure 11. The spatial distribution and frequency histogram of reference LSTs (a,b) and the fused LSTs
(c–e) in Case 2 on 16 July, 2017.

The fused LSTs and MODIS LSTs were compared pixel-by-pixel with the reference LSTs to explore
changes in evaluation indicators before and after fusion. As shown in Table 3, MODIS LSTs are also
relatively consistent with the reference LSTs generated by the SC algorithm. Indicators for evaluating
the spatial pattern are improved by the fusion process. SSIM, d, and R increase by an average of
30%, 19%, and 9%, respectively. STD, bias, and RMSE are partially improved, but not significantly.
MODIS LST and fused LST are roughly similar in these indicators. It is found both the average
values of bias and RMSE are above 4 ◦C at the low spatial resolution before fusion, which indicates
Landsat-derived LSTs are 4 ◦C higher than MODIS LSTs. The average value of bias after fusion is 3.7 ◦C,
which is slightly smaller than that of the original MODIS LSTs, suggesting a minor improvement.
Furthermore, it indicates that the fused LST not only possess the spatial pattern of Landsat-derived
LST but also inherits most of the temporal properties of MODIS LST at the same time. From the above
visual comparison and statistical results, pMSRAFM substantially improved the spatial pattern of
MODIS LST products with higher accuracy.
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Table 3. The comparison results of the fused LSTs and MODIS LSTs with reference LSTs in Case 2.

LST Product Reference LST SSIM d STD Bias RMSE R Sample

MOD11A1 LSTSWA
LSR 0.65 0.48 2.19 5.48 5.90 0.74 2808

MOD11A1 LSTSC
LSR 0.66 0.59 1.93 3.56 4.06 0.73 2808

LSTDF1
HSR LSTSWA

HSR 0.80 0.55 2.67 5.42 6.04 0.76 3,473,959
LSTDF1

HSR LSTSC
HSR 0.84 0.65 2.27 3.58 4.24 0.77 3,473,959

MOD11L2_a LSTSWA
LSR 0.74 0.49 1.79 4.74 5.07 0.77 2048

MOD11L2_a LSTSC
LSR 0.77 0.65 1.38 2.75 3.08 0.81 2048

LSTDF2
HSR LSTSWA

HSR 0.85 0.63 2.54 4.03 4.76 0.78 3,467,619
LSTDF2

HSR LSTSC
HSR 0.87 0.76 2.07 2.21 3.03 0.81 3,467,619

MOD11L2_b LSTSWA
HSR 0.58 0.54 2.36 5.39 5.88 0.73 1279

MOD11L2_b LSTSC
HSR 0.58 0.66 2.13 3.35 3.97 0.72 1279

LSTDF3
HSR LSTSWA

HSR 0.88 0.67 1.86 4.44 4.82 0.89 3,434,430
LSTDF3

HSR LSTSC
HSR 0.88 0.79 1.59 2.63 3.08 0.88 3,434,430

3.2.3. Validation with In Situ Observations

For Case 2, at the observation time of MODIS LST products, a total of three stations have
corresponding observation records that can be used to verify the fusion accuracy. The validation
results are shown in Figure 12. Figure 12a shows the bias of the HSR fused LSTs and MODIS LSTs
against in situ observations. Obviously, the bias is distributed between −3 and 3 ◦C. After fusion,
the absolute value of bias is reduced by 58%, 31%, and 34%, respectively. The fusion process can reduce
bias significantly. The relative reduction in bias among three experiments indicates that pMSRAFM
performs well in the disaggregation of MODIS LSTs. Figure 12b displays the distribution of errors
and their corresponding probabilities. It can be seen 78% of fusion errors in Case 2 are within 2 ◦C,
and the mean absolute error is 1.7 ◦C. The error distribution shows that the larger the absolute value of
the error, the lower the probability of occurrence. The results show that compared with the original
MODIS LST product, the fused LST can provide more accurate and reliable information.
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3.3. Comparison with Reference LSTs with Adjustment

The comparison and analysis of fused LST and reference LST derived from Landsat-8 provide a
reasonable assessment of the spatial pattern generated by pMSRAFM. Overall, the above comparisons
of the two cases show a high degree of consistency. However, uncertainty remains mainly due to
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differences in LST observations between the two satellites [45]. The orbit parameters of MODIS and
Landsat are approximately equal [43], but the data quality, inversion methods, scale effects, and so
on will lead to error. Although the spatial similarity can be evaluated by SSIM and R, the direct
comparison pixel values of Landsat-derived LST and fused LST need to be adjusted to reduce the range
difference. Theoretically, under clear-sky conditions, the change of LST from 10:00 a.m. to 12:00 a.m.
should be approximately a linear upward process. However, these two satellite-derived LSTs did not
completely follow this rule in the above two cases (Tables 2 and 3), in which Landsat-derived LSTs are
higher than MODIS LSTs. It is worth mentioning that the bias between reference LSTs and fused LSTs is
roughly equal to the bias between reference LSTs and MODIS LSTs. That means these differences were
transferred from LSR LST to HSR LST. It provides an operational way for adjusting the HSR fused LST,
making it closer to the HSR reference LST. So, a cross-scale adjustment was performed by using the
bias of the MODIS LST and LSTDF

LSR as the observation difference (∆LST) of reference LST and fused
LST. Because ∆LST only changes the range of the HSR fused LST, without affecting the spatial pattern,
d, bias, and RMSE were used to re-evaluate the accuracy of fusion results.

The comparisons between reference LSTs and the fused LSTs before and after adjustments are
shown in Table 4. It can be found that the reference LSTs are higher than the fused LSTs with the
averaged d of 0.76, bias ranging from −0.03 to 5.42 ◦C and RMSE ranging from 1.69 ◦C to 6.04 ◦C.
After the adjustment, d varies from 0.84 to 0.93, bias ranges from −2.0 ◦C to 2.2 ◦C, and RMSE ranges
from 1.6 ◦C to 3.4 ◦C. Except for MOD11L2_b in Case 1, the differences between reference LSTs and
fused LSTs are significantly reduced after the adjustment. In Case 1, the adjustment to MOD11L2_b
does not reduce errors as much as that to MOD11A1 and MOD11L2_a, which may be related to the
data quality of the LSR pixels involved in the fusion. Even so, its evaluation indicator is slightly better
than that of MOD11A1. By contrast, the effect of the adjustment is more pronounced in Case 2, with d
increased by 15%, bias decreased by 84%, and RMSE decreased by 30%. The improvement of these
indicators confirms the rationality of cross-scale adjustment and the spatiotemporal reliability of the
fused LSTs. It further indicates that pMSRAFM used for LST fusion can achieve similar results as the
Landsat-8 LST retrieval algorithm with a relatively high agreement (the average d of 0.84).

Table 4. The comparisons between reference LSTs and the fused LSTs before and after adjustments.

No Fused
LST

Reference
LST

d Bias RMSE
Adjustment

∆LST d Bias RMSE

Case1

LSTDF1
HSR LSTSWA

HSR 0.76 1.79 3.49 −0.89 0.79 0.90 3.13
LSTDF1

HSR LSTSC
HSR 0.79 1.55 3.08 −0.89 0.82 0.66 2.74

LSTDF2
HSR LSTSWA

HSR 0.84 1.64 2.76 −1.44 0.89 0.20 2.23
LSTDF2

HSR LSTSC
HSR 0.87 1.41 2.39 −1.44 0.91 −0.03 1.93

LSTDF3
HSR LSTSWA

HSR 0.92 0.20 2.00 −1.37 0.88 1.57 2.54
LSTDF3

HSR LSTSC
HSR 0.94 −0.03 1.69 −1.37 0.91 1.33 2.16

Case2

LSTDF1
HSR LSTSWA

HSR 0.55 5.42 6.04 −5.59 0.80 −0.17 2.68
LSTDF1

HSR LSTSC
HSR 0.65 3.58 4.24 −5.59 0.75 −2.01 3.03

LSTDF2
HSR LSTSWA

HSR 0.63 4.03 4.76 −1.83 0.74 2.20 3.36
LSTDF2

HSR LSTSC
HSR 0.76 2.21 3.03 −1.83 0.86 0.38 2.11

LSTDF3
HSR LSTSWA

HSR 0.67 4.44 4.82 −2.54 0.85 1.90 2.66
LSTDF3

HSR LSTSC
HSR 0.79 2.63 3.08 −2.54 0.93 0.09 1.59

4. Conclusions

This study proposed an operational data fusion framework, named pMSRAFM, for generating the
synthetic LST based on the assumption that the correspondence between LSTs at different resolutions
or from different sources can be linearly modeled. The synthetic LST was designed to not only preserve
the LSR LST temporal information but also has the spatial pattern of HRS LST. The pMSRAFM
was implemented and applied to automatically retrieve LST based on Landsat-8 and MODIS data,
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which presented several improvements over the previous fusion techniques. The most significant
improvement is to incorporate an SWA algorithm to establish the linkage between LSR LST and HSR
TIR data. Therefore, it only needs a pair of LSR and HSR data, and the HSR data can be reused.
This advantage will be significant when pMSRAFM is applied to reconstruct a long-term LST dataset
with high spatial resolution. Another merit of pMSRAFM is to address the spatial heterogeneity
using the linear spectral mixture analysis. It disaggregates LSR LST by using land cover data as the
main distribution factor and BT, NDVI, DEM as covariates. These auxiliary datasets contribute to
pMSRAFM obtain more accurate spatial details to deal with surface heterogeneity and reduce fusion
errors. Especially the inclusion of HSR BT data is more effective to account for LST variations. Since the
fusion processes are executed automatically to fully explore and make the best use of abundant
information derived from the existing satellite data, pMSRAFM can be served as an automated data
fusion system for regional environmental change research that expects high-quality LST dataset,
but lack of ground observations.

In order to evaluate the performance of pMSRAFM, two cases with six experiments were carried
out in the Heihe River basin, China. The fusion accuracy was separately analyzed by comparing the
fused LSTs with different reference LSTs. Compared with MODS LSTs, the bias was approximately
equal to 0, and RMSE was less than 1.6 ◦C. When compared with Landsat-derived LSTs, the SSIM
was greater than 0.8, d was higher than 0.74, and RMSE was less than 3.4 ◦C. The errors between the
fused LSTs and in situ observations of LST stations within the study area mainly ranged from −2 ◦C
to 2 ◦C with the average absolute error of 1.3 ◦C. The comprehensive comparison with MODIS LSTs,
Landsat-derived LSTs, and in situ observations proved the rationality and feasibility of pMSRAFM,
which could closely capture the spatial pattern of Landsat-derived LST and retain the temporal
information of MODIS LST. Besides, the observational differences between these two satellites were
fully considered, and the fusion error was estimated by Gaussian distribution. The results revealed
that the greater the discrepancy, the lower the probability, and vice versa. Moreover, it also indicated
that pMSRAFM could achieve similar results as the Landsat-8 LST retrieval algorithm and the average
d was 0.84. Hence, the proposed framework provides a practical method for joint retrieval of LST from
MODIS and Landsat data, which would be useful for areas lacking in situ observations.

pMSRAFM is not only applicable to the LST fusion of MODIS and Landsat but is also suitable
for the data fusion of other LST-related variables to enhance their temporal frequency and spatial
resolution. One potential application is to characterize and quantify the spatiotemporal dynamics of
regional environment, as well as change detection, target recognition. However, it should be noted that
further improvements are needed in three aspects. First, a modular will be introduced to deal with
the spatial allocation of fusion error in the follow-up development. Second, subsequent updates will
focus more on surface dynamics to improve the reusability of HSR data and predictive ability. Finally,
it is essential to incorporate in situ observations into the fusion process for constructing a continuous
data series. This study made an initial attempt to develop a multi-source data fusion framework,
aiming to generate a more continuous LST series with high spatial resolution. The synthetic products
will alleviate the urgent need for timely and accurate monitoring of surface dynamics. In the future,
more extensive verification tests will be carried out, with further optimization and improvement
of pMSRAFM.
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