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Abstract: Railway inspection has always been a critical task to guarantee the safety of the railway
transportation. The development of deep learning technologies brings new breakthroughs in the
accuracy and speed of image-based railway inspection application. In this work, a series of one-stage
deep learning approaches, which are fast and accurate at the same time, are proposed to inspect the
key components of railway track including rail, bolt, and clip. The inspection results show that the
enhanced model, the second version of you only look once (YOLOv2), presents the best component
detection performance with 93% mean average precision (mAP) at 35 image per second (IPS), whereas
the feature pyramid network (FPN) based model provides a smaller mAP and much longer inference
time. Besides, the detection performances of more deep learning approaches are evaluated under
varying input sizes, where larger input size usually improves the detection accuracy but results in a
longer inference time. Overall, the YOLO series models could achieve faster speed under the same
detection accuracy.
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1. Introduction

Automatic inspection of railway track has always been attached great significance to the massive
construction of railway network. In the research on railway inspection system, many scholars focused
on infrastructure systems [1], surface defects detection [2,3], and fastener detection [4,5], etc. To prevent
train derailments and other severe accidents due to deficient or lapsed railway components, it is
indispensable to perform regular inspection on railway track components including the rails, bolts,
and clips (as in Figure 1a), where bolts are used to fasten rail ends together at a joint and the rail
elastic clips are used with rail sleeper to fasten rails. Clips and bolts together form fasteners [6].
Traditional methods, either manual inspection or specialized machines, are time-consuming and
require skillful technicians [7]. With the continuous expansion of the railway network system,
vision-based technologies, which usually take the railway track images as input to extract visual
features, have been increasingly popular as they improve the efficiency of component detection work.
Aytekin et al. [4] utilized a high-speed laser range finder camera with combination of histogram features
and implemented real-time railway fasteners inspection. Xia et al. [8] extracted Haar-like features
through railway images and identified the fastener state by the adaptive boosting (AdaBoost) algorithm.
Similarly, a combination of support vector machines (SVM) classifier and histogram of oriented gradient
(HOG) features were also proposed for railway track inspection [9]. Khan et al. [10] introduced a
machine vision-based technique which used Shi-Tomasi and Harris-Stephen features to automatically
detect the rail line anchors. Marino et al. [5] presented two multilayer perceptron neural classifiers to
process image data from two discrete wavelet transforms to detect the fastening bolts. Li et al. [11]
combined evidence from multiple cameras, global positioning system, and distance measurement
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instrument to robustly detect ties, tie plates, and anchors of railway system. These traditional
vision-based methods facilitate the inspection of railway track components with reduced manpower
and equipment resources. However, the detection accuracy could easily stagnate because it is hard to
manually design accurate and robust feature descriptors for all the railway components due to the
diversity of shapes and backgrounds [12].
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In recent years, the deep learning methods have attracted much attention from the research world
due to the rapid development of graphics processing units (GPUs), which increases the computing
power and greatly shortens the training time. The emergence of deep learning methods makes it more
achievable to obtain state-of-art results on railway track component detection. Convolutional neural
network (CNN), as a category learning method, can map data into nonlinear space and automatically
extract potential features, which are more complex and more robust to images containing noises [12].
Some classic CNN models inspired by human visual cortex system, for example, GoogLeNet [13],
visual geometry group (VGG) [14], and residual network (ResNet) [15], are originally put forward
for image classification. To implement component detection, or more generally, objects detection,
the localization and classification of objects are required to label the existing objects with rectangular
bounding boxes and also show the confidences of detection. Two types of frameworks are mainly used
in generic object detection. One follows two-stage object detection pipeline which includes a region
proposal network and a fine-tuned network. The other treats object detection as a regression problem
and directly predicts the locations and classes, without the region proposal stage. For two-stage
methods, Girshick et al. [16] proposed regions with CNN features (R-CNN), which attained distinct
improvements in accuracy of objects detection, and is seen as a major breakthrough in the field of
object detection. Subsequently, a series of R-CNN based detection methods have been propound to
accelerate the detection speed, including fast R-CNN [17] that finally branches into two output parts:
the bounding box predictions and the classifications, faster R-CNN [18] that develops region proposal
network to speed up testing. Lin et al. [19] constructed a feature pyramid network (FPN), a generic
feature pyramids extractor inside deep convolutional nets that helped detection models to detect
objects across a large range of scales. Ye et al. [20] proposed a fusion refine neural network (FR-Net)
based on CNN to detect objects ahead in railway shunting mode. FR-Net still applied a two-step
strategy: coarse detection module refines locations and prior anchors, finer detection module for more
accurate object locations and classifications. Shang et al. [21] applied CNN on cropped rail images to
build a two-stage pipeline for localizing and classifying rail defects.

Up till now, the two-stage object detection algorithms have realized high detection accuracy, but the
inference time is still intolerable for certain applications, such as real-time pedestrian detection [22] and
video analysis [23]. Also, it is hard to optimize each component in this complex pipeline. To address
these disadvantages, faster object detection models, such as single shot multibox detector (SSD) [24],
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RetinaNet [25], and you only look once (YOLO) [26] are proposed. These detection models are called
“one-stage” approaches because they unified the region proposal, feature extraction, and classification
regression into one deep network. The YOLO model is the very first attempt to build a real-time object
detector. As YOLO only passes through the network once to get the predictions, it can upgrade the
speed of detection and do inference fast [26]. SSD is one of the first attempts using FPN in CNN
for efficient object detection of various sizes. Different from YOLO, SSD utilizes anchors to predict
bounding boxes, which is much easier than directly predicting bounding boxes from scratch. Also with
the application of anchor boxes, YOLOv2 [27] has been put forward as an enhanced version of YOLO.
It provides a solution to small object detection problems with a much larger number of object categories
by combining high resolution features and low-resolution features. Additionally, YOLOv2 implements
multiscale training to adapt to various image sizes. Later on, YOLOv3 [28] was put forward with
“more advanced” design tricks containing multiscale prediction output and more complex feature
extractor. Yanan et al. [29] took advantage of YOLOv3 algorithm to realize rail surface defect detection.
The results were shown as accurate and fast. The inference time of YOLOv3 increased because of
large number of layers. To raise the inference speed and make sure detection accuracy at the same
time, the partial residual network based YOLOv3 model (YOLOv3-PRN) was then initiated [30].
Lin et al. [25] also introduced the RetinaNet as a one-stage dense object detector which makes use of
FPN and focal loss as two crucial building blocks.

So far, the one-stage detection models have achieved great success on classic image datasets,
but few of them were put into applications on specific railway detection tasks. This paper focuses
on railway track component detection based on YOLO family models. Different from the above
works applied to large and general datasets, our model focuses on small railway track image dataset.
By optimizing the parameters and comparing between other deep learning models, our work can
obtain the best detection performance on railway track component detection in a limited dataset.
The railway track images utilized in this study are provided by the Hong Kong Metro Corporation
(MTR). Figure 1b displays the image acquisition system used for image collection. Two cameras and
six LED lights are installed under the train. Because of the vibration when the train is running, images
are taken from different angles and under different illumination conditions. The detection performance
of models is evaluated in terms of detection accuracy, detection speed, and robustness against varying
input resolutions.

The major contributions of this work are summarized as follows:

• To improve object detection results, we adjusted the detection layers of one-stage network to
enhance the performance and optimize the parameters. The different size of anchors and inputs
are also discussed to make the conclusion more reasonable.

• According to experiments, the advantages and limitations of the state-of-art YOLO models are
revealed. The YOLOv3 shows no advantage in the component detection even it has finer feature
extraction and more complicated structure of network.

• This paper provides a novel view of the research field, as it differs from existing papers in terms of
the specific application on railway component detection. The success of representative one-stage
models on railway track components detection can offer practical guidance on other industrial
detection tasks such as track defects diagnosis.

2. Methodology

The models used in railway track component detection are all one-shot detection models which
require only a single pass through the neural network and predicts all the bounding boxes in one go.
In this section, some representative one-stage detectors such as YOLO, YOLOv2, and YOLOv3 are
introduced. Based on the YOLO series models, we proposed YOLOv2 and YOLOv3 with anchors
adjusted to batter adapt to our dataset.
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2.1. YOLO Series

The YOLO model is built on the basis of Darknet which uses a modified GoogLeNet as the
backbone. Darknet follows the general design of 3 × 3 filters to double the number of channels at each
pooling layer and 1× 1 filter to periodically compress the feature representation throughout the network.
Most of the convolution layers have been pre-trained with the ImageNet dataset before adapted to
the detection task. After 24 convolution layers, 2 fully connected layers are followed to integrate
the predictions. YOLO algorithm simply splits image into fixed S × S cells and each cell predicts
fixed B bounding boxes. So the output of final layer is a S × S × (5× B + C) tensor corresponding
to the predictions of bounding boxes, where C is the number of classes that need to be estimated
and 5 is related to four coordinates with one confidence value. The coordinates of bounding box are
defined by a tuple of 4 values: center x, center y, width w, and height h. Th confidence score which
represents “objectness” indicates the likelihood of the cell containing an object: Pr(Object) × IoUtruth

pred ,
where Pr(Object) is the probability whether the cell contains an object and IoU represents interaction
over union between the predicted box and the true labeling box. In the training process, if the center of
object falls into a cell, the one bounding box which has highest IoU out of B bounding box candidates is
the “responsible” predictor for predicting probabilities of this object belonging to every Classi, that is,
Pr(Classi|Object). Basically, class prediction is performed at the grid cell level. The only set of C
conditional class probabilities given by each cell are shared between B bounding boxes, which greatly
limits the capability of YOLO to detect dense objects of different classes. This was later revised in
YOLOv2 to generate class probabilities for each bounding box by using softmax activation and cross
entropy loss. Figure 2 shows the basic architecture of YOLO model in this paper. The input image
size is raised to 640 × 640. With 1/64 downscaling rate, images are divided into 10 × 10 grid. In each
grid cell, 3 bounding boxes are predicted and share the same set of class probabilities. By integrating
classification and detection together, only a single pass through the neural network is required and
it will save time efficiently in the inference process. The loss function in YOLO model consists of
two parts, the localization loss for bounding box coordinates prediction and the classification loss for
conditional class probabilities. Both are computed as the sum of squared errors. In testing process,
the non-maximum suppression (NMS) method [31] is applied to get rid of redundant bounding boxes.
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Figure 2. Architecture of YOLO model. The output is a S × S × (5 × B + C) tensor corresponding to the
categories, locations, and sizes of objects.

YOLOv2 is an enhanced version of the basic YOLO model. It adopts the concept of anchor priors
in SSD. Rather than expecting the model to directly predicted bounding box descriptors, a collection of
anchor boxes with varying aspect ratios that indicate some prior information about the size of objects
are defined. Except for the improvement on anchors, YOLOv2 also randomly resized every 10 batches
to make multiscale training possible in YOLOv2, which helped to train the model to be robust to images
of different sizes. Another essential change is that YOLOv2 had less layers than the original YOLO,
with only 19 convolution layers composed of 3 × 3 and 1 × 1 filter. Max pooling layers following
each convolution layer are for reducing the feature map dimension. Instead of fully connected layers,
YOLOv2 applies route layer and reorg layer on the feature maps to get fixed dimension of output.
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The route layer is to bring finer grained features in the network from earlier; the reorg layer is to make
these features match the feature map size at the later layer.

YOLOv3 adds a bunch of design tricks inspired by latest advances in the object detection field.
First of all, the new Darknet-53 architecture still relies on successive 3 × 3 and 1 × 1 filters but has
residual blocks inspired from ResNet [15] added. Secondly, additional convolution layers follow the
base feature extractor to predict bounding boxes at three different levels. This allows YOLOv3 to
take advantage of finer-grained information from earlier route layers to further enhance small objects
detection. Moreover, contrasted with YOLOv2, YOLOv3 increases the shortcut layers to enlarge the
whole network. Reorg layers are replaced by up-sample layers in YOLOv3 to increase the size of
feature map. In addition to these changes, multiple independent logistic classifiers replace the soft-max
layer to predict class score, which is helpful especially when one image might have multiple labels
but not all the labels are guaranteed to be mutually exclusive. Although concatenation has existed in
the second version, it becomes more frequent in YOLOv3 that both coarse-grained feature map and
fine-grained feature map are provided to realize both large and small objects detections. The result of
these concatenations is the formation of three output layers with a down-sampling rate of 1/32, 1/16,
and 1/8, respectively.

2.2. Our Proposal

With the dataset changed to railway track images, k-means clustering method was adopted on
discovering the best aspect ratios of prior boxes with the distance metric changed to 1-IoU. Since the
number of clusters k needs to be chosen according to manual experience, average IoU between ground
truth boxes and the closest centroid under different k is calculated in Figure 3. It is reasonable that
with k increasing, the average IoU increases because of more prior choices. Considering the trade-off

between model complexity and difficulty of predicting, 6 anchors are chosen for YOLOv2 and 9 anchors
are set for YOLOv3. With these anchors, coordinates are predicted as the offsets of the center of anchor
boxes, widths and heights are predicted as the scale of anchor boxes, which is much easier than directly
predicting from scratch in YOLO model. Plus, predicted bounding boxes will not share the same set of
classification probabilities anymore, meaning that one grid cell is capable to detect multiclass objects.
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The YOLOv2 architecture in detail was displayed in Figure 4. Input image size for training
and testing are both 640 × 640. Because convolution layers of YOLOv2 down-sample the input
dimension by a factor of 32 and the number of anchors is 6, the output tensor should be 20 × 20 × 48.
Route layer brings higher resolution feature map 40 × 40 to pass through reorg layer so that it can
be concatenated with other feature maps at 20 × 20 resolution. Since the fine-grained feature maps
in YOLOv2 are just split across multiple channels, not as outputs, a more standard pyramid output
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structure has been improved in the third version. Figure 5 intuitively explains the architecture of
YOLOv3. With a multiscale output, the model must deal with more bounding box candidates of
various sizes. From Figure 3, 9 anchors calculated by k-means clustering method are assigned to three
resolution output with anchor sizes sort descending. The inference time of YOLOv3 slows down
because of more predictive quantities. Nevertheless, it could achieve a high enough detection accuracy.
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became larger than YOLOv2.
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Figure 5. Architecture of YOLOv3 model. Pyramid network leads to a greater output but also helps to
extract more potential features. With anchors set to 9, each layer had 3 anchors sort descending.

Since these detectors have images as input, their application areas are quite wide. The only
difference is that such a model does not guarantee excellent performance in every data set. For a
specific data set, the model structure and parameters need to be adjusted and optimized to achieve the
best detection effect. This is also one of the focuses of our work.

3. Data Collection

The rail surface images are captured with an image acquisition system that cameras are installed
at the bottom of the train. Figure 6 shows the image samples captured by the image acquisition system.
Due to the vibration when the train is running, pictures are taken from different angles and under
different illumination conditions, the size of the captured images also varies a lot. In total, 1386 railway
images are manually labeled, where class number, center coordinates, and bounding box sizes are
collected as the ground truth labels of corresponding objects. Because of different camera angles,
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some objects are partially captured and locate at the very edge of the image. In this case, they have
smaller bounding boxes as the true label information. In order to make the predicted widths and
heights unaffected by image sizes, all the coordinates and sizes of labeling boxes are normalized.
The whole dataset is then randomly split into training, validation, and test data sets with a ratio of 2:1:1
for further evaluation. Table 1 summarizes the labeling information. Basically, each image includes at
least one rail track with varying number of bolts and clips. Our currently available dataset on railway
track images is quite small compared to the public domain dataset such as Pascal VOC dataset and
COCO dataset, both of which consist of more than 10 thousand well annotated images for training.
However, compared to the detection task with large amounts of images captured under identical
conditions, the railway component detection with limited dataset under diverse conditions are much
more challenging. To reduce overfitting as much as possible, artificially enlarging the dataset used
in training is essential. Some data augmentation methods such as mirror flipping, exposure change,
and saturation change [32] are applied to increase the training volume. Figure 7 displays the samples
of data augmentation. Considering the railway track should always be vertical, any angle change
may damage the detection performance, we just flip images horizontally (we tried to rotate images by
90 degree, the result is a disaster). Also, in the training process, images are randomly rescaled into
different sizes to increase the robustness of detection model. In the testing process, images are rescaled
outward and inward. While scaling outward, the final image size will be larger than the original image
size (the new scale is manually set, we have tried different testing scale, like 640 × 640, 448 × 448,
256 × 256, and 128 × 128). Except for that, other augmentation parameters such as saturation exposure
are set to increase the variety of lighting level.
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Table 1. Labeling information.

Data Rail Clip Bolt

Training set 692 1016 1460
Validation set 352 545 783

Test set 348 512 742
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4. Training and Testing

4.1. Training Setup

The experiments are carried out on our lab server (OS: Ubuntu 16.04, RAM: 32 GB, GPU: Nvidia
GeForce GTX 1080 Ti). In the training process, loss value gradually decreases as the number of iterations
increases. The maximum number of iterations is set to 10,000 to make sure enough training. For each
iteration, 64 images are fed as the input to learn. The learning rate is initialized at 0.005 because of the
small training volume, and then multiplied by 0.1 at iteration 8000 and 9000, respectively. For fair
comparison, the sizes of input images for all three models are raised to 640 × 640. When the widths
and heights are changed at pixel levels, interpolation of pixel values is applied to stretch or compress
images. The YOLO model directly predicts the coordinates and sizes of bounding boxes, whereas the
YOLOv2 and YOLOv3 models employ k-means algorithm on normalized labels of training dataset to
choose appropriate anchor sizes. According to the clustering results, the average IoU of anchors used
in YOLOv2 is 74.22%, in YOLOv3 is 77.91%. As mentioned before, with k increasing, average IoU will
increase so the clustering of YOLOv2 has less average IoU than YOLOv3. After training, the weights
lead to the highest accuracy on validation set will be evaluated on test set.
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4.2. Performance Metrics

The detection performance is evaluated using three commonly used metrics: mean average
precision (mAP), F1 score, and inference time. The mAP and F1 score are defined as following.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1− score = 2×
Precision×Recall
Precision + Recall

(3)

AP =
1

11

∑
R∈{0,0.1,...,1}

pinterp(r) × 100% (4)

pinterp(r) = max︸︷︷︸
r̃:̃r≥r

p(̃r) (5)

mAP =
1

number of classes
AP (6)

Specifically, mAP is the mean of the average precisions (AP) computed over all the three classes
(rail, bolt, and clip). The AP metric considers both the spatial position and the accuracy of categories
for the detected objects. By setting thresholds, all the predicted boxes with different class scores
(Pr(Classi) × IoUtruth

pred ) are determined to be whether positive or negative, true or false. Overall,
four categories: true positive (TP), true negative (TN), false positive (FP), and false negative (FN)
are divided to calculate the precision and recall values before evaluating AP value. Precision is the
proportion of true positive examples over all the positive classes that model predicted. Recall is the
proportion of true positives over all the unique true examples, which means the value of recall totally
depends on the number of true positives because the number of ground truth is fixed. The F1 score is
the harmonic mean of precision and recall at certain thresholds. It weighs precision and recall equally
which means that the measurement does not emphasize or attenuate the influence of false negatives.
Unlike F1 score, which is limited by different thresholds, AP is computed as average value of 11 points
on precision/recall curve for each possible recall levels [0, 0.1, . . . , 1] only under certain IoU threshold.
The precision at each recall level r is interpolated by taking the maximum precision measured for a
method for which the corresponding recall exceeds r. In a traditional way, mAP values at a single
IoU of 0.50 (AP50) will be the main metrics to choose final weights models of component detection.
Except for detection accuracy, inference time is another important criterion for the model performance
evaluation. Inference time, same as image per second (IPS), directly decides whether a detection model
is capable to deal with enough images in every second. Although many models pursue “real-time”
detection capabilities, it is in fact a pretty vague term. Usually, “real-time” means the algorithm
will run at the rate of the source (e.g., a camera) supplying the images, which is producing output
simultaneously with the input. There is not a specific frame rate tied to the definition of “real-time”,
but undoubtedly, the faster images are processed, the better the algorithm is. Finally, the algorithm
complexity is represented by billion float operations (BFLOPs), which is accumulated over multiple
convolutions. For a given GPU, the inference time is directly related with BFLOPs.

4.3. Results and Analysis

The three one-stage approaches are trained with parameters set in part A. The AP, F1 score,
and IPS results of each class for all test samples are summarized in Table 2. The mAP (AP50) values
of YOLO and YOLOv2 are both above 90%. Although YOLOv3 has more standard pyramid output
architecture, it has no advantage on mAP performance of this component detection. YOLOv3 achieves
a similar performance with the other two models in bolt and clip detection, however, for rail, the AP
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value is lower than the other two models. The precision and recall results when threshold is set at
0.25 are also shown in Table 2. Compared to YOLO, YOLOv2 increases the ratio of true positives and
results in a greater recall value. However, the number of false positives in YOLOv2 also increases,
making YOLOv2 no advantage in the comparison of precision value. YOLOv3 behaves quite different.
First, since the unique truth is fixed, the reducing of true positives in YOLOv3 leads to small recall
value. Then, false positives must also be less than before so that precision value at 0.25 threshold
is much greater in YOLOv3. Both explain that YOLOv3 made efforts on reducing false positives
that misclassify negatives as positives. For the inference time, YOLOv2 is the fastest among three
models, which is a clear advantage over the original YOLO when both have close mAP performance.
The inference speed of YOLOv3 drags down because of the expansion blocks that contain residual
connections. If we look at the algorithm complexity, YOLOv3 owns the largest number of convolution
operations. Usually a bigger network will take more time to evaluate an input because inference
requires propagating the input through all the network to get to the last layer (output). It is worth
mentioning that the first two versions of YOLO took less than 24 h to finish all the training process,
however, the training time cost with YOLOv3 model is much longer. Table 2 also tabulates the detection
results at different IoU thresholds. Except for the mAP at IoU of 0.50, mAPs at IoU of 0.75 (AP75), IoU of
0.95 (AP95) and averaged over multiple IoU values from 0.50 to 0.95 with a step size of 0.05 (AP[0.5:0.95])
are also provided. It’s observed that higher IoU thresholds reward detectors with better localization.
Even averaged over IoU, the detection performance of YOLOv2 still outperformed the other two
methods. As the IoU threshold increases, the disadvantages of original YOLO model gradually emerge,
and the averaged detection results are not as good as YOLOv3.

To explain the unexpectedly poor performance of YOLOv3 in our results, two potential reasons
are given as following. First, compared with the volume of images used for training, the YOLOv3 with
more than 100 layers is overcomplicated so that it gradually showed an overfitting trend during the
long training process. Second, the design of FPN in YOLOv3 aims to detect small and dense objects.
However, the objects in our railway application is not either small or densely located. In fact, during the
training process, the last two output layers with more divided grids usually have “invalid” output with
no detection results to calculate recall or precision. The three models with various input sizes including
640 × 640, 448 × 448, 256 × 256, and 128 × 128 are trained for better explanation. The mAP and IPS
values on the test data set are plotted in Figure 8, where the image size of each model is decreasing
from left to right. All three networks can perform detections at different input sizes. The detection
speed is faster at a smaller input size. For YOLO and YOLOv2, the detection accuracy decreases as
input size decreases. For YOLOv3, large fluctuations in input size cannot affect the mAP value as
obviously as the other two. When compared with other detectors including state-of-art deep learning
methods and traditional machine learning approaches, faster R-CNN (VGG-16 as the backbone)
appears a higher mAP value than the others, but the inference speed is much slower. With region
proposal network (RPN), faster R-CNN worked better in terms of detection accuracy because of finer
predicted bounding boxes. However, the RPN requires one extra “stage” in the architecture to generate
more proper regions for each picture, which directly leads to slower detection speed. As another
one-stage detector, RetinaNet-101 behaved close detection accuracy and speed to the first version
of YOLO. As for YOLOv3-PRN, a partial residual network based detector, it only speeded up the
inference time but maintained the same accuracy. For SVM and AdaBoost, both are machine learning
classifiers. By combining with manually designed features such as HOG and Harr-like features,
they can implement component detection but not either accurate or fast. Overall, YOLOv2 displays
significant advantages in terms of inference accuracy and speed.
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Table 2. Performances on testing data set.

Model
IoU = 0.50, Threshold = 0.25

IPS AP75 AP95 AP[0.5:0.95] BFLOPs
mAP Rail Clip Bolt Precision Recall F1 TP FP FN

YOLO 92% 100% 89% 86% 0.89 0.93 0.91 1557 192 123 21 43% 2% 45% 82.0
YOLOv2 93% 100% 90% 89% 0.83 0.97 0.89 1629 339 51 35 53% 3% 50% 69.5
YOLOv3 89% 91% 90% 87% 0.94 0.84 0.88 1404 89 276 18 47% 5% 49% 154.5
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4.4. Further Experiments

To further investigate the “abnormal” performance of YOLOv3, we tested mAP on different
detection layers under different input sizes. Results are displayed in Figure 9. From the AP plot
of rail, only the first layer which outputs a smaller tensor (with larger divided grids) has the rail
detection results, while the other two layers that outputs larger tensors cannot detect rails at all. For clip
detection, the layer with finer features does not show any advantage. AP values decrease with the
output size getting larger. As the smallest component, the detection of bolt mainly happens on the
last two layers, and the second layer contributed the most accuracy. Another finding is, no matter
with what input size, the first detection layer is always good at large component detection (rail and
clip). The other two layers with finer features and more grid divides perform better on bolt detection.
Specifically, the second layer detects the bolt more accurately than the last layer, which suggested that
blindly enlarging the output is not conductive to bolt detection. On the contrary, it will lead to the
occurrence of overfitting and hurt the detection result.
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Moreover, to fully understand the effect of anchors on the results, YOLOv2 and YOLOv3 are
compared with different anchors. In Table 3, changing anchors barely influenced the mAP (AP50) but
lead to some changes in AP75 and AP95, which implied that having more anchors would provide
better initial information about object size and improve the detection accuracy under a higher IoU
threshold. Also, with the number of anchors increasing, IPS became less which suggested the inference
time was longer. Considering the YOLOv3 is overfitting during training process, we cut the detection
layers to simplify the model. The last two rows in Table 3 show that, with only one and two output
layers, the detection accuracy got damaged while the inference speed was efficiently improved.
Even the number of anchors increased, there is no sign that YOLOv3 could work better than YOLOv2.
The experimental results agree with our previous assumption that YOLOv3 has an overcomplicated
architecture this railway track component detection. Although it has a multiscale architecture to extract
more potential features, it becomes a burden in this application. Hence, we conclude YOLOv2, with the
best accuracy and fastest speed, as a better detection model for real-time railway inspection and further
component detection.

Table 3. Comparison on anchors and layers.

Model mAP
(AP50) IPS AP75 AP95

YOLOv2
3 anchors 93% 44 47% 0.1%
6 anchors 93% 35 53% 3%
9 anchors 93% 32 53% 3%
12 anchors 93% 29 62% 4%

YOLOv3
3 anchors 89% 21 42% 0.2%
6 anchors 89% 21 43% 3%
9 anchors 89% 18 47% 5%
12 anchors 87% 13 46% 6%

1 layer 87% 43 49% 0.6%
2 layers 87% 31 45% 0.5%

5. Conclusions

In this work, one-stage deep learning networks including YOLO, YOLOv2, and YOLOv3 are
proposed to detect railway track components including rail, bolt, and clip. The detection performance
is evaluated through Hong Kong MTR railway surface images with different sizes and illuminations.
The YOLO series models can accurately detect almost all the key components in the railway image.
Compared to original YOLO model (mAP: 92%, inference time: 21 IPS), the YOLOv2 model improves
the performance in both detection accuracy (93% mAP) and inference time (35 IPS) and can detect
mostly cropped objects such as clips. In contrast, the YOLOv3 yields the lowest mAP of 89% and takes
more detection time than the other two. Besides, all three networks predict detections at different
input resolutions. The YOLO and YOLOv2 improve the detection accuracy with larger input sizes but
lead to slower inference speed, whereas the YOLOv3 shows slightly better performance at smaller
input resolutions and with less anchor boxes. When compared with other one-stage models such as
RetinaNet-101 and YOLOv3-PRN, the YOLO series models always show satisfying detection results
on both accuracy and speed. To conclude, YOLOv2, with the high accuracy and fastest speed, is the
most suitable model for real-time railway inspection and further component detection.

Nevertheless, the results suggest some further applications.
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• The parts on both sides of the rail are symmetrical, especially for the images that photographed
by the camera directly above the rails. With this, it is hopeful that the missing parts of these
components can be detected.

• With advantages in detection accuracy and speed, YOLOv2 has the potential to be applied to
video and finer object detection.

• YOLOv3 with fine-grained feature maps has advantage of detecting small objects. Therefore,
using YOLOv3 for track defects diagnosis is another direction for railway inspection.
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