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Abstract: The discrimination of micro-seismic events (events) and blasts is significant for monitoring
and analyzing micro-seismicity in underground mines. To eliminate the negative effects of conventional
discrimination methods, a waveform image discriminant method was proposed. Principal component
analysis (PCA) was applied to extract the raw features of events and blasts through their waveform
images that established by the recorded field data, and transform them into the new uncorrelated
features. The amount of initial information retained in the derived features could be determined
quantitatively by the contribution rate. The binary classification models were established by utilizing
the support vector machine (SVM) algorithm and the PCA derived waveform image features.
Results of four groups of cross validation show that the optimal values for the accuracy of events
and blasts, total accuracy, and quality evaluation parameter MCC are 97.1%, 93.8%, 93.60%, and
0.8723, respectively. Moreover, the computation efficiency per accuracy (CEA) was introduced to
quantitatively evaluate the effects of contribution rate on classification accuracy and computation
efficiency. The optimal contribution rate was determined to be 0.90. The waveform image discriminant
method can automatically classify events and blasts in underground mines, ensuring the efficient
establishment of high-quality micro-seismic databases and providing adequate data for the subsequent
seismicity analysis.
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1. Introduction

Micro-seismic monitoring has been effective in global underground mines for providing
information about the local state of stress of rock [1]. It also provides information that can be
used to understand the behavior of rock mass [2,3], to prevent rock mass instability and rock burst [4,5],
and to assess the potential hazards induced by intensive deep mining activities [6,7]. The discrimination
of micro-seismic events and blasts in underground mines is one of the most important issues for the
robust and efficient micro-seismic monitoring technology [8], which directly affects the quality of
micro-seismic database [9,10]. The reasonable and reliable interpretation of underground process of
mining can be obtained only by using the pure data of micro-seismic events rather than the mixed
data of micro-seismic events and blasts [11]. Otherwise, the location accuracy of micro-seismic events
will be reduced seriously [12]. Moreover, the resolution of passive tomography will be influenced
negatively because the accurate localization of micro-seismic events is necessarily a basis. Subsequently,
the related analysis of rock deformation and stress evolution may be ineffective. Therefore, the false
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discrimination of micro-seismic events and blasts may result in the unreasonable assessment of seismic
hazards, such as a fictitious region of high seismic stress [13]. It is evident that the discrimination of
micro-seismic events and blasts in underground mines is a fundamental and significant problem to
be solved.

The manual discrimination has been widely used to classify micro-seismic events and blasts
based on the blast time and the visual judgment of waveforms. However, it is common that a great
deal of monitoring data needs to be processed routinely, which will result in a long discrimination
time, low work efficiency, and delayed classification results. Also, the professional knowledge and
practical experience are necessary for the data analysts, whose technical levels will have an impact
on the classification results. It can be seen that the manual discrimination is inefficient and leads to
difficulties for fast analysis of seismic sources, determination of rock mass conditions, and assessment
of seismic hazards in underground mines.

To improve the classification efficiency, numerous discrimination methods have been proposed to
automatically discriminate micro-seismic events and blasts in underground mines by using various
parameters derived from seismic source and waveform characteristics. These methods can mainly
be classified into three groups, which are the waveform spectrum analysis [14–21], the statistical
methods such as the maximum-likelihood Gaussian classifier [22,23] and the linear discrimination
methods [24,25], the machine learning methods including neural networks [26–29], self-organizing
map [30,31], diffusion maps [32], etc.

Different seismic source parameters are selected to establish discrimination models for
micro-seismic events and blasts by using statistical methods. Malovichko [33] applied the maximum-
likelihood Gaussian classifier to discriminate micro-seismic events and blasts, for which the source
parameters including time of occurrence, radiation pattern, ratio of high- and low-frequency radiation,
and source repetition to the neighboring waveforms were selected as indicators. Vallejos and
McKinnon [34] selected 13 seismic source parameters provided by the full-waveform system. Through
the comparison of classification accuracy, they found that the neural network models outperformed
the current approach, indicating good classification performance of machine learning methods. Based
on the seismic source parameters proposed in Dong et al. [13], Dong et al. [35] applied the logistic
and log-logistic distributions to establish probability density functions for origin time of blasts and
origin time difference (OTD) of neighboring blasts in the time domain. Then, the Fisher classifier,
naive Bayesian classifier, and logistic regression were used to establish discrimination models with
explicit functions. However, the values of seismic source parameters may be unstable with the change
of source coordinates, wave velocity, and location error. In summary, the discrimination methods
using seismic source parameters mainly have four prominent disadvantages that may lead to poor
discrimination results. Firstly, there are dozens of initial seismic source parameters in mine seismicity,
which mainly includes location error (Err), origin time of seismic records (t0), source radius (R), number
of triggered sensors (Ns), moment magnitude (Mm), seismic moment (M0), total radiated energy (E0),
corner frequency (fc), maximum displacement (MD), peak velocity parameter (PV), etc. There will
be more derived parameters definitely by applying various functions, as well as by combining and
transforming different variables. The workload for analyzing each initial and derived parameter will
be heavy as the statistical analysis is the most common method for selecting parameters with good
discrimination performance. Secondly, the combinations of acceptable parameters corresponding to
different discrimination models are various and complex. Thirdly, the importance of each parameter is
usually ignored without determining a quantitative value and the established classification models
lack the process for eliminating the correlations between different parameters. Fourthly, the selection
of seismic source parameters and distribution functions are sometimes carried out with experience and
subjective judgment.

As for the waveform spectrum analysis, its advantage lies in that different characteristics between
micro-seismic events and blasts can be analyzed intuitively [15]. Nevertheless, its analysis object is the
waveform recorded by each sensor, the workload is heavy as numerous sensors will be triggered by a
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micro-seismic event or a blast. Zhao et al. [36] selected the repetition of waveforms, tail decreasing,
dominant frequency, and occurrence time as the discrimination indicators. Besides, for micro-seismic
events and blasts, by considering the differences of the time needed to reach the first and the main peak
and the amplitude distribution, the slope values of two regression lines (one corresponds to the first
peak while another corresponds to the main peak) were extracted as the characteristic parameters for
waveforms. Ma et al. [37] proposed two discrimination approaches, where one extracted features from
seismic sources (Approach I) and another utilized waveform characteristics (Approach II). The results
showed that 97.1% of cases were correctly classified by Approach II while the accuracy of Approach I
was only 83.5%. According to both two researches, it can be inferred that waveform characteristics can
provide useful information for effective discrimination. Hence, three main disadvantages of waveform
spectrum analysis can be concluded through the above review. Firstly, the workload of waveform
spectrum analysis is heavy, because the analysis object is the waveform recorded by each sensor
and many sensors will be triggered by a single micro-seismic event or a blast. Secondly, in general,
only the characteristics of the P-wave are considered, instead of the full waveform. Thirdly, the
importance of each parameter is usually ignored without determining a quantitative value and the
established classification models lack the process for eliminating the correlations between different
parameters, which is also an identical disadvantage of many discrimination methods using seismic
source parameters.

In this paper, we developed an effective waveform image method for discriminating micro-seismic
events and blasts in underground mines. Firstly, we established the waveform image databases of
micro-seismic events and blasts through the full waveform data. Then, we used PCA [38–40] to extract
the original image features and obtained the new uncorrelated features with quantitative importance
and lower dimensions. Thirdly, we developed the discrimination models by utilizing the support
vector machine (SVM) algorithm [41–43] and the PCA derived features. Finally, we analyzed the
discrimination results of cross validations, quantitatively evaluated the effects of contribution rate on
classification accuracy and computation efficiency, and discussed the further application, advantages,
and disadvantages of the proposed discriminant method.

2. Materials and Methods

Figure 1 illustrates the proposed waveform image method for discriminating micro-seismic events
in underground mines, which are mainly divided into four steps.
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respectively. 
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Figure 1. Main steps of the proposed waveform image discriminant method. The green, blue, yellow,
and cyan squares represent steps 1, 2, 3, and 4, respectively. 1. Establishment of waveform image
databases; 2. Principal component analysis; 3. Establishment of discrimination models; 4. Application
of the discrimination results.

1. Establishment of waveform image databases: The full waveform data recorded from 2013 to 2015
by a micro-seismic monitoring system installed in the Yongshaba underground mine is used to
produce the waveform images. Then, the waveform image databases of micro-seismic events and
blasts are established, where micro-seismic events and blasts are labeled as E and B, respectively.
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2. Principal component analysis: PCA is applied to extract the original image features from the two
databases and transform them into the new uncorrelated features with quantitative importance
and lower dimension, where the amount of initial information retained in the derived features is
determined by the contribution rate. Thus, PCA can reduce the number of input features and
improve the classification efficiency.

3. Establishment of discrimination models: SVM algorithm is selected to establish discrimination
models for micro-seismic events and blasts in underground mines by utilizing the PCA derived
waveform image features. Then, the discrimination models are used to classify for test sets.

4. Application of the discrimination results: The micro-seismic data is applied to locate micro-seismic
events, to analyze the local state of stress of rock, and to assess potential hazards in underground
mining area.

2.1. Establishment of Waveform Image Databases

The generation of waveforms, the determination of a reasonable and unified signal duration for
all the waveforms, as well as the generation and definition of waveform images are the key issues for
establishing waveform image databases of micro-seismic events and blasts.

Firstly, the micro-seismic monitoring system installed in the Yongshaba underground mine is
composed of 28 sensors that measure the ground velocity and their sampling frequency is 6000 Hz,
which means that the ground velocity is measured for 6000 times during one second. Hence, the
waveforms of micro-seismic events and blasts can be produced through the data of time and the
corresponding ground velocity, where the x-axis and y-axis represent waveform time (s) and velocity
amplitude (m/s), respectively.

Secondly, the signal durations of a micro-seismic event and a blast are supposed to present
differences due to the differences of their energy release [36]. Here, we quantify the distributions and
percentages of different signal durations for micro-seismic events and blasts, which can subsequently
be used to determine a reasonable and unified signal duration for all the waveforms. Figure 2 shows
the distributions and percentages of lg(t) for micro-seismic events and blasts, where t denotes the
signal duration.
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Figure 2. Distributions and percentages of different signal duration for micro-seismic events and 
blasts. (a) Distributions and percentages of signal duration for micro-seismic events; (b) distributions 
and percentages of signal duration for blasts. 

It can be seen that there are numerous different values of signal duration for the waveforms of 
micro-seismic events and blasts, which account for different percentages. Therefore, it is necessary to 
determine a reasonable and unified signal duration for all waveforms, which can avoid the changes 
of image features and inaccuracy of subsequent discrimination models caused by different signal 
duration of micro-seismic events and blasts. tei (i = 1, 2,…, ne) and tbj (j = 1, 2,…, nb) denote the signal 
duration of the i-th micro-seismic event and j-th blast, respectively. ne and nb indicate the total 
numbers of micro-seismic events and blasts, respectively. The percentages of each signal duration of 
micro-seismic events and blasts are calculated as 

Figure 2. Distributions and percentages of different signal duration for micro-seismic events and blasts.
(a) Distributions and percentages of signal duration for micro-seismic events; (b) distributions and
percentages of signal duration for blasts.

It can be seen that there are numerous different values of signal duration for the waveforms of
micro-seismic events and blasts, which account for different percentages. Therefore, it is necessary to
determine a reasonable and unified signal duration for all waveforms, which can avoid the changes
of image features and inaccuracy of subsequent discrimination models caused by different signal
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duration of micro-seismic events and blasts. tei (i = 1, 2, . . . , ne) and tbj (j = 1, 2, . . . , nb) denote the
signal duration of the i-th micro-seismic event and j-th blast, respectively. ne and nb indicate the total
numbers of micro-seismic events and blasts, respectively. The percentages of each signal duration of
micro-seismic events and blasts are calculated as ηp =

ntei
ne

ξq =
ntbi
nb

, (1)

where ntei denotes the numbers of micro-seismic waveforms whose signal duration are equal to tei and
ntbi denotes the numbers of blast waveforms whose signal duration are equal to tbj. ηp (p = 1, 2, . . . , l,
. . . , x) indicates the percentages of different micro-seismic signal durations (i.e., tei) in all micro-seismic
events and ξq (q = 1, 2, . . . , k, . . . , y) indicates the percentages of different blast signal durations (i.e., tbj)
in all blasts. By sorting the resolved percentages with the descending order, thus, η1 and ηx correspond
to the micro-seismic signal durations that have the maximum number (percentage) and the minimum
number (percentage), respectively. Then, by setting a threshold of 80% for the sum of percentages of
micro-seismic signal durations (or blast signal durations), the reasonable and unified signal duration
of micro-seismic events and blasts can be solved through Equations (2)–(4){

η1 + η2 + · · ·+ ηl ≥ 80%
ξ1 + ξ2 + · · ·+ ξk ≥ 80%

, (2)

 te =
te1+te2+···+tel

l

tb =
tb1+tb2+···+tbk

k

, (3)

ts = ceil[max(te, tb)], (4)

where l and k are the critical values that make the Equation (2) true. te and tb indicate the average
signal duration of micro-seismic events and blasts, respectively. The function ceil means rounding
upward the first decimal place of the maximum value between te and tb. ts denotes the reasonable and
unified signal duration of micro-seismic events and blasts that eliminated the effects of extreme values.

In this study, the values of te, tb, and ts are equal to 1.71 s, 1.63 s, 1.80 s, respectively. The signal
duration of 1.8 s is also consistent with the percentage distributions in Figure 2, where the percentages
around 0.25 (lg1.8) are relatively higher than others. It can be concluded that the signal duration of
1.8 s is reasonable for the establishment of waveform image databases and further classification study.
As for the waveforms with signal duration greater than 1.8 s, only the part within 1.8 s is selected and
the extra part is aborted. As for the waveforms with signal duration less than 1.8 s, the y-values of the
part that ranges from the actual tail to 1.8 s are set to be 0.

Thirdly, the waveforms of micro-seismic events or blasts with a unified signal duration (1.8 s)
generated through the previous steps are saved as images (.png) with a unified resolution and size,
named waveform images, where the unified resolution and size can ensure the number of the original
waveform image features of all the waveforms is equal. To reduce the memory usage in the subsequent
computational process, the resolution is set to be 400 × 300. Figure 3 shows four examples of waveform
images of micro-seismic events and blasts, as well as a part of pixels of a waveform image and the
corresponding gray values. Subsequently, the features of each waveform image can be extracted and
represented by the gray values between 0 and 255 that corresponds to different pixels.
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Figure 3. Examples of waveform images of micro-seismic events and blasts. (a) Waveform image
of a micro-seismic event whose signal duration is greater than 1.8 s; (b) Waveform image of another
micro-seismic event whose signal duration is less than 1.8 s; (c) Waveform image of a blast whose
signal duration is greater than 1.8 s; (d) Waveform image of another blast whose signal duration is less
than 1.8 s; (e) A part of pixels distributed in the red rectangle of (d), which are surrounded by the blue
rectangle, and the corresponding gray values. The pure black and pure white correspond to the gray
values of 0 and 255, respectively.

2.2. Principal Component Analysis

The database of micro-seismic events is taken as an example to clarify the main theory of
PCA [38–40]. We can extract the original features from the micro-seismic database and present them
by a 2D matrix Xmn, which consists of m row vectors (x1n, x2n, · · · , xmn). m and n denote the number
of waveform images and the number of original features extracted from each waveform image,
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respectively. To eliminate the errors caused by the original features with different scales, the Min-Max
method is selected to normalize the original features, which is explained below

x′i j =
xi j −min

max−min
, (5)

where xi j, x′i j, min, and max are the initial jth feature value of the ith waveform image, the normalized jth
feature value of the ith waveform image, the minimum feature value, and the maximum feature value,
respectively. Then, the new original features of seismic database are presented by the normalized matrix
X
′

mn, which consists of m normalized row vectors (x
′

1n, x
′

2n, · · · , x
′

mn). Furthermore, the difference
matrix Xd, which can retain differences between different waveform images, and its covariance matrix
Cnn as well as the dimension reduction matrix XDR are solved as

Xd = X
′

mn − (Xave)m×n, (6)

w(λ1) + w(λ2) + · · ·+ w(λk) ≥ σ, (7)

XDR =


e1k
e2k

...
enk

 =


e11, e12, · · · , e1k
e21, e22, · · · , e2k
...

...
. . .

...
en1, en2, · · · , enk

, (8)

where Xave consists of m identical row vectors that are composed of the average value of each column in
the matrix X

′

mn. λ j are the eigenvalues of Cnn that sorted by the descending order. ej and w
(
λ j

)
are the

eigenvectors and importance that correspond to λ j, respectively. σ (0 ≤ σ ≤ 1) is the contribution rate
that quantitatively determines the amount of initial information retained in the PCA derived features.
k (k ≤ n) is the smallest integer that satisfies the preset contribution rate σ. Finally, the new uncorrelated
features with quantitative importance and lower dimension, named principle components (PCs), can
be presented by a reconstruction matrix XR, which is calculated as

XR = X
′

mn ·XDR, (9)

Therefore, PCA can be utilized to objectively extract the original waveform image features from
the databases of micro-seismic events and blasts, as well as to transform them into the new uncorrelated
features, which can be used for establishing discrimination models.

2.3. Classification Algorithm

SVM algorithm, proposed by Cortes and Vapnik [41], has indicated excellent performances in
the fields of regression, classification, and pattern recognition. As for binary classification problems,
the basic thought of SVM algorithm is to search an optimal hyperplane between two objects that can
maximize the margin area while ensuring the classification accuracy. The flexibility allows us to modify
and improve the SVM algorithm, as well as to conveniently apply it to different situations according
to the specific requirements. In addition, the number of initial input parameters can be decreased
by providing more default parameters, which can reduce the work for parameters adjustment and
accelerate the computation process.

Therefore, SVM algorithm is used to establish discrimination models for micro-seismic events and
blasts by using the training samples. Then, the effectiveness of classification models will be examined
through the test samples.

2.4. Evaluation of Classification Quality

The Matthews correlation coefficient (MCC), proposed by Matthews [44], is a commonly used
index in machine learning for evaluating binary classification quality, which can simultaneously
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consider the classification accuracy of micro-seismic events and blasts. Essentially, MCC is a correlation
coefficient between the observed and the predicted binary classifications. The value interval of MCC is
[−1, 1], where −1 represents total falseness between observation and predication, 0 denotes no better
than random prediction, and 1 indicates absolute correctness for prediction. MCC is defined and
calculated as

MCC =
TE× TB− FE× FB√

(TE + FE)(TE + FB)(TB + FE)(TB + FB)
, (10)

where a true micro-seismic event (TE) means that a micro-seismic event is identified as a micro-seismic
event, a true blast (TB) means that a blast is identified as a blast, a false micro-seismic event (FE)
means that a blast is incorrectly tagged as a micro-seismic event, and a false blast (FB) means that a
micro-seismic event is incorrectly tagged as a blast.

3. Experimental Study and Results

3.1. Data Description and Preparation

The full waveform data of micro-seismic events and blasts recorded from 2013 to 2015 by the
Institute of Mine Seismology (IMS) system installed in the Yongshaba deposit, an underground mine
in Guizhou Province, China, was used to establish databases and discrimination models. Twenty-six
uniaxial sensors and two triaxial sensors, measuring the ground velocity with a sampling frequency of
6000 Hz, were deployed across the major stopes at the 930 m level, 1080 m level and 1120 m level, which
can cover the main mining area and record the data of mining-induced seismicity and production
blasts as much as possible. Figure 4 shows the geographic location of the Yongshaba underground
mine, the locations of micro-seismic events and blasts [45], the layout of the sensors, and the examples
of waveforms recorded by different sensors.
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To ensure the generality for different micro-seismic data of the proposed discriminant method,
2000 micro-seismic events and 2000 blasts are randomly selected from the established waveform image
databases. The cross validation, an effective method for evaluating discrimination models, is used in
this study, whose basic thought is establishing discrimination models through the training sets (test sets)
and evaluating the established models through test sets (training sets). Therefore, 2000 micro-seismic
events are equally divided into E1 and E2, and 2000 blasts are equally divided into B1 and B2, where
E1 and E2 indicate the first and the second micro-seismic dataset containing 1000 micro-seismic events,
respectively, and B1 and B2 represent the first and the second blasting dataset consisting of 1000 blasts,
respectively. Thus, four groups of cross validation can be carried out through the combinations of
these four datasets (E1, E2, B1, and B2), which are shown in Table 1.

Table 1. Datasets for the four groups of cross validation.

Test Training Sets Test Sets

1 E1, B1 E2, B2
2 E2, B1 E1, B2
3 E1, B2 E2, B1
4 E2, B2 E1, B1

3.2. PCA Application and Analysis

PCA is applied to the four groups of cross validation, where the contribution rate is firstly set to
be 95% as it is a commonly used value that has shown good classification performances in many fields
such as the facial recognition. Hence, the first 95% information contained in the original waveform
image features is retained in the PCA derived waveform image features. The eigenvalues, importance,
and cumulative importance corresponding to different PCs for test 1 to test 4 are listed in Table 2.

Table 2. Results of principle components for test 1 to test 4.

Item
Principle Components

Dorig Dredu
PC1 PC2 PC3 PC4 PC5 . . . PCDredu

Test 1
Eigenvalues ×105 5.04 3.66 1.70 1.58 0.81 . . . 0.0061

2000 1157Importance % 9.20 6.68 3.10 2.89 1.48 . . . 0.01
Cumulative % 9.20 15.88 18.98 21.87 23.35 . . . 95.00

Test 2
Eigenvalues ×105 5.29 3.55 1.66 1.61 0.81 . . . 0.0061

2000 1166Importance % 9.67 6.49 3.03 2.94 1.47 . . . 0.01
Cumulative % 9.67 16.16 19.19 22.13 23.60 . . . 95.01

Test 3
Eigenvalues ×105 4.36 3.61 1.67 1.45 0.77 . . . 0.0064

2000 1195Importance % 7.73 6.39 2.97 2.57 1.37 . . . 0.01
Cumulative % 7.73 14.12 17.09 19.66 21.03 . . . 95.00

Test 4
Eigenvalues ×105 4.58 3.50 1.64 1.49 0.78 . . . 0.0064

2000 1205Importance % 8.11 6.20 2.90 2.65 1.37 . . . 0.01
Cumulative % 8.11 14.31 17.21 19.86 21.23 . . . 95.01

Dorig and Dredu indicate the dimension of the original features and the derived features, respectively.
Dorig cannot be greater than 2000, which is the capacity of each training set. PCDredu is the final principle
component that satisfies the cumulative importance of 0.95. With the increase of principle components,
their eigenvalues and importance tend to decrease. As for test 1 to test 4, all the dimensions of the
original features are 2000, while the dimensions of the derived features are reduced to 1157, 1166, 1195,
and 1205, respectively. Additionally, it can be calculated that the average importance of PC1 for test 1
to test 4 is about 8.68% [(9.20% + 9.67% + 7.73% + 8.11%)/4 = 8.68%], which is 173.6 times as large as
the average importance of an original feature (1/2000 = 0.05%).
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Figure 5 shows the distributions and the logistic probability density distributions of PC1 of
micro-seismic events and blasts for test 1 to test 4. It can be seen from the left figures that the differences
between micro-seismic events and blasts are evident. Also, the overlapped areas between micro-seismic
events and blasts under the logistic probability density distributions in the right figures are small.
Therefore, the effectiveness of PC1 for discriminating micro-seismic events and blasts is confirmed and
we can believe that the PCA derived waveform image features are effective and efficient for the further
discrimination of micro-seismic events and blasts.
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Figure 6. Importance and cumulative importance of the PCA derived eigenvalues for test 1 to test 4. 
(a) Importance of the PCA derived eigenvalues for test 1 to test 4. The red triangles, yellow circles, 
green stars, and blue crosses indicate the eigenvalues with specific importance for test 1 to test 4, 
respectively; (b) Cumulative importance of the PCA derived eigenvalues for test 1 to test 4. The red 
line with triangles, yellow line with circles, green line with stars, and blue line with crosses represent 
the cumulative importance curves for test 1 to test 4, respectively. The zoom view shows the 
cumulative importance curves when the eigenvalue is between 1 × 104 and 10 × 104. 

3.3. Classification Results 

Usually, the radical basis function (RBF) is used as the kernel function of SVM algorithm for its 
good performance in common classification problems. However, RBF is not suitable when the 
dimension of the input features is very large, while the linear kernel function is an advisable choice 
considering the greater dimension of input features in further engineering applications. In addition, 

Figure 5. Distributions and the logistic probability density distributions of PC1 of micro-seismic events
and blasts for test 1 to test 4. (a) Test 1; (b) Test 2; (c) Test 3; (d) Test 4. The blue triangles and red circles
indicate the micro-seismic events and blasts in the training sets, respectively.

Figure 6 shows the importance and cumulative importance of the PCA derived eigenvalues for
test 1 to test 4. It can be seen that the importance decreases and the cumulative importance increase
with the reduction of eigenvalues. In Figure 6, the eigenvalues with smaller importance are distributed
at the lower left corner. For the cumulative importance curves of test 1 to test 4, the upper left parts are
constituted of numerous eigenvalues with relatively smaller importance. The PCA derived waveform
image features that contribute the first 95% cumulative importance are the input features for the
establishment of discrimination models.
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cumulative importance curves for test 1 to test 4, respectively. The zoom view shows the cumulative
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3.3. Classification Results

Usually, the radical basis function (RBF) is used as the kernel function of SVM algorithm for
its good performance in common classification problems. However, RBF is not suitable when the
dimension of the input features is very large, while the linear kernel function is an advisable choice



Sensors 2020, 20, 4322 12 of 18

considering the greater dimension of input features in further engineering applications. In addition,
there is no need to set or adjust numerous parameters for linear kernel function and the classification
process can be simplified. Therefore, the linear kernel function is selected for SVM algorithm, which is
given by

K(E, B) = BT
· E, (11)

where E and B indicate the training sets of micro-seismic events and blasts, respectively.
By inputting the PCA derived waveform image features, the discrimination models can be

established through SVM algorithm. The classification results for test 1 to test 4 including classification
accuracy and quality evaluation factor MCC are shown in Table 3, where TE and TB are the numbers
of correctly classified micro-seismic events and blasts.

Table 3. Classification results and quality evaluations for test 1 to test 4.

Test TE TB FE FB Total Accuracy (%) MCC

1 950 922 78 50 93.60% 0.8723
2 923 938 62 77 93.05% 0.8600
3 971 899 101 29 93.50% 0.8722
4 947 890 110 53 91.85% 0.8384

The classification accuracy of micro-seismic events for test 1 to test 4 are 95.0%, 92.3%, 97.1%, and
94.7%, respectively. Similarly, the discriminant accuracy of blasts for test 1 to test 4 are 92.2%, 93.8%,
89.9%, and 89.0%, respectively. The average classification accuracy of micro-seismic events and blasts
for test 1 to test 4 are 94.78% and 91.23%, respectively. It can be seen that the optimal classification
accuracy of micro-seismic events and blasts are 97.1% and 93.8%, respectively. All the four tests show
excellent total accuracy, where the greatest value, the smallest value, and the average value are 93.60%,
91.85%, and 93.00%, respectively. The average value and the optimal value of MCC are 0.8607 and
0.8723, respectively, which are close to the upper limit of its value interval [−1,1]. The classification
results indicate that the proposed waveform image method has excellent discriminating performance
in underground mines.

4. Discussion

4.1. Contribution Rate

The contribution rate is a key parameter that quantitatively determines the amount of initial
information retained in the input features derived from PCA. An appropriate value of the contribution
rate can not only reduce the computation time by decreasing the number of the input features, but
also can ensure good classification accuracy. Therefore, it is important to discuss the classification
accuracy for test 1 to test 4 under different contribution rates. Figure 7 shows the classification accuracy
of micro-seismic events and blasts, total classification accuracy, and quality evaluation parameter MCC
for test 1 to test 4 under different contribution rates.

The effects of the contribution rate can be analyzed by dividing it into three value intervals, which
are [0.50, 0.90], [0.90, 0.95], and [0.95, 1.00], respectively. Firstly, it can be seen clearly that the total
classification accuracy of the four tests takes an overall increasing trend when the contribution rate
ranges from 0.50 to 0.90. Secondly, the total classification accuracy for test 1 to test 4 are relatively stable
when the contribution rate ranging from 0.90 to 0.95. In addition, when the values of the contribution
rate for test 1, test 2, test 3, and test 4 are equal to 0.92, 0.95, 0.90, and 0.90, the four tests reach their
optimal total accuracy, which are 93.65%, 93%, 94.5%, and 93.45%, respectively. Then, the total accuracy
for test 1 to test 4 begin to decline when the contribution rates exceed their optimal values. Thirdly,
when the contribution rate ranges between 0.95 and 1.00, it can be seen that the total accuracy of the
four tests show fluctuations, which decrease firstly and then increase slightly. Therefore, it can be
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determined that the optimal values of the contribution rate for test 1 to test 4 are distributed in the
interval [0.90, 0.95].
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Figure 7. Classification accuracy of micro-seismic events and blasts, total classification accuracy, and 
quality evaluation parameter MCC for test 1 to test 4 under different contribution rates. (a) Test 1; (b) 
Test 2; (c) Test 3; (d) Test 4. The blue line with triangles, red line with circles, green line with squares, 
and purple line with stars indicate the classification accuracy of micro-seismic events, classification 
accuracy of blasts, total accuracy, and MCC, respectively. 
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and purple line with stars indicate the classification accuracy of micro-seismic events, classification
accuracy of blasts, total accuracy, and MCC, respectively.

Table 4 lists the computation time of test 1 to test 4 under different contribution rates, where the
computation process includes the reading of waveform image databases, PCA procedure, establishment
of the discrimination model, and prediction of classification results.

Table 4. Computation time (s) of test 1 to test 4 under different contribution rates.

Contribution Rate σ Test 1 Test 2 Test 3 Test 4 Average

0.90 290.17 287.48 294.91 294.48 291.76
0.91 299.42 297.75 295.43 300.33 298.23
0.92 302.82 302.14 306.21 315.84 306.75
0.93 310.47 315.71 318.39 331.17 318.94
0.94 329.24 327.83 337.40 347.53 335.50
0.95 366.65 356.66 366.74 366.24 364.07
1.00 630.75 634.65 624.06 620.05 627.38

Note: The CPU model used in the four tests is Intel(R) Core (TM) i5-6500 CPU @ 3.20GHz.

As shown in Table 4, the computation time increases gradually when the contribution rate increases
from 0.90 to 0.95, while the computation time increases rapidly when the contribution rate reaches 1.00.
Specifically, the average computation time of the four tests is 627.38 s when the contribution rate is
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equal to 1.00, which is approximately 2.15 times and 1.72 times as large as the average computation time
when the values of the contribution rate are 0.90 and 0.95, respectively, indicating that the computation
efficiency is seriously affected. Another disadvantage for the contribution rate reaching 1.00 is that
numerous waveform image features with little classification effect are generated, which may even
represent the noises in the complex underground mining environment. Hence, it can be inferred that
the excellent classification results of micro-seismic events and blasts in underground mines cannot be
obtained by simply increasing the value of the contribution rate.

Based on the above analysis, we can preliminarily determine that the optimal value of the
contribution rate should be between 0.90 and 0.95. To further determine the optimal value of the
contribution rate, a new variable named computation efficiency per accuracy (CEA) is introduced
to quantitatively evaluate the effects of contribution rate on classification accuracy and computation
efficiency, which is defined as

CEA =
Computation time

Total accuracy
, (12)

The contribution rate that corresponds to the minimum CEA is the optimal, because less
computation time will be consumed for reaching the same total classification accuracy. Therefore, the
values of CEA for test 1 to test 4 under the contribution rates ranging from 0.90 to 0.95 are solved,
which are listed in Table 5. Evidently, the values of CEA for test 1 to test 4 are minimum when the
contribution rate is equal to 0.90. It can be concluded that the optimal contribution rate is 0.90, which
can simultaneously ensure excellent classification accuracy and computation efficiency.

Table 5. CEA for test 1 to test 4 under different contribution rates.

Contribution Rate σ Test 1 Test 2 Test 3 Test 4

0.90 312.01 312.48 312.07 315.12
0.91 321.61 324.35 313.95 323.28
0.92 323.35 330.93 325.24 340.16
0.93 332.94 343.54 339.43 355.91
0.94 352.51 353.27 357.98 375.30
0.95 391.72 383.51 392.24 398.74

4.2. Computation Efficiency

PCA is used to transform the original features into the new uncorrelated features with lower
dimension. Therefore, the computation efficiency can be improved by PCA as the number of the
input features is decreased according to the contribution rate. Table 4 lists the computation time of
test 1 to test 4 under different contribution rates. It can be seen clearly that the computation time
increases with the increase of the contribution rate, where the contribution rate of 1.00 means that the
input features are the original features without dimension reduction. Additionally, for test 1 to test 4,
the average computation time difference between σ = 0.90 and σ = 0.95 (∆t1), that between σ = 0.95
and σ = 1.00 (∆t2), and that between σ = 0.90 and σ = 1.00 (∆t3) are 72.31 s, 263.31 s, and 335.62 s,
respectively. Evidently, ∆t1 is small while ∆t2 and ∆t3 are particularly large. Moreover, the average
computation time corresponding to σ = 1.00 is approximately 2.15 times and 1.72 times as large as the
that corresponding to σ = 0.90 and σ = 0.95, respectively, indicating that PCA can greatly improve the
computation efficiency.

Based on the calculated results, we can estimate that the average total classification accuracy of
93% is reached through the proposed discriminant method, where the computation time of about 320 s
(less than 6 min) is needed to correctly identify approximately 1860 micro-seismic events or blasts.
It is evident that this computation efficiency is able to satisfy the requirements of data processing for
seismicity analysis in underground mines. However, it will take approximately 1860 min (31 h) to
finish the same workload through the manual discrimination if we assume that about 1 min is needed
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for an experienced analyst to discriminate a micro-seismic events (blast). Compared to the manual
discrimination and the discrimination methods without PCA, it is demonstrated that the proposed
method for discriminating micro-seismic events and blasts in underground mines can significantly
improve the computation efficiency.

4.3. Further Applications

The proposed discriminant method is effective as long as the waveform image databases are
established. For a seismic monitoring system that works normally, it is easy to collect sufficient data by
a period of time (e.g., several weeks) to establish waveform image databases of micro-seismic events
and blasts. As the PCA derived waveform image features are effective and the SVM algorithm performs
well for binary classifications, the two databases containing at least 100 records (e.g., 50 micro-seismic
events and 50 blasts) are acceptable to apply the proposed method. In addition, the waveform image
databases can be updated by supplementing the correct classified micro-seismic events and blasts.
Therefore, the proposed waveform image method can be effective in different underground mines with
the establishment and update of waveform image databases.

To sum up, the advantages of the proposed discriminant method are prominent. Specifically,
it is effective with high classification accuracy and is automatic with superior computation efficiency.
In addition, the proposed method is demonstrated to be robust as there are not many differences
between the results of four cross validations. Nevertheless, in the underground mining processes,
the mining methods may be changed due to the increase of mining depth and the change of mining
circumstances and conditions. Along with the continuous update of waveform image databases, it may
be necessary to update the unified signal duration that determined before to generate a new value,
in order to adapt to the new databases and guarantee the classification accuracy. This could be a
limitation for the proposed method as the unified signal duration needs to be updated periodically
and the time for updating it needs to be judged by professional mining technical staff.

5. Conclusions

Currently, the discrimination of micro-seismic events is a significant problem in underground
mine seismicity. Focusing on the disadvantages of the discrimination methods using seismic source
parameters and waveform spectrum analysis, a novel waveform image method was proposed.
The waveform image databases of micro-seismic events and blasts were established by using the full
waveform data collected from the Yongshaba underground mine in China. PCA was applied to extract
the original features from the two waveform image databases, which could get rid of the similarities
between micro-seismic events and blasts as well as retain the differences. Then, the original image
features were transformed into new uncorrelated image features with quantitative importance and
lower dimension through PCA, where the contribution rate was utilized to quantitatively determine the
amount of initial information contained in the derived image features. Furthermore, the PCA derived
waveform image features were coupled with SVM algorithm to establish discrimination models and
perform the cross-validation tests. With the contribution rate of 0.95, results of four groups of cross
validation show that the optimal values for the classification accuracy of micro-seismic events and
blasts, total classification accuracy, and quality evaluation parameter MCC are 97.1%, 93.8%, 93.60%,
and 0.8723, respectively. In addition, the effects of contribution rate on classification accuracy and
computation efficiency were discussed quantitatively. The optimal contribution rate was determined
to be 0.90. It is concluded that the proposed waveform image method for discriminating micro-seismic
events is accurate and automatic, which can provide high-quality seismic data for seismicity analysis
in underground mines. As for the future work, we intend to investigate the possibility for using the
deep learning algorithms to replace the SVM algorithm to further improve classification accuracy
and computation efficiency. In addition, it is interesting to explore the possibility of merging the
magnitudes of micro-seismic events into the discrimination process, which can provide insights for the
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real-time identification of micro-seismic events with large magnitudes as well as prevent potential
mining-induced seismic hazards.
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