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Abstract: Gaussia luciferase (GLuc) is a secreted protein with significant potential for use as a reporter
of gene expression in bacterial pathogenicity studies. To date there are relatively few examples
of its use in bacteriology. In this study we show that GLuc can be functionally expressed in the
human pathogen Staphylococcus aureus and furthermore show that it can be used as a biosensor for
the agr quorum sensing (QS) system which employs autoinducing peptides to control virulence.
GLuc was linked to the P3 promoter of the S. aureus agr operon. Biosensor strains were validated
by evaluation of chemical agent-mediated activation and inhibition of agr. Use of GLuc enabled
quantitative assessment of agr activity. This demonstrates the utility of Gaussia luciferase for in vitro
monitoring of agr activation and inhibition.

Keywords: Gaussia luciferase; quorum sensing; Staphylococcus aureus; agr

1. Introduction

Staphylococcus aureus has been identified by the World Health Organization as a high priority
pathogen [1]. It is one of the most common causes of bacterial infections in both hospitals and in the
community [2]. Infections caused by S. aureus are difficult to treat due to the ability of this bacterium to
acquire resistance to multiple antibiotics rapidly and to grow as a biofilm which limits the efficacy of
diverse antibiotics and biocides [3,4]. There is, therefore, an urgent need to develop antimicrobials
with novel targets which are effective against resistant strains. As well as traditional drugs, alternative
therapies are being investigated which are less likely to drive the development of resistance [5].
These include compounds which will target functions essential for infection such as colonization and
virulence factor production without affecting bacterial growth [6].

In S. aureus the accessory gene regulator (agr) quorum sensing system is a key regulator of
virulence factor expression [2,7]. Quorum sensing (QS) is a means of cell to cell communication in
bacterial populations. It coordinates cooperative behavior by enabling bacteria at high population
densities to respond to altered environments [8]. Bacteria communicate using secreted signal molecules
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called autoinducers. When the extracellular concentration of the autoinducer reaches a threshold level,
a signal transduction pathway is activated, leading to targeted gene activation or repression [7].

For the S. aureus agr system, as outlined in Figure 1, the quorum sensing signal molecule is
an autoinducing peptide (AIP) [9]. AIPs are produced by post-translational N- and C-terminal
processing of the AgrD pre-propeptide by AgrB and exported from the cell [7,10]. Once an AIP
reaches a threshold concentration outside the cell it binds to and activates AgrC in the cell membrane.
This autophosphorylates in response to AIP binding and in turn phosphorylates AgrA, the response
regulator. Activated AgrA binds to the P2 and P3 promoters, upregulating agrBCDA and RNAIII
expression [10-12]. RNAIII is the effector of the agr system, it encodes 6-haemolysin and also acts as a
regulatory RNA that controls expression of multiple virulence genes post-transcriptionally [7].
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Figure 1. Outline of the staphylococcal agr system and the P3 GLuc reporter. Critical control points
of the agr system, which are amenable to targeting by inhibitors, are indicated by blunt arrows.
CTZ represents coelenterazine and CTM coelenteramide. Adapted from [13].

There is increasing evidence to suggest that blocking S. aureus virulence gene expression attenuates
infection in certain experimental animal infection models [14,15]. This has been achieved through
mutation of agr or inhibition of agr via various natural and synthetic compounds. Inhibitors of agr
target different components within this quorum sensing system including those which target AgrB to
block AIP generation, competitive AIP inhibitors (also known as AgrC antagonists) which prevent
AgrC activation and inhibition of P2 and P3 activation by AgrA (Figure 1) [13]. Attenuating virulence
early in infection could allow the host immune system to respond and clear the pathogen, sparing
exposure to antibiotics [8]. Virulence inhibitors could also be used as adjuvants with existing antibiotics,
or with therapies which boost the host immune response [16,17].

Currently it is unclear when or where staphylococcal agr is expressed within the infection site and
whether agr inhibitors could be used against established infections or as prophylactics. In order to
investigate temporal agr expression and agr inhibition it is important to develop methods for real time
monitoring of agr activity which can be used in vivo [18]. This can be performed using bioluminescent
reporters linked to promoters of the agr system [19]. In previous studies, the Photorhabdus luminescens
Iux operon linked to the agrP3 promoter has been used to measure temporal agr activation in infection
models and assess agr inhibitors in vivo [14,15]. agrP3 lux based systems have also been used for
high-throughput screening of agr inhibitors [12] though it has been reported that some compounds
such as Pseudomonas aeruginosa quorum sensing molecule 3-oxo0-C1,-HSL directly inhibit Lux-based
bioluminescence, potentially leading to false positive hits [20]. Lux-based systems also require oxygen
and so are potentially compromised in environmental niches where oxygen levels are low. In this
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study, a novel bioluminescent reporter linked to the P3 promoter of the agr system was validated for
use in S. aureus.

Luciferases are often used as biological reporters due to their high sensitivity, broad dynamic range
and operational simplicity. Luciferases have been used to monitor multiple cellular processes, such
as gene expression and protein interactions as well as tracking of bacterial and viral infection [21,22].
Traditionally, bacterial luciferases have been used as reporter genes in staphylococci, however this
system requires substrate and energy supply from the cells, at the point of live-cell assay. Novel
luciferases such as the Gaussia luciferase, which is small, secreted and ATP-independent, broaden the
potential applications and provide the ability to detect bioluminescence extracellularly and without
the need for extra energy from live cells at the point of the assay [23].

Gaussia luciferase (GLuc) is a naturally secreted enzyme from the marine copepod
Gaussia princeps [24]. GLuc is a 185 amino acid, 19.9 kDa luciferase which catalyses oxidative
decarboxylation of the substrate coelenterazine (CTZ) producing coelenteramide (CTM), emitting blue
light at 480 nm [25]. GLuc is nontoxic and is naturally secreted from the cell therefore is useful for
monitoring biological processes without the requirement for cellular energy to drive the luminescent
reaction [26]. GLuc is a useful reporter due to its small size and high light intensity, and hence
delivering assays with high sensitivity. GLuc is also stable at a wide range of pHs and is resistant
to heat shock and oxidative stress [27]. GLuc has been shown to be an effective biological reporter
in bacteria, such as Salmonella enterica and Mycobacterium smegmatis [26,28]. It is a highly sensitive
reporter for nondestructive quantification of in vivo biological processes ex vivo, as bioluminescence
can be detected from the blood or urine of in vivo models using a luminometer [29,30].

The aim of this work was to demonstrate the use of Gaussia luciferase as a reporter in S. aureus
and for monitoring activation of the agr quorum sensing system (see Figure 1). Reporter strains were
constructed with GLuc chromosomally encoded under the control of the agrP3 promoter in S. aureus
USA300 strain JE2 and an isogenic Aagr mutant. These were validated by evaluation of activation
and inhibition of the agr system using the cognate AIP as agonist and synthetic (Ala®)AIP-1 as an
antagonist and by testing both nonpeptidic AgrC allosteric and AgrB inhibitors. The data obtained
show that GLuc can be used successfully for in vitro monitoring of agr activation and inhibition.

2. Materials and Methods

Staphylococcal strains were cultured in tryptone soy broth (TSB) (Oxoid) and E. coli in lysogeny
broth (LB) (Oxoid) with antibiotics added as required. All strains were grown at 37 °C and
overnight cultures were grown with aeration by shaking at 200 rpm. AIPs, N-(3-oxododecanoyl)
-L-homoserine lactone (3-oxo-Cq,-HSL, (S)-3-dodecanoyl-5-(2-hydroxyethyl) tetramic acid (C1,-TMA)
and 3-dodecanoyltetronic acid (C1-TOA) were synthesized as described before. Ambuic acid was
purchased from Cayman Chemicals.

2.1. Construction of agrP3 Reporter S. aureus Strains

A transcriptional reporter fusion was constructed with Gaussia encoded chromosomally under
the control of the agrP3 promoter. All strains and primers used are listed in Tables 1 and 2, respectively.
To ensure GLuc would be secreted by S. aureus, the protein A (SpA) leader was engineered upstream
of a synthetic GLuc gene (kind gift of S. Wiles, University of Auckland, Auckland, New Zealand).
This replaced the sequence of the original native eukaryotic leader to direct the translated protein to
the S. aureus Sec secretory pathway. This fragment was assembled into pUNKdestR3R4 flanked by the
Pxyl/tet promoter and the rrnB1B2 transcriptional terminator to create plasmid pUNK1 pXyl/tet:SpA
leader:GLuc using Gateway cloning [31] and provided for constitutive expression of Gluc in S. aureus.
The GLuc gene was then amplified by PCR from this vector using primer pair CT16 and CT17 using
high fidelity Phusion DNA polymerase (Thermofisher). The agrP3 promoter was also amplified by
PCR from S. aureus 8325-4 genomic DNA using primer pair CT14 and CT15 and assembled upstream of
GLuc into pUNKT1 using Hifi DNA assembly (NEB). This was used to transform electrocompetent E. coli
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DC10B. Plasmids were extracted using a miniprep kit (Qiagen) before confirmation by sequencing
(Source Bioscience).

Table 1. Bacterial strains used in this study.

Strain Description Reference
S. aureus 8325-4 Derivative of S. aureus NCTC 8325 [32]
S. aureus RN4220 attB2 Cloning intermediate [33]
Plasmid-cured derivative of the CA-MRSA strain
S. aureus USA300 JE2 USA300 LAC [34,35]
S. aureus RN4220 pXyl/tet: SpA o . . .
leader: GLuc Constitutively expressing SpA leader:GLuc This study
S. aureus RN4220 o . . .
Pyljtet:::luxABCDE Constitutively bioluminescent strain [20]
USA300 with chromosomal integration of SpA leader .
S. aureus USA300 agrP3 Gluc and GLuc under the control of agrP3 This study
USA300 Aagr with chromosomal integration of SpA .
5. aureus USA300 Aagr P3 Gluc leader and GLuc under the control of agrP3. This study
S. aureus ROJ143 ROJ143 carrying plasmid pSKermP2 agrC1 agrA [36]
S. aureus USA300 Aagr P3 Gluc . .
pSKermP2 agrC1 agrA USA300 Aagr P3 Gluc carrying pSKermP2 agrC1 agrA This study
E. coli DC10B Cloning intermediate dc [37]

Table 2. Primers used in this study. All primers were sourced from Sigma Aldrich (UK).

Primer Sequence Function Reference
CT12 (F) CTAGTAGGAGGAAAAACATATGATGACTTTACA
Amplification of SpA:GLuc This study
CT13 (R) ATTTGTCGACCTCAGGAGAGCGTTCACC
CT14 (F) AGTGAATTCCCGGGGATCCGACACGTCGACCCTCACTG
Amplification of agrP3 This study
CT15 (R) CTCCTACTAGCCATCACATCTCTGTGATCTAG
CT16 (F) GATGTGATGGCTAGTAGGAGGAAAAACATATGATG
Amplification of SpA:GLuc This study
CT17 (R) TCGATAAGCTTGGCTGCAGGATTTGTCGACCTCAGGAG
OUYR10 CATACTACATATCAACGAAATCAG Forward primer at RN4220 afB2 [33]
integration site
Reverse primer at 5" end of
SCVv4 ACCCAGTTTGTAATTCCAGGAG pLL102 to RN4220 atfB2 [33]
sCvs GCACATAATTGCTCACAGCCA Forward primer at 3’ end of [33]
pLL102 to RN4220 attB2 o
OU9R7 ATGGGTGGTAAAACACAAATTTC Reverse primer at RN4220 afB2 [33]

integration site

Chromosomal integration of agrP3-GLuc into S. aureus was performed as outlined by Lei et al. [33]
using integration vector pLL102. Plasmids pUNK1 agrP3:SpA leader:GLuc and pLL102 were digested
with Sall and fragments ligated using T4 DNA ligase (NEB) and used to transform electrocompetent
E. coli DC10B to create plasmid pLL102 agrP3:SpA leader:GLuc. This plasmid was used to transform
electrocompetent S. aureus RN4220 attB2. Chromosomal integration was checked by colony PCR using
primer pairs OU9R10 and SCV4, and SCV8 and OUYR7 and the correct strain named S. aureus RIN4220
attB2 agrP3 SpA leader GLuc. This strain was used as a donor for phage transduction into S. aureus
USA300 strain JE2 using phage phill (®11). Further phage transduction was performed with a Aagr
@11 phage lysate. This resulted in the construction of reporter strains USA300 agrP3-GLuc and USA300
Aagr P3 GLuc.
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2.2. Measuring agrP3 Promoter Activity Using GAUSSIA Luciferase Bioluminescence

When testing bioluminescence output from GLuc over time, a single colony of the test strain
was used to inoculate 50 mL of TSB, which was incubated at 37 °C, 200 rpm. An ODg reading of a
1 mL sample was taken every hour for 12 h. The supernatant fraction was separated from the cells by
centrifugation twice at 13,000x g for 2 min. Samples were stored at —20 °C prior to analysis. Freeze
thawing has been shown to have no effect on the stability of Gaussia luciferase [38]. When testing the
effect of AIP-1 and ambuic acid, a single colony was grown in 5 mL of TSB broth for 16 h with test
compounds added at the desired concentrations at the start of incubation. When testing the effect of
Ala5(AIP-1) and 3-oxo0-Cq-HSL analogues these compounds were added to broth with a single colony
as before and incubated for 6 h. Cultures were incubated at 37 °C at 200 rpm and samples taken as
described previously.

Samples were thawed at room temperature and 100 uL loaded into a black, flat clear-bottomed 96
well plate (Greiner). Bioluminescence was recorded as Relative Light Units (RLU) using a 96 well-plate
reader and injector (Infinite F200 Tecan): 50 pL of 20 uM coelenterazine (CTZ) substrate was injected at
200 pL/s and bioluminescence read with an integration time of 100 ms after a wait time of 1 s. A portion
of 20 uM CTZ was used as this was shown to saturate the enzyme. CTZ was injected into each well and
bioluminescence read in turn, 3 technical repeats were recorded for each sample. Statistical analysis
was performed using an unpaired t-test with Welch'’s correction.

3. Results

3.1. Induction of agr with Respect to Growth Phase

In S. aureus, agr-dependent quorum sensing is activated at high cell population densities when
the autoinducing AIP reaches a threshold level. This has been reported to occur in vitro in the late
exponential/early stationary phase of growth [11]. When the AIP reaches the threshold concentration
the agrP3 promoter is activated, therefore GLuc expression will be induced via agrP3. In order to
determine whether the production of GLuc bioluminescence occurs as a function of the growth phase
consistent with agr induction, bioluminescence and ODggy were quantified over 12 h using S. aureus
USA300 agrP3-GLuc.

A single colony was inoculated into 50 mL TSB broth with 0.01% v/v DMSO added as a solvent
control. Growth did not appear to be attenuated. As shown in Figure 2a, light output was observed after
6-7 h of growth. From 5-7 h, the level of bioluminescence increased substantially, from ~4.83 X 10° to
8.74 x 10° RLU/ODygg (Relative Light Units/Optical Density at 600 nm). The increase in bioluminescence
reached a plateau after 10 h at ~2.7 X 107 RLU/ODggo which is consistent with agr expression.

3.2. Activation of USA300 Aagr P3-GLuc pSKermP2 agrAC with Synthetic AIP-1

To confirm the AIP-dependent expression of the agrP3-Gluc construct we set out to demonstrate
that the reporter can be activated with synthetic, exogenous AIP-1. The agrA and agrC genes which
constitute the agr two-component signal transduction system, were introduced into USA300 Aagr
P3-GLuc on plasmid pSKermP2 agrAC [36]. Genetic complementation with agrA and agrC would
enable the strain to respond to exogenous AIP-1 by upregulation of the agrP3-GLuc promoter due to
signal transduction from AgrC and AgrA [36]. Due to the lack of AgrB and AgrD the strain could not
itself synthesize AIP-1.

The response of this strain to synthetic AIP-1 was demonstrated by the addition of 100 nM AIP-1
to an overnight culture. As a control, 0.01% v/v DMSO, the solvent used for AIP-1 was tested, as well
as USA300 Aagr P3-GLuc with addition of 100 nM AIP-1.
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Figure 2. Bioluminescence from S. aureus strain USA300 agrP3-GLuc over time. (a) Bioluminescence

output. (b) Bacterial growth (ODggg). Data are representative of three technical repeats and three

biological repeats for each sample with error bars displaying standard deviations.

As shown in Figure 3 after addition of AIP-1 to USA300 Aagr P3-GLuc the level of bioluminescence
was ~6.78 x 10 RLU/ODgqo. This demonstrates that AIP-1 does not activate quorum sensing in
the Aagr strain. When complemented with agrA and agrC, the 0.01% v/v DMSO control produced
bioluminescence of ~1.4 x 107 RLU/ODyq, indicating the levels of background luminescence when the
AgrA transcription activator was present. On exogenous provision of 100 nM AIP-1 this increased to
~4.19 x 107 RLU/ODygqp. This was a significant increase showing the strain responded productively to

exogenous AIP-1
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Figure 3. Impact of the addition of exogenous AIP-1 on bioluminescence produced by S. aureus USA300
Aagr P3-Gluc pSKermP2 agrAC. Aagr represents USA300 Aagr P3-GLuc and Aagr + AC represents
USA300 Aagr P3-Gluc pSKermP2 agrAC. The data represent three technical repeats and three biological
repeats for each sample and error bars displaying standard deviation. * p < 0.01.

3.3. Inhibition of S. aureus USA300 agrP3 by an AgrC Antagonist (Ala®) AIP-1

To demonstrate that GLuc expression is under the control of the agrP3 promoter, S. aureus
USA300 agrP3-GLuc was treated with (Ala®)AIP-1, a competitive inhibitor of the agr system [39].
Bioluminescence was recorded after incubation for 6 h. As shown in Figure 4, after 6 h there
was a significant decrease in bioluminescence observed when treated with 100 nM (Ala®)AIP-1
(~6.4 x 10° RLU) compared with the 1% v/v DMSO control (1.13 X 10° RLU). This demonstrates that



Sensors 2020, 20, 4305 7 of 12

bioluminescence from this strain can be inhibited with addition of a competitive antagonist of the
agr system.
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Figure 4. Impact of Ala®(AIP-1) on bioluminescence output from S. aureus USA300 agrP3-GLuc. The 1%
v/v DMSO represents USA300 agrP3 GLuc with 1% DMSO, Aagr represents USA300 Aagr P3-GLuc
and 100 nM Ala-5 represents USA300 agrP3 GLuc with addition of 100 nM (Ala®)AIP-1. The data
shown are the means with error bars displaying standard deviation of triplicate technical repeats and is
representative of biological triplicate repeats. * p < 0.01.

3.4. Evaluation of an AgrB Inhibitor with USA300 agrP3-GLuc

Inhibitors of other targets in the agr system have been identified, such as ambuic acid which
blocks AIP biosynthesis by targeting AgrB [15]. This was tested against USA300 agrP3-GLuc. Addition
of 40 uM ambuic acid significantly reduced bioluminescence compared with the control to 2.52 x 107
RLU/ODgqg (Figure 5). This was almost 4-fold lower than the control although bioluminescence was
not reduced to the level of the agr mutant.
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Figure 5. Impact of the AIP biosynthesis inhibitor ambuic acid (40 uM) on bioluminescence output
from S. aureus USA300 agrP3-GLuc. ‘No compound’ represents USA300 agrP3 GLuc without inhibitor,
Aagr represents USA300 Aagr P3-GLuc without inhibitor and ambuic acid represents USA300 agrP3
GLuc with the addition of 40 uM ambuic acid. The graph displays the mean of three technical and
three biological repeats with error bars displaying standard deviation. * p < 0.01.
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3.5. 3-Ox0-C1,-HSL Has Differential Effects on GLuc and Lux Bioluminescence

The molecule 3-Ox0-C1»-HSL is a Pseudomonas aeruginosa quorum sensing signal molecule which
has inhibitory effects on the S. aureus agr quorum sensing system [40]. Murray et al. screened analogues
of 3-oxo0-C1-HSL and identified C15-TMA and Ci,-tetronic acid (C1-TOA) as the most potent inhibitors.
They used a blaZ based agrP3 reporter as 3-oxo-C12-HSL affected lux-based bioluminescence making
conventional Jux-based agrP3 reporter systems unsuitable [40].

To determine whether a GLuc-based reporter could be used to screen for quorum sensing inhibitory
activity with compounds that inhibited Lux-based bioluminescence, 3-oxo-Cq,-HSL, C1,-TMA and
C12-TOA were mixed with Gaussia luciferase in the supernatant of Gluc-expressing S. aureus to
investigate whether they directly influenced the GLuc biochemical reaction. They were also tested
on cultures of constitutively bioluminescent S. aureus expressing lux to compare the effect on [ux-
based bioluminescence.

As shown in Figure 6, neither 3-ox0-Ci;-HSL nor Ci;-TMA significantly affected GLuc
bioluminescence compared with a 1% v/v DMSO solvent control. However, when these two compounds
were incubated with Lux + S. aureus at 5 uM, light output was significantly reduced. This confirmed
that lux-based bioluminescence was directly inhibited by these compounds. C1,-TOA was not shown
to significantly decrease either GLuc or [ux-based bioluminescence at both concentrations tested.
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Figure 6. Comparison of the effect of 3-ox0-C1,-HSL, C15-TMA and C1,-TOA on S. aureus constitutively
expressing bioluminescence based on (a) GLuc or (b) Lux. The data shown are the means with error
bars displaying standard deviation of triplicate technical repeats and are representative of biological
triplicate repeats. ** p < 0.05.

3.6. Evaluation of USA300 agrP3 GLuc as a Screen for agr Inhibitors Related to 3-oxo-C12-HSL

To evaluate whether S. aureus USA300 agrP3 GLuc could be used to screen analogues of
3-0x0-Cq-HSL, this strain was cultured in the presence or absence of a range of concentrations
of 3-ox0-C12-HSL, C13-TMA and C;,-TOA and bioluminescence read after 6 h. As shown in Figure 7,
addition of 5 uM or 10 pM of 3-ox0-Cy2-HSL significantly reduced bioluminescence compared to the 1%
DMSO control. The addition of C15-TMA and C1,-TOA also reduced bioluminescence which confirmed
findings of agr inhibition by these compounds reported by Murray et al. (2014). This demonstrates
that S. aureus USA300 agrP3 GLuc can be used to screen inhibitors of agr-dependent quorum sensing,
where screening by Lux is precluded due to direct inhibition of Lux bioluminescence.
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Figure 7. The effect of 3-ox0-Cj»-HSL, C15-TMA and C1,-TOA on agrP3-GLuc expression in USA300
agrP3 GLuc. For 3-oxo-Cip-HSL, low luminescence values of 1.9 X 10* RLU/OD600 (5 uM) and
2.45 x 10* RLU/ODygp (10 M) were recorded. The data show the means with error bars displaying
standard deviation of triplicate technical repeats and are representative of biological triplicate repeats.
*** 1 < 0.0001.

4. Discussion

Antibiotic resistance in many bacterial pathogens including S. aureus is increasing and antibiotics
of last resort are increasingly used to treat these infections, which in turn is leading to the emergence of
resistance to these high-value antibiotics. There is an urgent need for novel therapeutics which do not
succumb to conventional mechanisms of antibiotic resistance. One method is through attenuation of
bacterial virulence. In S. aureus, pathogenicity is largely controlled by the agr quorum sensing system,
therefore this is a potential target for antivirulence drugs [13,41]. It is therefore important to develop
simple methods for monitoring of agr activity in order to facilitate screening for inhibitors and gain
information about agr activation in infection models in vivo. In this study we have demonstrated that
Gaussia luciferase can be used as a reporter for agr dependent quorum sensing in S. aureus. The ability
of GLuc to report agr activation in vitro was demonstrated by comparing bioluminescence over time
with ODggp. This showed that bioluminescence increased in the late log phase of growth when agr is
activated [11]. This confirmed that the reporter functioned as anticipated and is likely to be useful
for monitoring temporal agr activation both in vitro and potentially in vivo in experimental animal
infection models.

To demonstrate that GLuc activation is under the control of the agr system, the response to
synthetic AIP-1 was first evaluated. Activation of the agr system in vitro in wild type S. aureus strains
by addition of exogenous synthetic AIP-1 can be difficult to observe because of other regulators of
the agr system. For example, CodY represses agr activation during exponential growth in rich media,
preventing agr activation before depletion of key nutrients [42]. Therefore, in order to evaluate the
response of the reporter to exogenous AIP-1, agrA and agrC which make up the two-component signal
transduction system were introduced into USA300 Aagr P3-GLuc on plasmid pSKermP2. This plasmid
encodes agrC and agrA under the control of the P2 promoter of the agr system [36]. Complementation
of agrA and agrC enabled the Aagr strain to respond to exogenous AIP-1. This was shown by the
increased light output on provision of AIP-1 compared with the DMSO control.

It was demonstrated that for USA300 agrP3-GLuc the expression of Gaussia luciferase was
dependent on activation of the agr QS system. This was further validated by addition of a competitive
antagonist of the agr system. Addition of (Ala®)AIP-1 reduced bioluminescence. This confirmed that
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inhibition of the agr system also inhibited GLuc activation, which was consistent with the control
of light output through activation of QS. Similar results were obtained with C1,-TMA and Cy,-TOA
which are noncompetitive, negative allosteric modulators of AgrC [40].

This work also demonstrates the potential of the GLuc reporter in identifying inhibitors of other
agr system components. Ambuic acid, an AgrB inhibitor, was tested against USA300 agrP3-GLuc.
Ambuic acid has been tested previously in in vivo models with an agrP3-lux reporter where real time
reduction of agr activity was seen [15]. This shows that GLuc can be used as a reporter to screen for agr
inhibitors and evaluate their potential as prophylactic and therapeutic agents.

Previously, bacterial lux-based reporter systems have been used to study agr quorum sensing
however it has been demonstrated that some agr inhibitors can interfere with the luciferase activity
giving false results. Here it was demonstrated that 3-oxo-Ci, HSL interfered with the lux signal
however did not interfere with GLuc bioluminescence. It was shown that QS inhibitors which have
an effect on lux-based bioluminescence could be reliably assayed using GLuc, demonstrating that it
was a useful alternative output for bacterial reporter systems. Additionally, the output from [ux-based
reporters may be affected by metabolic effects decreasing the availability of bioluminescence substrates
such as FMNH, at the point of assay, therefore any reduction in bioluminescence could be due to
metabolic factors rather than a reduction of agr activity [43]. GLuc does not require cellular cofactors
during assay therefore directly provides information about agr activation, avoiding the reduction in
specificity associated with the loss of metabolites. This work demonstrates that agrP3 GLuc reporters
can be used as a useful alternative or adjunct to screens for inhibitors of the agr system in vitro.

Together these data show that the agrP3-GLuc reporter can be activated by exogenous cognate AIP-1
and inhibited by antagonists of the agr system similar to agrP3-lux and agrP3-blaZ reporters [36,39,44].
This highlights the use of the Gaussia luciferase as a novel reporter of agr activity in S. aureus in vitro
and for potential screening for activators and inhibitors of the agr system.

Author Contributions: Conceptualization, PH., PW. and W.C.; methodology, PH., W.C. and PW.; investigation,
LB, C.T, XS, ]J.L. and E.M.; formal analysis, I.B., C.T., ].L. and E.M.; visualization, I.B. and C.T.; writing—original
draft preparation, I.B. and C.T.; writing—review and editing, I.B., C.T., PH., PW. and W.C.; supervision, PH., J.L.,
P.W. and W.C.; funding acquisition, PW., W.C. and P.H. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded via the Wellcome Trust and Medical Research Council UK postgraduate
studentships and by a Medical Research Council Programme grant (MR/N010477/1).

Acknowledgments: Thanks to Siouxsie Wiles for providing synthetic Gluc gene and Alex Truman for synthesizing
Clz-TMA and C12-TOA.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Asokan, G.V; Ramadhan, T.; Ahmed, E.; Sanad, H. WHO Global Priority Pathogens List: A Bibliometric
Analysis of Medline-PubMed for Knowledge Mobilization to Infection Prevention and Control Practices in
Bahrain. Oman Med. |. 2019, 34, 184-193. [CrossRef]

2. Queck, S.Y.; Jameson-Lee, M.; Villaruz, A.E.; Bach, T.H.; Khan, B.A.; Sturdevant, D.E.; Ricklefs, S.M.; Li, M.;
Otto, M. RNAIIl-independent target gene control by the agr quorum-sensing system: Insight into the
evolution of virulence regulation in Staphylococcus aureus. Mol. Cell 2008, 32, 150-158. [CrossRef] [PubMed]

3.  Boles, B.R.; Horswill, A.R. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog. 2008,
4, e1000052. [CrossRef] [PubMed]

4. McGuinness, W.A.; Malachowa, N.; DeLeo, ER. Vancomycin Resistance in Staphylococcus aureus. Yale J. Biol.
Med. 2017, 90, 269-281. [PubMed]

5. Aminov, RI. A brief history of the antibiotic era: Lessons learned and challenges for the future. Front.
Microbiol. 2010, 1, 134. [CrossRef] [PubMed]

6. Clatworthy, A.E.; Pierson, E.; Hung, D.T. Targeting virulence: A new paradigm for antimicrobial therapy.
Nat. Chem. Biol. 2007, 3, 541-548. [CrossRef] [PubMed]


http://dx.doi.org/10.5001/omj.2019.37
http://dx.doi.org/10.1016/j.molcel.2008.08.005
http://www.ncbi.nlm.nih.gov/pubmed/18851841
http://dx.doi.org/10.1371/journal.ppat.1000052
http://www.ncbi.nlm.nih.gov/pubmed/18437240
http://www.ncbi.nlm.nih.gov/pubmed/28656013
http://dx.doi.org/10.3389/fmicb.2010.00134
http://www.ncbi.nlm.nih.gov/pubmed/21687759
http://dx.doi.org/10.1038/nchembio.2007.24
http://www.ncbi.nlm.nih.gov/pubmed/17710100

Sensors 2020, 20, 4305 11 of 12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Otto, M. Quorum-sensing control in Staphylococci—A target for antimicrobial drug therapy? FEMS Microbiol.
Lett. 2004, 241, 135-141. [CrossRef]

Gray, B.; Hall, P.; Gresham, H. Targeting agr- and agr-Like quorum sensing systems for development of
common therapeutics to treat multiple gram-positive bacterial infections. Sensors 2013, 13, 5130-5166.
[CrossRef]

Novick, R.P; Projan, S.J.; Kornblum, J.; Ross, H.E; Ji, G.; Kreiswirth, B.; Vandenesch, F.; Moghazeh, S. The agr
P2 operon: An autocatalytic sensory transduction system in Staphylococcus aureus. Mol. Gen. Genet. 1995,
248, 446-458. [CrossRef]

Novick, R.P. Autoinduction and signal transduction in the regulation of staphylococcal virulence.
Mol. Microbiol. 2003, 48, 1429-1449. [CrossRef]

Sloan, T.J.; Murray, E.; Yokoyama, M.; Massey, R.C.; Chan, W.C.; Bonev, B.B.; Williams, P. Timing is Everything:
Impact of Naturally Occurring Staphylococcus aureus AgrC Cytoplasmic Domain Adaptive Mutations on
Autoinduction. J. Bacteriol. 2019, 201. [CrossRef] [PubMed]

Desouky, S.E.; Nishiguchi, K.; Zendo, T.; Igarashi, Y.; Williams, P; Sonomoto, K.; Nakayama, J.
High-throughput screening of inhibitors targeting Agr/Fsr quorum sensing in Staphylococcus aureus and
Enterococcus faecalis. Biosci. Biotechnol. Biochem. 2013, 77,923-927. [CrossRef] [PubMed]

Gordon, C.P,; Williams, P; Chan, W.C. Attenuating Staphylococcus aureus virulence gene regulation:
A medicinal chemistry perspective. J. Med. Chem. 2013, 56, 1389-1404. [CrossRef] [PubMed]

Wright, ].S., III; Jin, R.; Novick, R.P. Transient interference with Staphylococcal Quorum Sensing blocks
abscess formation. Proc. Natl. Acad. Sci. USA 2005, 102, 1691-1696. [CrossRef] [PubMed]

Todd, D.A.; Parlet, C.P.; Crosby, H.A.; Malone, C.L.; Heilmann, K.P.; Horswill, A.R.; Cech, N.B. Signal
Biosynthesis Inhibition with Ambuic Acid as a Strategy To Target Antibiotic-Resistant Infections. Antimicrob.
Agents Chemother. 2017, 61. [CrossRef]

Daly, S.M.; Elmore, B.O.; Kavanaugh, J.S.; Triplett, K.D.; Figueroa, M.; Raja, H.A.; El-Elimat, T.; Crosby, H.A;
Femling, ] K.; Cech, N.B.; et al. Omega-Hydroxyemodin limits staphylococcus aureus quorum sensing-mediated
pathogenesis and inflammation. Antimicrob. Agents Chemother. 2015, 59, 2223-2235. [CrossRef]

Sully, E.K.; Malachowa, N.; Elmore, B.O.; Alexander, S.M.; Femling, ] K.; Gray, B.M.; DeLeo, FR.; Otto, M.;
Cheung, A.L.; Edwards, B.S.; et al. Selective chemical inhibition of agr quorum sensing in Staphylococcus
aureus promotes host defense with minimal impact on resistance. PLoS Pathog. 2014, 10, e1004174. [CrossRef]
Kavanaugh, J.S.; Horswill, A.R. Impact of Environmental Cues on Staphylococcal Quorum Sensing and
Biofilm Development. J. Biol. Chem. 2016, 291, 12556-12564. [CrossRef]

Alksne, L.E.; Projan, S.J. Bacterial virulence as a target for antimicrobial chemotherapy. Curr. Opin. Biotechnol.
2000, 11, 625-636. [CrossRef]

Qazi, S.; Middleton, B.; Muharram, S.H.; Cockayne, A.; Hill, P.; O’Shea, P.; Chhabra, S.R.; Camara, M.;
Williams, P. N-acylhomoserine lactones antagonize virulence gene expression and quorum sensing in
Staphylococcus aureus. Infect. Immun. 2006, 74, 910-919. [CrossRef]

Hall, M.P; Unch, J.; Binkowski, B.E; Valley, M.P,; Butler, B.L.; Wood, M.G.; Otto, P.; Zimmerman, k.;
Vidugiris, G.; Machleidt, T.; et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel
imidazopyrazinone substrate. ACS Chem. Biol. 2012, 7, 1848-1857. [CrossRef] [PubMed]

Yan, Y.; Shi, P.; Song, W.; Bi, S. Chemiluminescence and Bioluminescence Imaging for Biosensing and Therapy:
In Vitro and In Vivo Perspectives. Theranostics 2019, 9, 4047-4065. [CrossRef] [PubMed]

England, C.G.; Ehlerding, E.B.; Cai, W. NanoLuc: A Small Luciferase Is Brightening Up the Field of
Bioluminescence. Bioconjug. Chem. 2016, 27, 1175-1187. [CrossRef] [PubMed]

Maguire, C.A.; Deliolanis, N.C.; Pike, L.; Niers, ].M.; Tjon-Kon-Fat, L.A.; Sena-Esteves, M.; Tannous, B.A.
Gaussia luciferase variant for high-throughput functional screening applications. Anal. Chem. 2009, 81,
7102-7106. [CrossRef] [PubMed]

Rathnayaka, T.; Tawa, M.; Sohya, S.; Yohda, M.; Kuroda, Y. Biophysical characterization of highly active
recombinant Gaussia luciferase expressed in Escherichia coli. Biochim. Biophys. Acta 2010, 1804, 1902-1907.
[CrossRef]

Wu, N.; Rathnayaka, T.; Kuroda, Y. Bacterial expression and re-engineering of Gaussia princeps luciferase and
its use as a reporter protein. Biochim. Biophys. Acta 2015, 1854 Pt A, 1392-1399. [CrossRef]

Wiles, S.; Ferguson, K.; Stefanidou, M.; Young, D.B.; Robertson, B.D. Alternative luciferase for monitoring
bacterial cells under adverse conditions. Appl. Environ. Microbiol. 2005, 71, 3427-3432. [CrossRef]


http://dx.doi.org/10.1016/j.femsle.2004.11.016
http://dx.doi.org/10.3390/s130405130
http://dx.doi.org/10.1007/BF02191645
http://dx.doi.org/10.1046/j.1365-2958.2003.03526.x
http://dx.doi.org/10.1128/JB.00409-19
http://www.ncbi.nlm.nih.gov/pubmed/31358609
http://dx.doi.org/10.1271/bbb.120769
http://www.ncbi.nlm.nih.gov/pubmed/23649251
http://dx.doi.org/10.1021/jm3014635
http://www.ncbi.nlm.nih.gov/pubmed/23294220
http://dx.doi.org/10.1073/pnas.0407661102
http://www.ncbi.nlm.nih.gov/pubmed/15665088
http://dx.doi.org/10.1128/AAC.00263-17
http://dx.doi.org/10.1128/AAC.04564-14
http://dx.doi.org/10.1371/journal.ppat.1004174
http://dx.doi.org/10.1074/jbc.R116.722710
http://dx.doi.org/10.1016/S0958-1669(00)00155-5
http://dx.doi.org/10.1128/IAI.74.2.910-919.2006
http://dx.doi.org/10.1021/cb3002478
http://www.ncbi.nlm.nih.gov/pubmed/22894855
http://dx.doi.org/10.7150/thno.33228
http://www.ncbi.nlm.nih.gov/pubmed/31281531
http://dx.doi.org/10.1021/acs.bioconjchem.6b00112
http://www.ncbi.nlm.nih.gov/pubmed/27045664
http://dx.doi.org/10.1021/ac901234r
http://www.ncbi.nlm.nih.gov/pubmed/19601604
http://dx.doi.org/10.1016/j.bbapap.2010.04.014
http://dx.doi.org/10.1016/j.bbapap.2015.05.008
http://dx.doi.org/10.1128/AEM.71.7.3427-3432.2005

Sensors 2020, 20, 4305 12 of 12

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Wille, T.; Blank, K.; Schmidt, C.; Vogt, V.; Gerlach, R.G. Gaussia princeps luciferase as a reporter for
transcriptional activity, protein secretion, and protein-protein interactions in Salmonella enterica serovar
typhimurium. Appl. Environ. Microbiol. 2012, 78, 250-257. [CrossRef]

Tannous, B.A. Gaussia luciferase reporter assay for monitoring biological processes in culture and in vivo.
Nat. Protoc. 2009, 4, 582-591. [CrossRef]

Wurdinger, T.; Badr, C.; Pike, L.; de Kleine, R.; Weissleder, R.; Breakefield, X.O.; Tannous, B.A. A secreted
luciferase for ex vivo monitoring of in vivo processes. Nat. Methods 2008, 5, 171-173. [CrossRef]

Perehinec, T.M.; Qazi, S.N.; Gaddipati, S.R.; Salisbury, V.; Rees, C.E.; Hill, PJ. Construction and evaluation of
multisite recombinatorial (Gateway) cloning vectors for Gram-positive bacteria. BMC Mol. Biol. 2007, 8, 80.
[CrossRef] [PubMed]

Novick, R. Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus. Virology 1967,
33, 155-166. [CrossRef]

Lei, M.G.; Cue, D.; Alba, J.; Junecko, ].; Graham, J.W.; Lee, C.Y. A single copy integration vector that integrates
at an engineered site on the Staphylococcus aureus chromosome. BMC Res. Notes 2012, 5, 5. [CrossRef]
[PubMed]

Fey, PD.; Endres, ].L.; Yajjala, VK.; Widhelm, T.J.; Boissy, R.J.; Bose, J.L.; Bayles, K.W. A genetic resource for
rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. Mbio 2013, 4,
€00537-12. [CrossRef]

McDougal, LK.; Steward, C.D,; Killgore, G.E.; Chaitram, ].M.; McAllister, S.K.; Tenover, F.C. Pulsed-field gel
electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: Establishing
a national database. J. Clin. Microbiol. 2003, 41, 5113-5120. [CrossRef]

Jensen, R.O.; Winzer, K.; Clarke, S.R.; Chan, W.C.; Williams, P. Differential recognition of Staphylococcus
aureus quorum-sensing signals depends on both extracellular loops 1 and 2 of the transmembrane sensor
AgrC. J. Mol. Biol. 2008, 381, 300-309. [CrossRef]

Monk, LR;; Shah, IM.; Xu, M.; Tan, M.W.,; Foster, T.J. Transforming the untransformable: Application of
direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. MBio
2012, 3. [CrossRef]

Wider, D.; Picard, D. Secreted dual reporter assay with Gaussia luciferase and the red fluorescent protein
mCherry. PLoS ONE 2017, 12, €0189403. [CrossRef]

McDowell, P; Affas, Z.; Reynolds, C.; Holden, M.T.; Wood, S.J.; Saint, S.; Cockayne, A ; Hill, PJ.; Dodd, C.E.;
Bycroft, BW.; et al. Structure, activity and evolution of the group I thiolactone peptide quorum-sensing
system of Staphylococcus aureus. Mol. Microbiol. 2001, 41, 503-512. [CrossRef]

Murray, E.J.; Crowley, R.C.; Truman, A.; Clarke, S.R.; Cottam, J.A.; Jadhav, G.P; Steele, V.R.; O’Shea, P;
Lindholm, C.; Cockayne, A.; et al. Targeting Staphylococcus aureus quorum sensing with nonpeptidic small
molecule inhibitors. |. Med. Chem. 2014, 57, 2813-2819. [CrossRef]

Baldry, M.; Kitir, B.; Frokiaer, H.; Christensen, S.B.; Taverne, N.; Meijerink, M.; Franzyk, H.; Olsen, C.A.;
Wells, ].M.; Ingmer, H. The agr Inhibitors Solonamide B and Analogues Alter Immune Responses to
Staphylococccus aureus but Do Not Exhibit Adverse Effects on Immune Cell Functions. PLoS ONE 2016, 11,
e0145618. [CrossRef] [PubMed]

Roux, A.; Todd, D.A.; Velazquez, J.V.; Cech, N.B.; Sonenshein, A.L. CodY-mediated regulation of the
Staphylococcus aureus Agr system integrates nutritional and population density signals. J. Bacteriol. 2014, 196,
1184-1196. [CrossRef] [PubMed]

Liu, M.; Blinn, C.; McLeod, S.M.; Wiseman, ].W.; Newman, J.V.; Fisher, S.L.; Walkup, G K. Secreted Gaussia
princeps luciferase as a reporter of Escherichia coli replication in a mouse tissue cage model of infection.
PLoS ONE 2014, 9, €90382. [CrossRef] [PubMed]

Mayville, P; Ji, G.; Beavis, R.; Yang, H.; Goger, M.; Novick, R.P.; Muir, T.W. Structure-activity analysis of
synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc. Natl.
Acad. Sci. USA 1999, 96, 1218-1223. [CrossRef] [PubMed]

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1128/AEM.06670-11
http://dx.doi.org/10.1038/nprot.2009.28
http://dx.doi.org/10.1038/nmeth.1177
http://dx.doi.org/10.1186/1471-2199-8-80
http://www.ncbi.nlm.nih.gov/pubmed/17880697
http://dx.doi.org/10.1016/0042-6822(67)90105-5
http://dx.doi.org/10.1186/1756-0500-5-5
http://www.ncbi.nlm.nih.gov/pubmed/22221385
http://dx.doi.org/10.1128/mBio.00537-12
http://dx.doi.org/10.1128/JCM.41.11.5113-5120.2003
http://dx.doi.org/10.1016/j.jmb.2008.06.018
http://dx.doi.org/10.1128/mBio.00277-11
http://dx.doi.org/10.1371/journal.pone.0189403
http://dx.doi.org/10.1046/j.1365-2958.2001.02539.x
http://dx.doi.org/10.1021/jm500215s
http://dx.doi.org/10.1371/journal.pone.0145618
http://www.ncbi.nlm.nih.gov/pubmed/26731096
http://dx.doi.org/10.1128/JB.00128-13
http://www.ncbi.nlm.nih.gov/pubmed/24391052
http://dx.doi.org/10.1371/journal.pone.0090382
http://www.ncbi.nlm.nih.gov/pubmed/24595353
http://dx.doi.org/10.1073/pnas.96.4.1218
http://www.ncbi.nlm.nih.gov/pubmed/9990004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Construction of agrP3 Reporter S. aureus Strains 
	Measuring agrP3 Promoter Activity Using GAUSSIA Luciferase Bioluminescence 

	Results 
	Induction of agr with Respect to Growth Phase 
	Activation of USA300 agr P3-GLuc pSKermP2 agrAC with Synthetic AIP-1 
	Inhibition of S. aureus USA300 agrP3 by an AgrC Antagonist (Ala5)AIP-1 
	Evaluation of an AgrB Inhibitor with USA300 agrP3-GLuc 
	3-Oxo-C12-HSL Has Differential Effects on GLuc and Lux Bioluminescence 
	Evaluation of USA300 agrP3 GLuc as a Screen for agr Inhibitors Related to 3-oxo-C12-HSL 

	Discussion 
	References

