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Abstract: Collecting multi-channel sensory signals is a feasible way to enhance performance in the
diagnosis of mechanical equipment. In this article, a deep learning method combined with feature
fusion on multi-channel sensory signals is proposed. First, a deep neural network (DNN) made
up of auto-encoders is adopted to adaptively learn representative features from sensory signal and
approximate non-linear relation between symptoms and fault modes. Then, Locality Preserving
Projection (LPP) is utilized in the fusion of features extracted from multi-channel sensory signals.
Finally, a novel diagnostic model based on multiple DNNs (MDNNs) and softmax is constructed with
the input of fused deep features. The proposed method is verified in intelligent failure recognition
for automobile final drive to evaluate its performance. A set of contrastive analyses of several
intelligent models based on the Back-Propagation Neural Network (BPNN), Support Vector Machine
(SVM) and the proposed deep architecture with single sensory signal and multi-channel sensory
signals is implemented. The proposed deep architecture of feature extraction and feature fusion on
multi-channel sensory signals can effectively recognize the fault patterns of final drive with the best
diagnostic accuracy of 95.84%. The results confirm that the proposed method is more robust and
effective than other comparative methods in the contrastive experiments.

Keywords: array signal processing; feature fusion; deep neural network; multi-channel sensory
signals; intelligent fault diagnosis

1. Introduction

Final drive is the core component in the rear axle of automobile and is always running under
complex operating conditions and inevitably faults. Any fault of final drive may cause severe
human injury, production stoppage and economic loss [1,2]. The change of status is hidden in the
vibrational characteristics produced during the operating period. Therefore, fault diagnosis with
vibration signal is extremely efficient in status detection and failure recognition of machinery [3–8]. P.K.
Wong used Ensemble Empirical Mode Decomposition (EEMD) in the failure recognition of gears [9].
Stephen McLaughlin acquired gear features from modulating signal [10]. D.P. Jena et al. used variant
technology of wavelet transform to implement fault diagnosis [11]. M Amarnatha utilized vibration
signals to detect the severity of fault of a helical gear tooth [12].

Diagnosing fault using a single-channel vibration signal may cause the decrease of diagnostic
accuracy due to the direction of sensor and installation position [13]. Array signal processing
is extensively applied in sonar, wireless communications, medical diagnosis and engineering
applications [14–17]. Array signal processing could enhance useful signal and suppress noise and
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interference by placing a set of sensors in different positions to form sensor array [18–21]. With the
purpose of improving the diagnostic accuracy, it is essential to obtain multi-channel sensory signals by
setting some sensors along different directions. The diagnostic accuracy could be more superior and
reliable than using single signals.

Nowadays, many researches contributed to information mining and the utility of massive
data [22]. Moreover, vibrational signals collected from multiple sensors are widely used in the
field of fault diagnosis [23–26]. Yaguo Lei used multi-sensor data in fault detection of gearbox [27].
M.S. Safizadeh studied multi-sensor data fusion to improve the performance of fault recognition for
rolling element bearings [28]. Luyang Jing combined deep neural networks and multi-sensor data
fusion in the fault detection of planetary gearbox [29]. Zhixiong Li researched in fault recognition of
gear cracks with multi-channel sensory signals [30]. Joao A. Duro adopted multi-sensor signals in
machinery condition monitoring [31]. Khazaee M. adopted a feature-level fusion in fault diagnosis of
planetary gearbox [32]. Yunusa-Kaltungo developed a novel framework of fault characterization for
rotating machines [33]. Zhiwen Liu used support vector machine and ant colony into fault diagnosis
of gearbox [34]. Previous researches usually adopted traditional machine learning technologies in
machinery fault diagnosis. Few papers have studied the deep feature learning and fusion model with
multi-channel data.

The vibration signals are unavoidably polluted by disturbance originated from other vibration
components and paroxysmal noise [35,36]. Traditional fault diagnosis employs complex signal process
techniques to extract the shallow features manually. However, the representativeness of features
obviously affects the capability of traditional fault recognition. Moreover, the manual selection of most
sensitive features for a specific issue is time consuming [37]. These shortcomings encourage researchers
to find out a new method to adaptively and automatically learn deep features from original data.

After a series of non-linear transformations, representative and essential features can be effectively
mined by deep learning. Deep learning includes three basic types: Convolutional Neural Network
(CNN), Deep Neural Network (DNN) and Deep Belief Network (DBN) [38–41]. Recently, deep learning
using deep architectures is widely applied for intelligent fault diagnosis [42–44]. Compared with
DBN and CNN, DNN consisted of a stack of auto-encoders that is purely unsupervised and easy to
implement [45,46]. Due to the deep architectures, DNN can mine fault-sensitive features from raw
signals so as to effectively ferret out the non-linear relationship between symptoms and faults. Jia Feng
applied deep learning technology into the field of rotating machinery [37]. J. Zabalza et al. employed
stacked auto-encoder to extract feature in hyper spectral imaging [47]. P. Xiong et al. employed
de-nosing auto-encoder for enhancement of signal [48].

Despite the fact that deep features extracted from multi-channel sensory data are fault sensitive
and representative, features of different channels are usually heterogeneous and redundant. In order
to avoid performance reduction caused by information redundancy, Locality Preserving Projection
(LPP) is used in the fusion of extracted features obtained from multi-channel sensory signals. LPP is
a typical dimensionality reduction algorithm based on local structure of data which can effectively
preserve the neighborhood information and local characteristics during the fusion procedure [49–52].
The fused deep features of multi-channel sensory data will be fed into a diagnostic model based on
softmax [53–55].

In this paper, aiming at solving the limitation of single sensor and automatically extracting
fault-sensitive features without manual pre-processing, a deep learning model with multi-channel
sensory signals is proposed and verified in application of intelligent fault diagnosis of automobile final
drive. The contrast analysis and experimental results show that the proposed method can adaptively
extract deep features from original multi-channel signals and effectively improve the accuracy and
capability of failure recognition. The contributions and key techniques of our work are summarized in
three aspects:
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(1) To solve the limitation of single sensor, we collect multi-channel sensory signals by installing
several sensors in different positions along horizontal and vertical direction so as to implement
reliable monitoring.

(2) To solve the limitation of using traditional signal process techniques to manually extract features,
we employ deep learning technique in learning representative features from original multi-channel
signal adaptively.

(3) In order to avoid the heterogeneity and redundancy of deep features from multi-channel data,
we fuse these deep features by using locality preserving projection.

The following is organized in four sections. In Section 2, the fundamental theory used in the
research is given. Application of the diagnostic method based on multiple DNNs (MDNNs) is presented
in the next section. A set of experiments is implemented to evaluate the accuracy and efficiency in
Section 4. In Section 5, a set of conclusions is provided.

2. The Fundamental Theory of Auto-Encoder

An auto-encoder is a special neural network based on unsupervised learning with three necessary
layers of artificial neural network. The training process of an auto-encoder always contains two stages,
encoding and decoding [56].

Given a sample set X = {x1, . . . , xi, . . . , xM}, xi
∈ RN, where M denotes the sample size. In encoding

stage, input data xi is transformed into a low-dimensional feature space to learn an approximation of
input data as shown in below:

h(i) = fθ
(
xi
)

(1)

where fθ denotes encoding function and θ = [W, b] denotes the parameters between the first layer and
the second layer.

In decoding stage, input data xi can be reconstructed in output layer as follows:

xi′ = gθ′(h(i)) (2)

in which gθ′ denotes decoding function, xi′ denotes the reconstruction of original data xi, and θ′ =

[W′, b′] is the parameters between the second layer and the third layer.
By minimizing the average reconstruction error of M samples, the parameter set

{
θ, θ′

}
of the

encoding stage and decoding stage can be optimized:

∅AE(θ, θ′) =
1
M

∑M

i=1
L
(
xi, xi′

)
(3)

L( x, x′) = ‖x− x′‖2 (4)

where L( x, x′) represents reconstruction error function to measure the discrepancy between original
data and its reconstruction.

3. Proposed Diagnostic Model

A deep learning method with deep architecture and feature fusion on multi-channel sensory
signals is developed in this paper. It includes three parts: the construction of deep architecture for
feature learning, the fusion of the deep features extracted from multi-channel sensory data and the
construction of intelligent diagnostic model using softmax.

3.1. Construction of Deep Neural Network for Deep Feature Learning

By piling up N auto-encoders, construct a DNN with N hidden layers so as to hierarchically
learn essential characteristics from sensory data. The first auto-encoder consists of input layer and
the first hidden layer, and so on. The training of DNN contains two sections: pre-training and
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fine-tuning [57–59]. During the process of the first section based on unsupervised learning, the encoder
vector of x(i) obtained from the first auto-encoder is:

h(i)1 = fθ1(x(i)) (5)

where θ1 represents the parameter of the first auto-encoder.
Then, the first encoder vector h(i)1 is inputted into the second auto-encoder, which is consists of

the first hidden layer and the second hidden layer, and so on. In this way, the Nth encoder vector of
x(i) is obtained as follows:

h(i)N = f
θN

(
h(i)N−1

)
(6)

where θN is the parameter of the Nth auto-encoder.
Compared with random parameters, by minimizing the reconstruction error, the unsupervised

pre-training of DNN can improve the generalization of parameters. In the process of fine-tuning
parameters backwards based on supervised learning through the BP (Back Propagation) algorithm,
the ability of feature learning is further enhanced. BP algorithm compares the output of output layer
with the corresponding label so as to calculate the loss value. The loss function is shown below:

∅DNN(θ) =
1
M

∑M

i=1
L
(
x(i), h(i)N

)
(7)

where θ =
{
θ1, θ2, . . . , θN

}
corresponds to N hidden layers. The partial derivative of the parameter is

solved, and then the parameter is updated by the gradient descent algorithm. The parameter set can
be optimized with learning rate of µ as follows:

θ = θ− µ
∅DNN(θ)

∂θ
(8)

During the training of DNN, a series of non-linear transformations of pre-training captures the
local variation of input data, and fine-tuning mines the discriminated information from input data.

3.2. Fusion of Deep Features Extracted from Multi-Channel Signal

As shown in Figure 1, with the purpose of obtaining more complete and reliable data, S sensors
are installed so as to collect multi-channel signals and construct multiple DNNs (MDNNs). In MDNNs,
raw timing signals collected from different sensors are inputted into different DNNs. The deep features
extracted from MDNNs are usually redundant and high dimensioned. LPP is a dimension-deduction
method that can be used to fuse deep features and effectively preserve local structure in lower
dimension [60,61].
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Figure 1. Architecture of multiple deep neural networks (MDNNs).

Let F = {f1, . . . , fi, . . . , fn} to represent the deep feature learned from MDNNs, in which fi =[
f1
i , . . . , fs

i , . . . , fS
i

]
∈ RD, n represents the sample size and S represents the number of sensors. Using a

projection matrix A ∈ RD×d, deep features with a dimension of D are transformed into dimension of d
as below:

f∗i = ATfi, i = 1, . . . , n (9)

The objective function of LPP is the following formula:

min
∑

ij

(
f∗i − f∗j

)2
Wij (10)

Wij =

 exp
(
−‖fi − fj‖

2/t
)

0
(11)

where Wij represents the matrix to measure relations of different components in deep feature.
With algebraic formulas, transform the objective function into the following formula:

min ATFLFTA (12)

where L = ∅−W is the Laplacian matrix in which ∅ is the diagonal matrix of W.
Then, the above problem with constraint is converted into a generalized eigenvalue problem.

The solution of above objective function can be achieved from eigenvectors corresponding to
minimum eigenvalues.

3.3. The Procedure of Intelligent Diagnostic Model

The fused deep features F∗ = ATF, which can reflect the variation of conditions will be inputted
into the following fault classifier based on softmax. As shown in Figure 2, the proposed method
with multi-channel sensory data contains two parts: a training diagnostic model based on fused deep
features of multi-channel data and fault recognition. The detailed procedure of the proposed method
is organized in the following six steps:

Step 1: Collect multi-channel sensory data from multiple sensors installed in different directions
and positions.

Step 2: Without manually extracting features by using traditional signal process techniques, raw data
is split up into training subset and testing subset.
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Step 3: Construct deep architecture with multiple DNNs to learn fault-sensitive and representative
features adaptively from multi-channel sensory signals.

Step 4: Fuse the deep features learned from MDNNs constructed in Step 3 by using LPP, and acquire
the representative low-dimensional features.

Step 5: Feed the fused features obtained in Step 4 into the fault classifier based on softmax.
Step 6: Implement fault recognition on the testing set to verify the classification ability and

generalization of the method.Sensors 2020, 20, x FOR PEER REVIEW 6 of 19 
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4. Experiments and Discussion

4.1. Experimental Arrangement

As shown in Figure 3, a set of contrastive experiments are implemented on the test rig of automobile
final drive. The test rig contains a control cabinet section, a drive section to activate the driving motor
and a fixture section. The rotating speed can be controlled by the cabinet section. The fixture section is
to simulate the running situation under a specific rotating speed. To carry out reliable monitoring,
two vibration acceleration sensors are located in orthogonal positions so as to collect more stable
multi-channel sensory data along a different transmission path. This kind of sensor is frequently used
to acquire high-frequency signals in mechanical vibration engineering. The characteristics of vibration
acceleration sensors are a wide frequency response, a wide dynamic range, and high reliability. Figure 4
shows the locations of multiple sensors.

The most common failure modes of final drive include gear crack, gear error, gear tooth broken,
gear burr, misalignment and gear hard point [12]. These faults usually occur in the gears pair as shown
in Figures 5 and 6. Signals from the above 6 fault modes and normal mode are collected. To collect more
stable and fault-sensitive vibrational signals, based on previous research and experiences, the frequency
of sampling is 12,000 Hz and the rotational speed of the motor is 1200 r/min. The frequency of sampling
must be higher than the pre-estimated gear meshing frequency or the detailed information of failure
will be lost.

In order to collect enough and reliable data to represent each fault modes, 10 simulations of data
acquisition are implemented for each mode. In the processing of data acquisition, the time of duration
is 2 s and 25 signals are collected. Each simulation takes 10 s. In this way, 1750 vibration signals
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corresponding to each different mode are obtained from each sensor. The collected signals are split into
training subset with 1400 signals and testing subset with 350 signals. Each vibration signal contains
1024 data points. Descriptions about the final drive fault modes are listed in Table 1.
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Table 1. Fault modes’ description.

Label Fault Patterns Size of Training Set Size of Testing Set

C1 Normal status 1400 350
C2 Gear crack 1400 350
C3 Gear error 1400 350
C4 Gear tooth broken 1400 350
C5 Gear burr 1400 350
C6 Misalignment 1400 350
C7 Gear hard point 1400 350

A series of experiments is performed under Matlab 7.0 on the PC with the configuration of 3.4GHz
CPU and 4GB RAM.

To evaluate the superiority of the proposed model, we also utilize BPNN (Back-Propagation
Neural Networks) and shallow architecture SVM (Support Vector Machine) to construct diagnostic
models for automobile final drive.

To verify the effectiveness of fusing sensory data from multiple sensors, the first set of experiments
are implemented between diagnostic models based on multi-channel data and single sensory data.
To verify the superiority of deep architecture in feature learning, the second set of experiments is
implemented between the proposed method and diagnostic model based on BP neural networks with
a shallower structure. To analyze the representativeness of the features learned from hidden layers in
deep architecture, the third set of experiments is implemented to reveal most typical features using
LPP and Principle Component Analysis (PCA). Ten trials are carried out for each experiment.

4.2. Models Design

With regard to a diagnostic model based on MDNNs, the layout of deep architecture has an
important impact on accuracy. In order to design the optimal model, we investigate the accuracy
variation of different deep architectures. As shown in Figure 7, the diagnostic accuracy improves
obviously as the deep architectures changes from containing only one hidden layer to four hidden
layers. However, as the hidden layer changes from including 100 neurons to including 1000 neurons
with an interval of 100, the diagnostic accuracy is fluctuating up and down. According to the results,
the optimal model based on MDNNs consists of three hidden layers and there are 400 units in each
hidden layer.
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In order to train each DNN, the epoch times in pre-training are set to 100, and the epoch times
of fine-tuning are setting to 200 by experience. In the fusion procedure based on LPP, the dimension
of fused deep features d and hyper-parameter k of nearest neighbors are set to 20 and 12 using a
cross-validation algorithm.

For the diagnostic model based on BPNN, the shallow architecture contains two hidden layers
with 100 units per hidden layer. For the diagnostic model based on SVM, the optimum parameters are
chosen by using 10-fold cross validation. The hyper-parameter C is set as 10 α, in which α is in the
range of 0 to 2. To achieve non-linear classification, kernel function RBF (Radial Basis Function) with
C = 10 and r = 2 is adopted.
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4.3. Contrast Analysis and Discussion

4.3.1. Validity of the Fusion Strategy

To verify the validity of the fusion strategy on multi-channel sensory data, we implement the
first set of experiments to compare several diagnostic models based on multi-channel data and single
sensory data, respectively. Figures 8–10 show the detailed diagnostic results of these contrastive
models based on the proposed method, BPNN and SVM in ten trials.Sensors 2020, 20, x FOR PEER REVIEW 10 of 19 
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The diagnostic results of the proposed method with multi-channel data and single-channel data
are 95.8% and 91.4%. It means that the accuracy is improved after the multi-channel data fusion process.
The diagnostic results of the model based on BPNN are 79.1%, and the diagnostic results of model
based on SVM are 76.6% without fusion of multi-channel data. On closer inspection, the accuracy is
increased to 84.6% and 81.3% after fusing the sensory data of multiple sensors.

The comparison result indicates that the multi-channel data collected from multiple sensors are
more complete and abundant than single-channel data. Moreover, the fusion strategy can reflect
the interdependency between multi-channel data and the fault modes effectively so as to improve
the performance of diagnostic model by nearly 8%. In particular, by constructing multiple DNN to
learn representative features from multi-channel sensory data and fusing the learned features using
LPP algorithm effectively, the diagnostic model using the proposed method exhibits its superiority in
fault recognition.

4.3.2. Validity of the Deep Architecture

To verify the superiority of deep architecture in feature learning, this research implements a
second set of experiments to compare diagnostic models based on deep architecture and shallow
architecture using training set and testing set which are consisted of multi-channel sensory data.
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Figures 11–13 show the differences in classification results of training subset and testing subset among
three contrastive diagnostic models based on the proposed method, BPNN and SVM. Each experiment
is carried out for ten trials.
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As shown in Figure 11, the average results of training subset and testing subset in ten trials for
diagnostic model based on MDNNs are 95.8% and 92.8%. As shown in Figures 12 and 13, the average
results of training subset for another two models based on BPNN and SVM are 84.6% and 81.3%,
and the testing accuracies are 81.1% and 77.6%, respectively.

From Figures 11–13, the deep architecture of MDNNs can effectively automatically learn intrinsic
features which are sensitive to fault patterns and the testing accuracy of ten trials are very stable in
the range of 92.03% to 93.8%. However, the testing accuracy of diagnostic model based on BPNN
is unstable and fluctuating from 76.2% to 82.6%. The comparison results indicate that deep feature
learning architecture outperforms shallow architecture in feature learning performance on average
without using any signal processing and expert experience [24].

4.3.3. Representative of Deep Features

With the purpose of analyzing the representativeness of features learned from the proposed deep
architecture with three hidden layers, we implement the third set of experiments to reveal the first two
typical features learned from different hidden layers using LPP. Figures 14–16 visualize the typical
2-dimensional deep features learned from three hidden layers in the deep architecture.Sensors 2020, 20, x FOR PEER REVIEW 13 of 19 
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Figure 14. Typical features fused from the first hidden layer using Locality Preserving Projection (LPP).
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Figure 15. Typical features fused from the second hidden layer using LPP.
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Figure 16. Typical features fused from the third hidden layer using LPP.

From Figures 14–16, we can find that the first two dimensional features fused from the deeper
hidden layer by using LPP are more discrete between different patterns than that of the shallow hidden
layer. This demonstrates that the deep architecture can learn more differentiable features from the
input data through multiple non-linear transformation layer-by-layer [47]. In particular, the first two
dimensional features of the last hidden layer can almost separate samples of each pattern precisely.

For comparison, we preserve the most typical two-dimensional features that are fused by using
LPP and Principle Component Analysis (PCA). With the purpose of dimension reduction, we employ
PCA in the fusion of deep features learned from the last hidden layer. With the features learned from
the last hidden layer with the dimensionality of 400 for each sensor, the output of MDNNs is in the
dimension of 2 × 400. By using PCA, the dimensionality of features extracted from MDNNs with
multi-channel data is reduced from 2×400 into 20, which is the same dimension of fused features
using LPP.

In order to intuitively judge the fault-sensitivity of the learned features, the first two principal
components of the fused features are presented for visualization. The typical components fused by
PCA of the last hidden layer are shown in Figure 17. Some features of pattern C3 and pattern C5 are
mixed and failed to distinguish. By comparing Figure 16 with Figure 17, we can conclude that LPP is
more superior in retaining the local structure of input data that is valuable for fault pattern recognition
than PCA. LPP achieve fusion and extraction using manifold learning [42,53].Sensors 2020, 20, x FOR PEER REVIEW 14 of 19 
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Figure 17. Principal components fused by Principle Component Analysis (PCA).

4.3.4. Contrastive Analysis and Discussion

In this study, we mainly focus on the intelligent fault diagnosis with raw vibrational data without
previous traditional signal pre-processing. The representative features are automatically extracted
using deep structure of networks. However, in the traditional fault diagnosis of machinery, features in
time domain and frequency domain can be extracted manually from vibrational signals and be inputted
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into the fault recognition model [38]. To prove the sensitivity to above two forms of features between
different diagnostic models, we compare the proposed model based on MDNNs and diagnostic
models based on BPNN and SVM, separately with input of features manually extracted with signal
pre-processing techniques and features adaptively extracted from raw data without pre-processing.

Manual features are extracted from vibrational signals using wavelet package transform with
a maximum layer of 5 and db4. For each frequency-band, 19 features are obtained. In this way,
the dimension of manual features for each vibration signal is 19 × 32. The average diagnostic accuracies
of these diagnostic models are shown in Table 2.

Table 2. Average accuracy of different diagnostic models.

Models
Average Testing Accuracy (%)

Features Manually Extracted
with Signal Pre-Processing

Features Adaptively Extracted
without Pre-Processing

The proposed model 94.23 (±1.54) 93.84 (±0.73)
Model based on BPNN 84.27 (±3.81) 81.46 (±4.32)
Model based on SVM 79.62 (±2.88) 76.49 (±2.92)

From Table 2, we can find that diagnostic models based on BPNN and SVM are more sensitive to
the forms of features inputted into the diagnostic model [41]. The average testing accuracies of these
two shallow structured models with the input of manual features and features without pre-processing
are 84.27% and 81.46%, 79.62% and 76.49%, respectively. However, the accuracies of the proposed
model are very close, which are 94.23% and 93.84%. It indicates that without complex previous signal
pre-processing, the proposed model can still recognize the vast majority of testing samples. It indicates
the advantage of the proposed deep learning model on processing raw data adaptively and efficiently.

With the purpose of proving superiority of the proposed model combining MDNNs with
multi-channel signal fusion, a series of experiments with the same sample set is implemented to
compare some frequently used techniques in intelligent fault diagnosis. For each experiment, ten trials
are implemented. The average training accuracy and testing accuracy of these different diagnostic
models are given in Table 3. The average training time of all the diagnostic models are given in Table 4.

Table 3. Average accuracy of different diagnostic models.

Models
Average Training Accuracy (%) Average Testing Accuracy (%)

Single-Channel Data Multi-Channel Data Single-Channel Data Multi-Channel Data

The proposed method 91.42 (±1.11) 95.84 (±0.94) 90.17 (±1.29) 92.76 (±1.13)
Model based on BPNN 79.09 (±4.59) 84.56 (±3.72) 76.29 (±4.80) 81.14 (±4.05)
Model based on SVM 76.62 (±2.97) 81.28 (±2.63) 74.32 (±3.47) 77.63 (±3.06)

Table 4. Average training time of different diagnostic models.

Models
Average Training Time (s)

Without Fusion Multi-Channel Data Fusion Multi-Channel Data

The proposed model 58.56 39.49
Model based on BPNN 30.39 18.61
Model based on SVM 10.22 5.93

As shown in Table 3, the average training accuracy and testing accuracy of the proposed model
with single-channel data is 91.42% and 90.17%. The average training accuracy and testing accuracy of
the proposed model based on multiple DNNs with deep architecture for multi-channel feature learning
are 95.84% and 92.76%, which are higher than other diagnostic models with different kinds of data.
From the contrastive results in Table 3, it reveals that the capability significantly exceeds the diagnostic
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model based on SVM with shallow architecture for multi-channel feature learning, which are 81.28%
and 77.63%. By contrast analysis, we can summarize that:

(1) In general, deep architecture of neural networks can effectively extract essential and useful
features from raw data. However, it is hardly to obtain favorable results by using BPNN with
deep architecture. Furthermore, as shown in Table 3, the variance of testing accuracy and training
accuracy is obviously higher than other models. It indicates that the performance of BPNN is
unstable due to the local minimum problem. The reason for this disadvantage is that the stability
of BPNN will be affected by the initial value of network parameters [10]. It may also lead to
obvious deviation in the procedure of error back propagation.

(2) From Table 3, it shows that the deep learning method shows its obvious superiority in feature
learning. However, even with multiple hidden layers and multi-channel data, the diagnostic
performance of the model based on BPNN is still far from satisfactory, which are 84.56% and
81.14%. Feature learning with deep architecture contains a process of pre-training and a process
of fine-tuning. The local minimum problem of traditional BPNN can be obviously solved
through the optimization of initial weights layer-by-layer during the procedure of pre-training
in unsupervised way and the adjustment of weights during the procedure of fine-tuning in
supervised way, which are the typical characteristics of deep neural networks [49].

(3) From the separation of typical features fused from the hidden layers shown in Figures 14–16,
we can find that a diagnostic model based on MDNNs can automatically extract fault-sensitive
features that directly affect the final diagnostic results. In addition, it can adaptively mine the
complex non-linear relevance between raw data and several fault modes, which are crucial for
condition monitoring [29]. The capability of the model is independent on engineering experiences
and prior knowledge in application area.

As shown in Table 4, the average training time of the proposed model with multi-channel data is
39.49 s. From the contrastive results in Table 4, we can find that the training time of the diagnostic
model based on SVM with shallow architecture which is 5.93 s is obviously less than diagnostic models
based on MDNNs and BPNN with deep architecture. The training time of the proposed model is the
largest, which is 58.56 s.

The computational complexity of the proposed model is a typical shortcoming when the number
of hidden layers increased. The reason is that the number of weights of shallow architecture that should
be adjusted is much less than deep architecture containing multiple hidden layers [47]. Though the
training time of the proposed model is the longest, the training process is accomplished within
one minute.

Moreover, compared with the training time of models without fusion strategy, which is 58.56 s,
the training time of models with the fusion of multi-channel data using the LPP algorithm is obviously
decreased to improve the training efficiency. The reason behind the improvement is that the fusion
process using LPP can decrease the dimension of high-dimensional features so as to decrease the
computational complexity [43,44].

5. Conclusions

In this article, a deep learning method for multi-channel sensory data combining a deep neural
network for feature mining and feature fusion is proposed. First, a deep structure MDNNs made
up of multiple auto-encoders is constructed to adaptively extract significant features from sensory
signals and to mine complex relation between symptoms and fault patterns. Secondly, LPP is
used to fuse representative deep features learned from multi-channel sensory data using MDNNs.
Finally, an intelligent diagnostic model is constructed by inputting the fused deep features into softmax.

The diagnostic model is employed into the application of intelligent failure recognition for
automobile final drive. The average training accuracy and testing accuracy of the proposed model
based on multi-channel data are 95.84% and 92.76%, which are higher than other contrastive models.
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Compared with fault recognition with single-channel signals, the proposed method can effectively
enhance the capability of failure classification from 90.17% to 92.76%. Moreover, the variance of the
training accuracy and testing accuracy is obviously the smallest among these contrastive models.
Through the contrastive analysis of experimental results, it proves that the proposed diagnostic model
is more superior and stable than other models in fault recognition and condition monitoring. The deep
structure of feature learning from multi-channel data can effectively solve the limitation of a single
sensor and the adaptive fusion of feature can avoid the heterogeneity and redundancy of deep features
extracted from multi-channel data. This research is instructive to the technology of industry. In the
future, the authors would continue to investigate the intelligent diagnosis using multi-channel data in
different types so as to further enhance the diagnostic accuracy and efficiency.
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