
sensors

Article

An Edge Based Multi-Agent Auto Communication
Method for Traffic Light Control

Qiang Wu 1 , Jianqing Wu 2, Jun Shen 2 , Binbin Yong 1 and Qingguo Zhou 1,*
1 School of Information & Engineering, Lanzhou University, Lanzhou 730000, China;

wuq17@lzu.edu.cn (Q.W.); yongbb@lzu.edu.cn (B.Y.)
2 School of Computing and Information Technology, University of Wollongong, Wollongong 2522, Australia;

jw937@uowmail.edu.au (J.W.), jshen@uow.edu.au (J.S.);
* Correspondence: zhouqg@lzu.edu.cn

Received: 30 June 2020; Accepted: 29 July 2020; Published: 31 July 2020
����������
�������

Abstract: With smart city infrastructures growing, the Internet of Things (IoT) has been widely
used in the intelligent transportation systems (ITS). The traditional adaptive traffic signal control
method based on reinforcement learning (RL) has expanded from one intersection to multiple
intersections. In this paper, we propose a multi-agent auto communication (MAAC) algorithm,
which is an innovative adaptive global traffic light control method based on multi-agent reinforcement
learning (MARL) and an auto communication protocol in edge computing architecture. The MAAC
algorithm combines multi-agent auto communication protocol with MARL, allowing an agent
to communicate the learned strategies with others for achieving global optimization in traffic
signal control. In addition, we present a practicable edge computing architecture for industrial
deployment on IoT, considering the limitations of the capabilities of network transmission bandwidth.
We demonstrate that our algorithm outperforms other methods over 17% in experiments in a real
traffic simulation environment.

Keywords: ITS; IoT; reinforcement learning; MRAL; multi-agent; MAAC; edge computing

1. Introduction

Traffic congestion has caused a series of severe negative impacts like longer waiting time, more
gas cost, and severe air pollution. According to a report in 2014 [1], the loss caused by traffic
jams is up to $124 billion US dollars a year in the US. The shortage of traffic infrastructures, the
growing number of vehicles, and the inefficient traffic signal control are key underlying reasons for
traffic congestion. Among these, the traffic light control problem seems to be the most easily solved.
However, the internal operation of the real urban transportation environment cannot be accurately
calculated and analyzed mathematically due to its complexity and uncertainty. Reinforcement
learning (RL), which is characterized by being data-driven, mode-less, and self-learning, is well
suited for conducting research on adaptive traffic light control algorithms [2–4].

The rapid development of artificial intelligence technology and deep learning (DL) has played
a vital role in many fields. In recent years, DL has gained great success in image classification [5–8],
machine translation [9–12], healthcare [13], smart city [14], time-series forecast [15], Game of Go [16] etc.
The intelligent transportation systems (ITS) also have benefited from the latest AI achievement.

Traditional adaptive traffic light control method [2,3] could achieve local optimization by adapting
to single intersection based on RL. Furthermore, global optimization is needed to achieve dynamic
multi-intersection control in large smart city infrastructure. Multi-agent reinforcement learning (MARL)
is increasingly being used to study more complex traffic light control issues [17–19].

Sensors 2020, 20, 4291; doi:10.3390/s20154291 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-0655-0479
https://orcid.org/0000-0002-9403-7140
http://www.mdpi.com/1424-8220/20/15/4291?type=check_update&version=1
http://dx.doi.org/10.3390/s20154291
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 4291 2 of 16

Although the existing methods have effectively improved the control efficiency of traffic signal
control, they still have the following problems: (1) shortage of communication between a traffic light
and other traffic lights; (2) shortage of consideration of the limitations of the capabilities of network
transmission bandwidth. The contributions of this paper are summarized as the following:

• We present an auto communication protocol (ACP) between agents in MARL based on
attention mechanism;

• We propose a multi-agent auto communication (MAAC) algorithm based on MARL and ACP in
traffic light control;

• We build a practicable edge computing architecture for industrial deployment on Internet of
Things (IoT), considering the limitations of the capabilities of network transmission bandwidth;

• The experiments show the MAAC framework outperformed 17 %over baseline models.

The remainder of this paper is organized as follows: Section 2 introduces related works including
multi-agent system, RL, IoT, edge computing, and the basic concept of communication theory. Section 3
formulates the definition of the traffic light control problem. Section 4 details the MAAC model and
our edge computing architecture for IoT. Section 5 conducts the experiments in a traffic simulation
environment and demonstrates the results of the experiments with a comparison between our methods
and others. Section 6 concludes the paper and discusses future work.

2. Related Work

Urban traffic signal control theory has been continuously investigated and developed for nearly
70 years since the 1950s. However, from theory to practice, the goal of alleviating urban traffic
congestion through the optimization and control of urban traffic signals, is consisting in very complex
control problems. Urban traffic signal control is to allocate the time of a signal cycle and the ratio
of the time of red and green lights in a signal cycle. The control methods include fixed time [20],
vehicle detection [21], and automatic control [22]. The fixed time and vehicle detection methods cannot
adapt to the dynamic changes in traffic flow and complex road conditions. The automatic control
methods are difficult to implement for its high algorithm complexity.

A multi-agent system is an important branch of distributed AI research, with the ability of
distribution, autonomy, coordination, learning, and reasoning [23]. In 1989, Durfee et al. [24] proposed
the use of a negotiation mechanism to share tasks among multiple agents. In 2007, Marvin Minsky
argued that human thoughts were constructed by multi-agents [25]. In 2016, Sukhbaatar et al. [18]
and Hoshen et al. [19] observed all agents using a centrally controlled method in local environment,
and then output the probability distribution of multi-agents’ joint actions. Alibaba and University
College London (UCL) proposed the use of two-way communication network between agents network
(BiNet) [26], and achieved good results in the StarCraft game mission in 2017. From the trend of the
multi-agent system, communication between agents has gotten more and more attention.

Adaptive traffic light control [2,3] is a relatively easy way to ease the traffic jam for smart city.
Although adaptive traffic light control methods have achieved local optimization by adapting to
single intersection based on RL (single-agent), the city has thousands of traffic lights. Thus, the global
traffic light optimization could be considered as a multi-agent system, which has been studied by
Chen et al. [27]. Moreover, the deployment structure must be taken into consideration for the industrial
deployment.

Here is the summary of the methods of traffic signal control (as Table 1 shown):

Sensors 2020, 20, 4291 3 of 16

Table 1. The summary of the methods of traffic signal control.

Method Pros Cons

Fixed time [20] Easy to deploy and implement, still
the mainstream method today.

Inability to dynamically adapt to
intersection changes.

Optimize one traffic
light [2,3]

The traffic signal can be adjusted
according to the dynamic changes
of the intersection situation.

Urban traffic signals are actually composed
of multiple intersections, and the local
optimization of a single intersection cannot
represent the overall optimization of
multiple intersections.

Optimize multiple
traffic lights [27]

Global optimization of traffic signals
at multiple intersections in a city.

It is difficult to implement and
deploy, and the algorithm also
has room for optimization, such as
considering multi-agent communication.

2.1. Reinforcement Learning

2.1.1. Single-Agent Reinforcement Learning

Single-agent reinforcement learning was developed to train one agent, which chose a series of
actions to get more rewards after interacting with an environment. To learn an optimal policy for the
agent to gain maximal reward is the aim of the algorithm. At each time step t, the agent interacts with
the environment to maximize the total reward RT , where T is the total number of time steps of an
episode until it finishes. The rewards obtained after each action being performed are accumulated,
which would be: RT = r1 + r2 + ... + rT .

RL algorithm, which has the characteristics of “data-driven, self-learning, and model-free”,
is considered to be a practical method to solve problem of traffic light control [28,29]. As shown
in Figure 1.

N

S

Road-4

Road-2

R
o

a
d

-3

R
o

a
d

-1

Intelligent Agent

T
r
a

ffi
c

 C
o

n
tr

o
l

L1L2

L1 L2

L2

L1

L1

L2

A
t

Intersection State

Figure 1. An illustration of an intersection road.

Sensors 2020, 20, 4291 4 of 16

The traffic signal is regarded as an “agent” with decision-making ability at the intersection.
By observing the real-time traffic flow, the current traffic status St and the reward Rt is obtained.
According to the current status, the agent selects and executes the corresponding action (change lights
or keep). Then, the agent observes the effect of the action on the intersection traffic to obtain the
new traffic state St+1 and the new reward Rt+1. The agent evaluates the action just selected so that it
executes, optimizes strategies until converging to the optimal “state and action”.

2.1.2. Multi-Agent Reinforcement Learning

All agents apply their actions to the environment for whole rewards. From this perspective,
we define a multi-agent reinforcement learning (MARL) environment as a tuple (X1 − A1, X2 −
A2. . . , Xm − Am) where Xm is any given agent and Am is any given action, then the new state of
the environment is the result of a set of joined actions defined by A1, A2, . . . , An. In other words,
the complexity of MARL scenarios increases with the number of agents in the environment (as shown
in Figure 2).

Urban Traffic Environment

A"#$%#

Figure 2. The multi-agent reinforcement learning (MARL) structure in urban traffic signal control.

The urban traffic signal control can be seen as a typical multi-agent system. With the traditional
adaptive traffic signal control method based on RL, the new signal controls have been expanded from
one intersection to multiple intersections.

MARL is mainly to study the cooperative and coordinated control actions of multiple states
of intersections, which extend the single-agent RL algorithm to multi-agents in the urban traffic
environment. The MARL based methods in this field are divided into three categories [30]: (1) a
completely independent MARL at each intersection; (2) MARL in cooperation with some states from
the intersections; (3) MARL in all states from the intersections.

The collaboration mechanism is an important part of MARL in traffic signal control at multiple
intersections. Each agent could estimate the action probability model of other agents without real-time
computing, but it was still difficult to update the estimation model in a dynamic environment [31].

2.2. Attention Mechanism

Attention mechanism has recently been widely used in various fields of deep learning (for
example, image processing [32], natural language processing [12,33].), achieving good results. From
a conceptual perspective, attention imitates human cognitive methods, selectively filters out a
small amount of important information, and focuses on this important information, ignoring most
unimportant information. The attention information selection process is reflected in the calculation of
information weight coefficients.

The specific calculation method is divided into three steps (as shown in Figure 3):

Sensors 2020, 20, 4291 5 of 16

Query

Attention
Value

Key1 Key2 Key3 Key4

F(Q,K) F(Q,K)F(Q,K) F(Q,K)

S1 S1 S1 S1

Softmax

a1 a2 a3 a4

*

Value1 Value3 Value4Value2

* * *

Step1

Step3

Step2

Figure 3. The method of computing attention.

(1) Calculate the similarity or correlation between Query and Key;

Similarity(Query, Keyi) = Query ·Keyi (1)

(2) Normalize the result calculated in step (1) to obtain the weighting coefficient;

ai = So f tmax(Similarityi) (2)

(3) The weighting coefficient is used to perform weighted sum on Value.

Attention(Query, Source) =
Lx

∑
i=1

ai ·Valuei (3)

2.3. IoT

With the development of Wireless Sensor Network (WSN) [34] and 5th-Generation (5G)
communication technologies [35], the IoT connects millions of devices, including vehicles, smartphones,
home appliance, and other electronics, enabling these objects exchange data [36]. The traditional
Internet has been extensively up-scaled via IoT [37–39]. As shown in Figure 4.

2.3.1. Cloud and Edge Computing

Cloud computing is a paradigm for enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications,
and services), which can be rapidly provisioned and released with minimal management efforts or
service provider interaction.

With cloud computing, edge computing emerges as a novel form of computing paradigm, which
shifts from centralized to decentralized [40]. Compared with conventional cloud computing, it
provides shorter response times and better reliability. To save bandwidth and reduce the latency, more
data is processed at the edge rather than uploaded to the cloud. Thus, mobile devices of users can
complete parts of the workload at the edge of the network. Similarly, in modern transportation, edge
devices can be deployed on roadsides and in vehicles for better communications and control between
connected objects.

Sensors 2020, 20, 4291 6 of 16

Cloud Computing Edge Computing

Figure 4. The structure of cloud computing and edge computing.

3. Preliminary

3.1. Multi-Agent Communication Model

The multi-agent communication model (as shown in Figure 5) is in accordance with Shannon
communication model [41], the applied perception and behavior of agents can be modeled by
information reception and transmission. The agent acts as a communication transceiver, and the
internal structure information of the agent is encoded and decoded. The environment is the
communication channel between the agents. In actual modeling, a continuous matrix is generally used
for multi-agent communication [18,42].

Environment

Agent
Sender Receiver

Encoder Decoder

Noise

…

Agent
Sender Receiver

Encoder Decoder

Figure 5. The structure of multi-agent communication model based on Shannon communication model.

Sensors 2020, 20, 4291 7 of 16

3.1.1. Shannon Communication Model

The basic problem of communication is to reproduce a message sent from one point to another
point. In 1948, Shannon proposed the Shannon communication model [41], which represented
the beginning of modern communication theory. Shannon communication model is a linear
communication model, consisting of six parts: sender, encoder, channel, noise, decoder, and receiver,
as shown in Figure 6:

Figure 6. An illustration of Shannon communication model.

3.1.2. Communications Protocol

The communication protocol [43] is also called the transmission protocol. Both parties involved
in the communication carried out end-to-end information transmission according to the agreed
rules, and both parties can understand the received information. The communication protocol is
mainly composed of grammar, semantics, and timing. The syntax includes the data format, encoding,
and signal level; the semantics represent the data content that contains control information, and the
timing represents clear rate matching and sequencing of communications.

3.2. Problem Definition

In the problem of multi-agent traffic signal control, we consider it as a Markov Decision Process
(MDP): < x, π, R, γ >, where x the state of all intersections; π is the policy to create actions; R is
reward from all crossroads; γ is the discount factor. Furthermore, we define: each agent that controls
the change (duration) of traffic lights is Agenti(i ∈ N); πi is Agenti for all acceptable traffic light
duration control strategies, rewarding the Ri environment for the level of traffic congestion at the
intersection of Agenti and other Agents (Agent−i and its policy π−i) (It can be calculated according to
the specific indicators of vehicle queue length, the lower the congestion level, the greater the reward),
(c1, . . . , cN) is the communication matrix C between agents, so in our multi-agent traffic signal problem,
the objective functions controlled are:

Ri (x; πi, π−i, C) = E
[
−∞

∑
t=0
−γt

i ri (xt, πi,t, π−i,t, Ct)

]
(4)

In the Eqution (4), πi is the policy of Agenti; π−i is the policy of Agent−i; t is the timestep.
The problem is to find a better strategy to maximize the value of the above formula.

4. Methodology

In this section, we will detail the multi-agent auto communication (MAAC) model and an edge
computing architecture for IoT.

4.1. MAAC Model

In the MAAC model (as shown in Figure 7):

Sensors 2020, 20, 4291 8 of 16

Agent 1

…

Env 𝑥%&

Info C%&

Agent NEnv 𝑥+&

Info C+&

Action a%&1%

Info c%&1%

Action a+&1%

Environment

Info c+&1%

Environmental	Feedback

Environmental	Feedback

…

Figure 7. The structure of multi-agent auto communication (MAAC) model.

Each agent can be modeled by distributed, partially observable Markov decision (Dec-POMDP).
The strategy of each agent (πθt) is generated by a neural network. In each time step, the agent
will observe the local environment xt and the communication information sent by other agents
(c1, . . . , ci−1, ci+1, . . . , cN). Through the combination of the above time series information, the Agent
generates the next action (at+1 and the next communication message ct+1 sent out by the internal
processing mechanism (parameter is θi).

The joint actions of all Agents (a1, . . . , aN) interact with the environment, which is to obtain the
maximum value of the centralized value function (θ = E[R]). The MAAC algorithm is designed to
improve the neural network parameter set θi of each agent through the process of optimizing the
central value function. The overall architecture of the MAAC model can be regarded as a distributed
MARL model with automatic communication capabilities.

4.1.1. Internal Communication Module in Agent

The internal communication module (ICM) in an agent is an important part in MAAC model
(as shown in Figure 8).

Each Agent, which is divided into two sub-modules, with the receiving end and the sending
end. The receiving end receives the information of other agents and uses the attention mechanism for
information processing, and then sends the processed information to the sending end; the sending
end observes the external environment and uses the information processed by the receiving attention
mechanism to generate information using a neural network.

1. Receiving End
Agenti will use the attention mechanism to filter information received from other Agents
(Agent−i). Firstly it generates its own message ct from a combined message C = c1, . . . , cN after
receiving the information of Agent−i. Then, it picks important messages and ignores unimportant
ones. Herein, we introduce the parameter set Wq,Wk, Wv, which are calculated separately (could
be calculated in parallel):

qi = Wq · C
ki = Wk · C
vi = Wv · C

(5)

Sensors 2020, 20, 4291 9 of 16

Then, we calculate the information weight α̂i = so f tmax(qi k̇i). Finally we get the weighted
information after the information selection: Ĉ = ∑N

i=1 αici.

2. Sending End
The sending end of the Agent receives the information of other Agents processed by the Attention
mechanism of the receiving end Ĉ, and through the observed local environment xt, generates the
next execution action through the neural network at+1 and communication information ct+1.

Neural Netwok

x"#𝑐"

Policy Network

a"&'

Communication
Network

c"+1

Sender

𝐐

Receiver

c"' c"* c"+…

𝐊

𝐕

𝐐𝐊

𝐬𝐨𝐟𝐭𝐦𝐚𝐱

Weights

Integrated	
information

#𝑐"

𝐴𝑔
𝑒𝑛
𝑡 I

Figure 8. The internal communication module in an agent.

4.1.2. MAAC Algorithm

At the time of t in the MAAC model, the environment input is Xt = (x1
t , . . . , xN

t)

and corresponding communication information input is Ct = (c1
t , . . . , cN

t). Multi-agents
(Agent1, . . . , AgentN) are going to interact with each other. Each Agent receives information with
receivers and transmitters internally. The receiver receives its own environmental information xt

and communication information ct, and generates action and external interaction information group
(at+1, ct+1) at t + 1. The MAAC model collects all agent actions to form a joint action (a1, . . . , aN),
interacting with the environment and optimizing objective strategy for each agent.

∇θi V (θi) = E
[
∇θi log πθi

(
at

i |ct
i
)

Q̂t

(
, a1

t , . . . , aN
t

)]
(6)

The calculation steps of MAAC at time t are shown in the Figure 9:

Sensors 2020, 20, 4291 10 of 16

Agent 1

…

Env 𝑥%&

Info 𝐶%&

Agent N
Env 𝑥+&

Info 𝐶+&

𝑎%&-%

𝑐%&-%

𝑎+&-%

𝑐+&-%

t

𝑐%&-%

𝑐/&-%

𝑐+&-%
…

𝑎%&-%

𝑎/&-%

𝑎+&-%

Env

Env 𝑥%&-%

Info 𝐶%&-%

Env 𝑥+&-%

Info 𝐶+&-%

t +1

…

Agent 1

Agent N

…

Agent Input Agent Process Integration
Information

Union
Action

Figure 9. The process of MAAC algorithm compute.

In the MAAC algorithm (as shown in Algorithm 1), the parameter set of Agenti for each agent
is θi. Furthermore, θi is divided into the sender θi

Sender and receiver θi
Receiver. The parameters of the

sending end and the receiving end, which are optimized by the overall multi-agent objective function,
iteratively updating the parameter set of the receiver and the sender in the communication module of
each agent.

Algorithm 1 MAAC learning algorithm process

1: Initialize the communication matrix of all agents C0

2: Initialize the parameters of the agent θi
Sender and θi

Receiver
3: repeat

4: Receiver of Agenti: uses attention mechanism to generate communication matrix Ĉt

5: Sender of Agenti: chooses an action ai
t+1 from policy selection network, or randomly chooses

action a (e.g.,ε-greedy exploration)
6: Sender of Agenti: generates its own information through the receiver’s communication matrix

Ĉt ci
t+1

7: Collect all the joint actions of Agent and execute the actions a1
t+1, . . . , aN

t+1, get the reward from

the environment Rt+1 and next state Xt+1

8: Update the strategic value function of each Agent:

∇θi V (θi) = E
[
∇θi log πθi

(
at

i |ct
i
)

Q̂t
(
, a1

t , . . . , aN
t
)]

9: until End of Round Episode
10: returns θi

Sender and θi
Receiver for each Agent

4.2. Edge Computing Structure

In order to deploy MAAC algorithms in an industrial scale environment, we must take the
network delay into consideration. We propose an edge computing architecture near every traffic
light. An edge computing device needs to have the following functions: (1) it could detect vehicles’
information (location, direction, velocity) from the surveillance video of its intersection in real-time
and record the vehicle information; (2) it could run the traffic signal control algorithm to control the
traffic light nearby (see Figure 10).

Sensors 2020, 20, 4291 11 of 16

Figure 10. The edge devices are deployed near the traffic lights.

5. Experiments

In this section, we first built the urban traffic simulator based on our edge computing architecture.
Then, we have applied the MAAC algorithm and other baseline algorithms to the simulation
environment for comparing the performance of all models.

5.1. Simulation Environment and Settings

We apply an open source simulator for traffic environment: CityFlow [44] as our experiment
environment. We assumed that there are six traffic lights (intersection nodes or edge computing nodes)
in one section of a city (as shown in Figure 11).

Figure 11. The experiment environment for multi-intersection traffic signal control.

Our dynamic control of the traffic lights was using the CityFlow [44] Python interface at runtime.
Here are the settings of our experiments (as shown in Table 2).

Sensors 2020, 20, 4291 12 of 16

Table 2. The detailed simulation parameters.

Simulation Parameters Value

Road length 350 (m)
Vehicle speed limit 30 (km/h)

Traffic control timing cycle gt = 20, rt = 20, yt = 5 (s)
Episode 900 (s)

Vehicle simulation setting 400 (one episode)

• The directions
One traffic light at node0 has four neighbor nodes (node1, node2, node3, node4), four entries (in),
and four exits (out). The road length is set to 350 m and vehicle speed limit is set to be 30 (km/h).

• Traffic light agent
We apply traffic signal control algorithm into a docker container [45].

• Communication delay setting
The communication delay from center to a traffic light is set as 1 s (sleep 1 s in the code).

• Traffic control timing cycle
We initially set a traffic light time cycle as 45 s, and green light interval gt = 20 s, red light interval
rt = 20 s, and yellow light interval yt = 5 s.

• Episode
One episode time is set as 15 min (900 s), including 20 traffic light time cycles.

• Vehicle simulation setting
We assume vehicles arrive at road entrances according to the Bernoulli process with the random
probability Pin = 1

15 at one intersection. Every vehicle has a random destination node except for
the entry node (we set random(seed) = 7). In one episode, there are approximately 400 vehicles.

• Hyper-parameter setting
The learning rate is set to 0.001; γ is set to 0.992; the reward is the average waiting time
at intersection.

5.2. Baseline Methods

• Fix-time
In this method we set all the traffic light timing as fixed traffic control timing cycle as we have
mentioned in the experiments.

• Q-learning (Center)
Q-learning algorithm [46] is deployed on center (docker) to generate traffic light control action.
The delay from the traffic light agent to an intersection is set at 1.0 s.

• Q-learning (Edge)
Q-learning algorithm [46] herein is deployed on edge device (docker) to generate traffic light
control action. The delay from the traffic light agent to an intersection is set 0.1 s.

• Nash Q-learning
Nash Q-learning [47] extends Q-learning to a non-cooperative MARL. An agent maintains
Q-functions over joint actions, and performs updates based on assuming Nash equilibrium
behavior over the current Q-values.

5.3. Evaluation

The time of a vehicle enters an entry of the intersection until it passes through, is defined as
tM, where M is the number of vehicles. In simulations, we record the time for all vehicles at one
intersection in every episode. At last, we accumulate all the times record over all the intersections,
Te = ∑I

i=1 ∑M
m=1 tm. To evaluate the traffic network, where E is the number of the episode, M is the

number of vehicles, and I is the number of intersections that every vehicle will pass through.

Sensors 2020, 20, 4291 13 of 16

5.4. Results

We have applied five methods, including Fixed-time method [20], Q-learning (Center) [46],
Q-learning (Edge) [46], Nash Q-learning [47], and our MAAC method. They were all trained in
1000 episodes in CityFLow [44] based on edge computing architecture as we designed. As shown in
Figure 12, we can see that the the algorithms converged at around 600 episode point. The MAAC
method performed the fastest convergence in the training process, comparing with other models.

After trainning, we tested the algorithms in 500 episodes after the training process. As shown in
Table 3, the MAAC performed the best among the traffic signal control algorithms.

Table 3. The resluts of five methods.

Method The Average Velocity (km/h) The Average Waiting Time (s)

Fixed-time 11.15 166.71
Q-learning (center) 17.44 135.64
Q-learning (edge) 19.11 112.24
Nash-Q-learning 23.12 90.75

MAAC 26.42 80.21

As shown in Table 4, our method did not sacrifice the waiting time of some intersections to
ensure overall performance. Furthermore, the performance of every intersection was optimized at
different levels. From the method Q-learning (center) and Q-learning (edge), we can see that the edge
computing structure has reduced the network delay for the deployment environment.

As shown in Table 5, the delay time and delay rate of Q-learning (Center) are the highest,
which proves the edge computing structure we proposed is useful for reducing the network delay.
The MAAC still outperforms others when computing the delay time of the network.

Table 4. The experiment results of average waiting time at each intersection.

ID
Result Fixed-Time Q-Learning (Center) Q-Learning (Edge) Nash-Q-Learning MAAC

ine1 156.37 146.69 126.74 103.00 76.09
2 188.65 199.72 135.21 108.54 83.90
3 155.29 136.11 123.34 104.54 74.15
4 197.33 178.63 111.52 102.50 79.49
5 155.57 160.85 123.11 94.52 84.12
6 168.45 139.90 132.77 100.33 62.33

Table 5. The delay time of five methods.

Method Average Episode(s) Average Delay(s) Delay Rate

Fixed-time 38,827.5 0.0 0.0%
Q-learning (Edge) 35,789.3 7522.9 21.1%

Q-learning (Center) 45,448.0 20,809.7 45.8%
Nash Q-learning 31,340.4 5951.6 18.9%

MAAC 28,940.5 3551.6 12.2%

Sensors 2020, 20, 4291 14 of 16

Figure 12. The training process of five methods.

6. Conclusions

In this work, we proposed a multi-agent auto communication (MAAC) algorithm based on the
multi-agent reinforcement learning (MARL) and an auto communication protocol (ACP) between
agents with the attention mechanism. We built a practicable edge computing structure for industrial
deployment on IoT, considering the limitations of the capabilities of network transmission bandwidth.

In the simulation environment, the experiments have shown the MAAC framework outperformed
17% over baseline models. Moreover, the edge computing structure is useful for reducing the network
delay when deploying the algorithm on an industrial scale.

In future research, we will build a simulation environment much closer to the real world and take
the communication from vehicle to traffic light into consideration to improve the MAAC method.

Author Contributions: Conceptualization, Qiang Wu and Jianqing Wu; methodology, Qiang Wu and Jun Shen;
software, Binbin Yong.; validation, Jun Shen and Qingguo Zhou; formal analysis, Qingguo Zhou. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding

Acknowledgments: This work was supported by Ministry of Education—China Mobile Research Foundation
under Grant No. MCM20170206, The Fundamental Research Funds for the Central Universities under Grant No.
lzujbky-2019-kb51 and lzujbky-2018-k12, National Natural Science Foundation of China under Grant No. 61402210,
Major National Project of High Resolution Earth Observation System under Grant No. 30-Y20A34-9010-15/17,
State Grid Corporation of China Science and Technology Project under Grant No. SGGSKY00WYJS2000062,
Program for New Century Excellent Talents in University under Grant No. NCET-12-0250, Strategic Priority
Research Program of the Chinese Academy of Sciences with Grant No. XDA03030100, Google Research Awards
and Google Faculty Award. We also gratefully acknowledge the support of NVIDIA Corporation with the donation
of the Jetson TX1 used for this research. Jianqing Wu also would like to gratefully acknowledge financial support
from the China Scholarship Council (201608320168). Jun Shen’s collaboration was supported by University of
Wollongong’s University Internationalization Committee Linkage grant and Chinese Ministry of Education’s
International Expert Fund “Chunhui Project” awarded to Lanzhou University.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Abdulhai, B.; Pringle, R.; Karakoulas, G.J. Reinforcement learning for true adaptive traffic signal control.
J. Transp. Eng. 2003, 129, 278–285.

Sensors 2020, 20, 4291 15 of 16

2. Richard S.S.; Andrew G.B. Reinforcement Learning: An Introduction. MIT Press 2005, 16, 285–286.
3. Ghazal, B.; ElKhatib, K.; Chahine, K.; Kherfan, M. Smart traffic light control system. In Proceedings of the

2016 3rd International Conference on Electrical, Electronics, Computer Engineering and their Applications
(EECEA), Beirut, Lebanon, 21–23 April 2016; pp. 140–145.

4. Wei, H.; Zheng, G.; Yao, H.; Li, Z. IntelliLight: A Reinforcement Learning Approach for Intelligent Traffic Light
Control; Association for Computing Machinery: New York, NY, USA, 2018; pp. 2496–2505.

5. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA,2012 1097–1105.

6. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV,
USA, 26 June–1 July 2016; 2818–2826.

7. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1409.1556.

8. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; 770–778.

9. Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.R.; Jaitly, N.; Senior, N.; Vanhoucke, V.; Nguyen, P.;
Sainath, T.N.; et al. Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Process.
Mag. 2012, 29, 82–97.

10. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate.
arXiv 2014, arXiv:1409.0473.

11. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
12. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N. Attention is All you Need. In

Proceedings of the 31st International Conference on Neural Information Processing Systems, 4–9 December
2017, Long Beach, CA, USA.

13. Zhou, R.; Li, X.; Yong, B.; Shen, Z.; Wang, C.; Zhou, Q.; Li, K.C. Arrhythmia recognition and classification
through deep learning-based approach. Int. J. Comput. Sci. Eng. 2019, 19, 506–517.

14. Wu, Q.; Shen, J.; Yong, B.; Wu, J.; Li, F.; Wang, J.; Zhou, Q. Smart fog based workflow for traffic control
networks. Future Gener. Comput. Syst. 2019, 97, 825–835.

15. Yong, B.; Xu, Z.; Shen, J.; Chen, H.; Wu, J.; Li, F.; Zhou, Q. A novel Monte Carlo-based neural network model
for electricity load forecasting. Int. J. Embed. Syst. 2020, 12 , 522–533.

16. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.;
Bolton, A.; et al. Mastering the game of go without human knowledge. Nature 2017, 550, 354.

17. Bazzan, A.L. Opportunities for multi-agent systems and multi-agent reinforcement learning in traffic control.
Auton. Agents Multi-Agent Syst. 2009, 18, 342.

18. Sukhbaatar, S.; Fergus, R. Learning multiagent communication with backpropagation. NIPS 2016, 2244–2252.
19. Hoshen, Y. Attentional multi-agent predictive modeling. Neural Inf. Process. Syst. (NIPS) 2017, 2701-2711 .
20. Webster, F. Traffic signal settings. H.M. Stationery Office. 1958, 39, 45.
21. Thorpe, T.L. Vehicle Traffic Light Control Using SARSA; Colorado State University: Fort Collins, SC, 1997.
22. Chiou, S.W. An efficient algorithm for computing traffic equilibria using TRANSYT model. Appl. Math.

Model. 2010, 34, 3390-3399.
23. Chaib-Draa, B.; Moulin, B.; Millot, P. Trends in distributed artificial intelligence. Artif. Intell. Rev. 1992, 6,

35–66.
24. Durfee, E.H.; Lesser, V.R. Negotiating task decomposition and allocation using partial global planning.

Distrib. Artif. Intell. 1989, 2, 229–243.
25. Minsky, M. The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human

Mind; Simon & Schuster: New York, NY, USA, 2007.
26. Peng, P.; Yuan, Q.; Wen, Y.; Yang, Y.; Tang, Z.; Long, H.; Wang, J. Multiagent Bidirectionally-Coordinated

Nets for Learning to Play StarCraft Combat Games. CoRR 2017, 2, 2, arXiv:1703.10069.
27. Chen, C.; Wei, H.; Xu, N.; Zheng, G.; Yang, M.; Xiong, Y.; Xu, K.; Li, Z. Toward a Thousand Lights:

Decentralized Deep Reinforcement Learning for Large-Scale Traffic Signal Control. AAAI 2020, 34, 3414-3421.
28. Prashanth, L.A.; Bhatnagar, S. Reinforcement learning with function approximation for traffic signal control.

IEEE Trans. Intell. Transp. Syst. 2010, 12, 412–421.

Sensors 2020, 20, 4291 16 of 16

29. Mousavi, S.S.; Schukat, M.; Howley, E. Traffic light control using deep policy-gradient and
value-function-based reinforcement learning. IET Intell. Transp. Syst. 2017, 11, 417–423.

30. El, -T.S.; Abdulhai, B. Towards multi-agent reinforcement learning for integrated network of optimal traffic
controllers (MARLIN-OTC). Transp. Lett. 2010, 2, 89-110.

31. Weinberg, M.; Rosenschein, J.S. Best-response multiagent learning in non-stationary environments.
In Proceedings of the 3rd International Joint Conference on Autonomous Agents and Multiagent Systems,
New York, NY, USA, 19–23 August 2004.

32. Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.S.; Bengio, Y. Show, Attend and
Tell: Neural Image Caption Generation with Visual Attention. Comput. Sci. 2015, 37, 2048–2057.

33. Luong, M.T.; Pham, H.; Manning, C.D. Effective Approaches to Attention-based Neural Machine Translation.
arXiv 2015, arXiv:1508.04025.

34. Pottie, G.J. Wireless sensor networks. 1998 Information Theory Workshop (Cat. No.98EX131), Killarney,
Ireland, 1998, 139-140, doi:10.1109/ITW.1998.706478.

35. Jell, A.; Vogel, T.; Ostler, D.; Marahrens, N.; Wilhelm, D.; Samm, N.; Eichinger, J.; Weigel, W.; Feussner, H.;
Friess, H.; et al. 5th-Generation Mobile Communication: Data Highway for Surgery 4.0. Surg. Technol. Int.
2019, 35, 36-42.

36. Atzori, L.; Iera, A.; Morabito, G. The internet of things: a survey. Inf. Syst. Front. 2015, 17, 243–259.
37. de C. Neto, J.M.; Neto, S.F.G.; M. de Santana, P.; de Sousa, V.A., Jr. Multi-Cell LTE-U/Wi-Fi Coexistence

Evaluation Using a Reinforcement Learning Framework. Sensors 2020, 20, 1855.
38. Faheem, M.; Butt, R.A.; Raza, B.; Alquhayz, H.; Ashraf, M.W.; Shah, S.B.; Ngadi, M.A.; Gungor, V.C.

A Cross-Layer QoS Channel-Aware Routing Protocol for the Internet of Underwater Acoustic Sensor
Networks. Sensors 2019, 19, 4762.

39. Zikria, Y.B.; Afzal, M.K.; Kim, S.W. Internet of Multimedia Things (IoMT): Opportunities, Challenges and
Solution. Sensors. 2020, 20, 2334.

40. Binbin Yong, Zijian Xu, et al. Q-learning. J. Parallel Distrib. Comput. 2017, 8, 279–292.
41. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J., 1963, 27, 379-423.
42. Foerster, A. Learning to communicate with deep multi-agent reinforcement learning. NIPS 2016, 2145–2153.
43. West, C.H. General Technique for Communications Protocol Validation. IBM J. Res. Dev. 1978, 22, 393–404.
44. Wei, H.; Chen, C.; Zheng, G.; Wu, K.; Xu, K.; Gayah, V.; Li, Z. Presslight: Learning max pressure control

for signalized intersections in arterial network. Int. Conf. Knowl. Discov. Data Min. (KDD) 2019, 1290–1298,
doi:10.1145/3292500.3330949.

45. Boettiger, C. An introduction to Docker for reproducible research. ACM SIGOPS Oper. Syst. Rev. 2015,
49, 71–79.

46. Watkins, C.J.C.H.; Dayan,P. Q-learning. Mach. Learn. 1992, 8, 279–292.
47. Hu, J.W. Nash q-learning for general-sum stochastic games. J. Mach. Learn. Res. 2004, 4, 1039–1069.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Reinforcement Learning
	Single-Agent Reinforcement Learning
	Multi-Agent Reinforcement Learning

	Attention Mechanism
	IoT
	Cloud and Edge Computing

	Preliminary
	Multi-Agent Communication Model
	Shannon Communication Model
	Communications Protocol

	Problem Definition

	Methodology
	MAAC Model
	Internal Communication Module in Agent
	MAAC Algorithm

	Edge Computing Structure

	Experiments
	Simulation Environment and Settings
	Baseline Methods
	Evaluation
	Results

	Conclusions
	References

