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Abstract: Remote sensing targets have different dimensions, and they have the characteristics of
dense distribution and a complex background. This makes remote sensing target detection difficult.
With the aim at detecting remote sensing targets at different scales, a new You Only Look Once
(YOLO)-V3-based model was proposed. YOLO-V3 is a new version of YOLO. Aiming at the defect of
poor performance of YOLO-V3 in detecting remote sensing targets, we adopted DenseNet (Densely
Connected Network) to enhance feature extraction capability. Moreover, the detection scales were
increased to four based on the original YOLO-V3. The experiment on RSOD (Remote Sensing
Object Detection) dataset and UCS-AOD (Dataset of Object Detection in Aerial Images) dataset
showed that our approach performed better than Faster-RCNN, SSD (Single Shot Multibox Detector),
YOLO-V3, and YOLO-V3 tiny in terms of accuracy. Compared with original YOLO-V3, the mAP
(mean Average Precision) of our approach increased from 77.10% to 88.73% in the RSOD dataset.
In particular, the mAP of detecting targets like aircrafts, which are mainly made up of small targets
increased by 12.12%. In addition, the detection speed was not significantly reduced. Generally
speaking, our approach achieved higher accuracy and gave considerations to real-time performance
simultaneously for remote sensing target detection.

Keywords: remote sensing image; target detection; multi-scale; YOLO-V3; convolutional neural
network; DenseNet

1. Introduction

Recently, remote sensing images [1–4] have attracted more research in the field of computer
version (CV) with the rapid development of satellite and imaging technology. There is a significant
value on information extraction of remote sensing images. Remote sensing target detection [5–7] has
important and extensive applications in military, navigation, salvage, and other aspects, which requires
high speed and accuracy for target detection algorithms.

The rapid development of computer technology makes it possible for the applications of the
convolutional neural network (CNN) [8–11], which requires high computing power. Compared with
traditional target detection algorithms like HOG-SVM (Histogram of Oriented Gradients-Support Vector
Machine) [12,13], DPM (Deformable Parts Model) [14,15], and HOG-Cascade [16,17], CNN-based
target detection algorithms have great advantages in many aspects such as speed and accuracy.
Convolutional neural network (CNN) is a kind of feed forward neural network with convolutional
computing and it usually has a deep structure. It is one of the most important components of deep
learning [18–20]. Recently, the research of deep learning in target detection has become a hot spot.
The CNN-based target detection models can mainly be divided into two categories, which include the
two-stage ones and the one-stage ones.
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Currently, the two-stage ones are represented by R-CNN [21], and then Fast R-CNN [22,23],
Faster R-CNN [24,25], and Mask R-CNN [26,27], which have been developed on the basis of it. As the
name implies, the two-stage target detection algorithms divide the detection processes into two steps.
First, the Region Proposed Network (RPN) [28–30] is used to extract the information of the targets
and then the detection layers predict location and category information of the targets. The other
ones are one-stage target detection algorithms including SSD (Single Shot Multibox Detector) [31–33],
DSSD (Deconvolution Single Shot Multibox Detector) [34], FSSD (Feature Fusion Single Shot Multibox
Detector) [35], YOLO [36], YOLO-V2 [37], and YOLO-V3 [38]. Instead of using the region proposed
network (RPN), the one-stage algorithms obtain the predictive information of location and category
directly. Therefore, they are also called the regression-based algorithms and they can usually achieve
higher detection speed than the two-stage ones. At present, numerous state-of-the-art target detection
models with higher speed are proposed based on YOLO such as YOLO-V3 tiny [39] and TF-YOLO [40].
Therefore, the accuracy of them is not satisfactory.

From the current research, remote sensing target detection usually faces the following challenges:
one is that remote sensing targets are usually small and take up fewer pixels, which makes it difficult to
extract features. The second challenge is that remote sensing images are usually disturbed by shadow,
light, and other external factors. In addition, the scales of the remote sensing targets are usually
different. To solve these problems, researchers have made unremitting efforts.

In order to realize remote sensing target detection, the inchoate research is mainly based on
template matching, which is to match the target with a specific template for detection. For example,
Weber et al. [41] proposed a method of making use of image analysis to extract coastline templates and
adopted this method to detect oil tanks. It achieved good results. However, although the method of
template matching is simple and effective, its overall robustness is poor and it is sensitive to the shapes
of the targets and geometric deformation. The algorithms based on image analysis are to judge whether
each region of the remote sensing image has a target by segmentation and classification. For example,
Feng et al. [42] proposed the algorithm named multi-resolution segmentation, which segmented remote
sensing images into multiple regions for detection by three parameters: shape, scale, and density.
Compared with the method of template matching, this method is more flexible and can combine
contextual semantic information, which has achieved good results in some tasks. However, this kind
of algorithm still needs to be designed manually for segmentation, which is not universal.

Compared with the previous two algorithms, the remote sensing target detection algorithms
based on deep learning have better accuracy and robustness because they no longer use the features of
manual design. Sun et al. [43] extracted the region of interest with sliding windows, and then used the
features of Bag-of-Words to detect the targets. Zhang et al. [44] and Yu et al. [45] combined the prior
characteristics of the airports and coasts, respectively, with deep learning to conduct remote sensing
target detection. More commonly, researchers use existing target detection algorithms such as Faster
R-CNN in remote sensing target detection tasks. However, when these models are applied to remote
sensing target detection tasks, their performance is poor due to the factors such as illumination, cloud
cover, and complex background interference.

As an advanced target detection model, YOLO-V3 adopts a feature pyramid network (FPN) [46,47],
ResNet (Residual Network) [48], and achieves good performance in speed and accuracy. YOLO-V3
predicts targets at three different scales. Compared with the previous two versions, YOLO-V3 enhances
the capability of detecting multi-scale targets, especially small targets. Abundant improved algorithms
have been proposed since YOLO-V3 came out. References [49,50] adopted four detection layers to
enhance the performance of detecting small targets. Reference [51] adopted circular ground truth
to realize tomato detection. Reference [52] increased another shortcut connection to concatenate 2
CBLs (Convolution-Batch Normalization-Leak ReLU) between two ‘residual units’ to enhance the
performance for the feature extraction network of information transfer. Reference [40] simplified the
feature extraction network to obtain faster detection speed and adopted multiple layers concatenation
to enhance the performance of feature extraction. The above improved algorithms achieved a good
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detection effect. However, the resolution of remote sensing images is large. The scales of remote
sensing targets are small and the backgrounds are complex. These algorithms, which have excellent
performance on routine datasets, are not suitable for remote sensing target detection. Therefore, we need
to design a feature extraction network and detection networks for our proposed algorithm elaborately.

According to the characteristics of remote sensing targets, the proposed method was improved
based on the YOLO-V3 model. The main contributions in this paper include the following. (1) In order
to reduce reliance on ResNet and enhance the ability of feature information extraction, which is
inspired by DenseNet, improved densely connected units proposed to replace some of the residual
units of Darknet53. (2) To further improve the ability of detecting multi-scale remote sensing targets,
we extended the original three output layers of YOLO-V3 to 4. (3) In order to avoid gradient vanishing,
instead of five convolutional layers in each detection layers, three residual units were adopted.
The experimental results on remote sensing images show that the proposed method not only has
good performance in accuracy, but also gives attention to real-time performance for remote sensing
target detection.

The rest of this paper is as follows. In Section 2, we introduced the theory of YOLO and the
framework of YOLO-V3. In Section 3, we described the improved method of our approach in details.
Section 4 gives the experiments of the proposed algorithm on the RSOD dataset and compared the
performance of our approach with other classical algorithms. Lastly, the conclusion is shown in
Section 5.

2. The Theory of YOLO

YOLO (You Only Look Once) is a kind of one-stage algorithm, which transforms target detection
as a regression problem. Compared with Faster R-CNN, YOLO obtain the predictive information
of location and categories directly without a region proposed network (RPN). After continuous
development, YOLO has been developed from YOLO-V1 to YOLO-V2 and the latest YOLO-V3.

2.1. The Principle of YOLO

At the beginning, the network divides each input image into S×S grid cells. The grid, which center
on the ground truth (GT) of the target falls in, is responsible for detecting it. Each grid cell defines B
bounding boxes as well as their corresponding confidence scores. Each bounding box contains C classes.
We denote them as P(Classi

∣∣∣Object). If the center of the target falls in the grid cell, then P(Object) = 1.
Otherwise, P(Object) = 0. The confidence score is defined as: P(Object) × IOUtruth

pred . It reflects
the probability that the grid cell contains targets and the accuracy that the bounding box predicts.
IOU represents the overlap area between the bounding box and the ground truth (GT). The class-specific
scores can be denoted in Equation (1).

P
(
Classi

∣∣∣Object
)
× P(Object) × IOUtruth

pred = P(Class) × IOUtruth
pred (1)

YOLO has made greater achievements than Faster R-CNN in terms of speed, but it also brings
the low accuracy of detection. On the basis of YOLO-V1, YOLO-V2 introduces the concept of the
anchor box and runs k-means on the dataset to generate appropriate prediction boxes at the beginning.
Instead of full connected layers (FC), YOLO-V2 introduces convolutional layers in the output end.
In addition, YOLO-V2 also adopts Batch Normalized, New feature extraction network (Darknet19),
which greatly improves the performance compared with YOLO-V1.

YOLO-V3 is a further improved version based on YOLO-V2 by upgrading the original Darknet19
to Darknet53 and adopts multi-scale detection layers (three scales) to detect the targets. This allows
YOLO-V3 to detect small targets more effectively.
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2.2. The Network of YOLO-V3

YOLO-V3 adopts Darknet53 as its feature extraction network. In order to prevent information
loss caused by pooling layers, Darknet53 adopts a full convolutional network (FCN). The network is
basically made up of convolutional kernels of 1 × 1 or 3 × 3. Since it contains 53 convolutional layers, it
is called Darknet53. In order to extract deeper features and avoid gradient fading by drawing on the
residual network, Darknet53 added five residual modules to the network in which each was composed
of one or multiple residual units.

YOLO-V3 borrows the idea of the feature pyramid network (FPN). The network carries out five
times of the down-sampling processing on each input image. The output feature map of the feature
extraction is down-sampled by 32×, which means the output feature map is 1/32 of the size of the
input image. Then YOLO-V3 transmits the last three down-sampled layers to the detection layers for
target detection. The network of YOLO-V3 predicts at three scales. The sizes of the three scales are
13 × 13, 26 × 26, and 52 × 52, which are responsible to detection big targets, medium-sized targets,
and small targets, respectively. The deep-level feature maps contain a mass of semantic information
while the shallow-level feature maps contain a mass of fine-grained information. Therefore, to carry
out feature fusion, the network uses up-sampling to keep the size of the feature map down-sampled by
32×, which is consistent with the feature map down-sampled by 16×, and then merges the feature
maps by concatenation. Similarly, we do the same for the feature map down-sampled by 16× and the
feature map down-sampled by 8×. The structure of YOLO-V3 and its feature extraction network are
shown in Figure 1 and Table 1, respectively.
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Table 1. The feature extraction network of You Only Look Once (YOLO)-V3.

Layer Filter Size Output

Convolutional 32 3 × 3 416 × 416 × 32
Convolutional 64 3 × 3/2 208 × 208 × 64

Convolutional 32 1 × 1
1× Convolutional 64 3 × 3

Residual 208 × 208 × 64

Convolutional 128 3 × 3/2 104 × 104 × 128

2×
Convolutional 64 1 × 1
Convolutional 128 3 × 3

Residual 104 × 104 × 128

Convolutional 256 3 × 3/2 52 × 52 × 256

8×
Convolutional 128 1 × 1
Convolutional 256 3 × 3

Residual 52 × 52 × 256

Convolutional 512 3 × 3/2 26 × 26 × 512

8×
Convolutional 256 1 × 1
Convolutional 512 3 × 3

Residual 26 × 26 × 512

Convolutional 1024 3 × 3/2 13 × 13 × 1024

4×
Convolutional 512 1 × 1
Convolutional 1024 3 × 3

Residual 13 × 13 × 1024

3. Related Work

3.1. Improved Densely Connected Network

The improvement of You Only Look Once (YOLO)-V3 is mainly based on the concept of a residual
network. Darknet53 uses several residual units, and the ResNet made up of these residual units
contains a large number of parameters and it is responsible for the main calculations for YOLO-V3
network. Unlike ResNet, which adds the values of the subsequent layers by constructing an identity
map, DenseNet [53] connects all the layers for channel merging to achieve feature reuse. Compared
with ResNet, the back propagation of the gradient is enhanced, which can make better use of feature
information and improve the transmittance of the information between layers.The structure of DenseNet
is shown in Figure 2.
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In Figure 2, x1, x2, x3, and x4 represent the feature maps of the output layers, while H1, H2, H3,
and H4 refers to the nonlinear transformations. The network contains l(l + 1)/2 connections with l
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layers. Each layer is connected to all the other layers. Thus, each layer can receive all the feature maps
of the preceding (l− 1) layers. The feature map of each layer can be expressed in Equation (2).

xl = Hl[x0, x1, . . . , xl−1] (2)

The proposed densely connected network in this paper borrows from the idea of residual units in
Figure 1. The convolution, Batch Normalization, and Leaky-ReLU make up the CBL module, while two
CBL modules are cascaded into a Double-CBL (DCBL) module. We use the DCBL module as transport
layer Hi: Conv ( 1 × 1 × 32)-BN-ReLU-Conv (3 × 3 × 64)-BN-ReLU and Conv (1 × 1 × 64)-BN- ReLU-
Conv (3 × 3 × 128)-BN-ReLU. Thus, too many layers of DenseNet will lead the feature maps getting
redundant and decrease the speed of detection, we set four layers for each module. The increment of
the feature maps for each layer in module ’DENSE 1st’ is 64 while the increment of the feature maps
for each layer in module ’DENSE 2nd’ is 128.

With the aim of reducing the network’s dependence on residual units, a part of the lower resolution
layers of the feature extraction network is replaced by the improved densely connected network.
The structure diagram of the proposed feature extraction network is shown in Figure 3.
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To show the structure of our approach in detail, Table 2 gives the feature extraction network of
our approach.



Sensors 2020, 20, 4276 7 of 23

Table 2. The feature extraction network of our approach.

Layers Filter Size Output

Convolutional 32 3 × 3 416 × 416 × 32
Convolutional 64 3 × 3/2 208 × 208 × 64

1×
Convolutional 32 1 × 1
Convolutional 64 3 × 3

Residual 208 × 208 × 64

Convolutional 128 3 × 3/2 104 × 104 × 128

2×
Convolutional 64 1 × 1
Convolutional 128 3 × 3

Residual 104 × 104 × 128

Convolutional 256 3 × 3/2 52 × 52 × 256

4×
Convolutional 128 1 × 1
Convolutional 256 3 × 3

Residual 52 × 52 × 256

4×
Convolutional 32 1 × 1
Convolutional 64 3 × 3

DenseNet 52 × 52 × 512

Convolutional 512 3 × 3/2 26 × 26 × 512

4×
Convolutional 256 1 × 1
Convolutional 512 3 × 3

Residual 26 × 26 × 512

4×
Convolutional 64 1 × 1
Convolutional 128 3 × 3

DenseNet 26 × 26 × 1024

Convolutional 1024 3 × 3/2 13 × 13 × 1024

4×
Convolutional 512 1 × 1
Convolutional 1024 3 × 3

Residual 13 × 13 × 1024

3.2. The Proposed Algorithm with Multi-Scale Detection

For an input image of 416 × 416, the size of the feature maps of the three detection layers are
13 × 13, 26 × 26, and 52 × 52, respectively. The smaller the size of the feature map is, the larger the area
in the input image is in which each grid cell will correspond. On the contrary, the larger the size of
the feature map is, the smaller the area in the input image is in which each grid cell will correspond.
It means the 13 × 13 detection layer is suitable for detecting large targets, while the 52 × 52 detection
layer is suitable for detecting small targets. Generally speaking, remote sensing images contain a large
amount of small targets. In order to further enhance the detection performance of remote sensing
targets, we need a larger-sized detection scale. The size of the new scale is 104 × 104. Compared with
the original three scales, the four detecting scales strategy is suitable for detecting smaller-sized targets.

Furthermore, in order to avoid gradient fading, we replace the five convolutional layers with
three residual units, which is in front of each detection layer. The structure of residual units and the
proposed network are shown in Table 3 and Figure 4, respectively.
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Table 3. The structure of residual units.

3×
Convolutional 512 1 × 1
Convolutional 1024 3 × 3

Residual (RES 1st) 13 × 13 × 1024

The Structure of RES 1st

3×
Convolutional 256 1 × 1
Convolutional 512 3 × 3

Residual (RES 2nd) 26 × 26 × 512

The Structure of RES 2nd

3×
Convolutional 128 1 × 1
Convolutional 256 3 × 3

Residual (RES 3rd) 52 × 52 × 256

The Structure of RES 3rd

3×
Convolutional 64 1 × 1
Convolutional 128 3 × 3

Residual (RES 4th) 104 × 104 × 128

The Structure of RES 4th
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Tables 1 and 2 show the structure of the feature extraction network of YOLO-V3 and our approach,
respectively. Table 3 shows the structure of the residual units, which is in the end of four detection layers
of our proposed network. In the end, Figure 4 exhibits the massive structure of our proposed network.
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3.3. K-Means for Anchor Boxes

Inspired by Faster-RCNN, YOLO-V2 and YOLO-V3 introduced the ideal of the anchor box to
predict the bounding boxes more accurately. In our approach, we ran K-means to generate the anchor
boxes. The function of the K-means algorithm is conducting latitude clustering to make anchor
boxes and adjacent ground truth have larger IOU values, which is not directly related to the size of
anchor boxes.

d(box, centroid) = 1− IOU(box, centroid) (3)

IOU refers to the intersection ratio and it is defined in Equation (4).

IOU =
Soverlap

Sunion
(4)

Soverlap refers to the overlap area between the predicted box and the ground truth and Sunion refers
to the union area between them. The pseudocode of K-means in this paper is shown in Algorithm 1.

Algorithm 1: The pseudocode of K-means

1: Given K cluster center points: (Wi, Hi), i ∈ {1, 2, . . . , k},Wi, Hi refer to the width and height of each anchor
box.
2: Calculate the distance between each ground truth and each cluster center:
d(box, centroid) = 1− IOU(box, centroid). Since the position of the anchor box is not fixed, the center point of
each ground truth is coincident with the clustering center.
3: Recalculate the cluster center for each cluster: W′i = 1

Ni

∑
wi, H′i = 1

Ni

∑
hi

4: Repeat step 2 and step 3 until the clusters converge.

We ran the K-means algorithm to get anchor boxes. In Figure 5, we can see the average IOU with
a different number of clusters. The curve got more flat when the number increased. Since there are four
detection layers in the network of our approach, we selected 12 clusters (anchor boxes). The sizes of
the anchor boxes are as follows: (21, 24), (25, 31), (33, 41), (51, 54), (61, 88), (82, 91), (109, 114), (121, 153),
(169, 173), (232, 214), (241, 203), (259, 271). Among them, (21, 24), (25, 31), (33, 41) are the anchor boxes
for Scale 4. (51, 54), (61, 88), (82, 91) are the anchor boxes for Scale 3. (109, 114), (121, 153), (169, 173) are
the anchor boxes for Scale 2 and (232, 214), (241, 203), (259, 271) are the anchor boxes for Scale 1.
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3.4. Relative to the Grid Cell

When detecting the targets, we need to get the values of bounding boxes based on the predicted
values. The process is shown in Figure 6. In Figure 6, tx, ty, tw, and th represent the predicted values of
the network. cx and cy represent the offset of the gird relative to the upper left. The values of bounding
boxes can be represented as:

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pwetw

bh = pheth

σ(x) = 1/(1 + e−x)

(5)
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3.5. The NMS Algorithm for Merging Bounding Boxes

Since there may be several bounding boxes corresponding to one target, the last step of our
approach is to conduct non-maximum suppression (NMS) of the bounding boxes, which is aimed at
eliminating unnecessary boxes. The steps of NMS are below.

• Step 1: Take the bounding box with the highest confidence as the target for comparison. Then we
compare the IOU between the bounding box and remaining boxes.

• Step 2: If the IOU is larger than the threshold we set, then remove the bounding box from the
remaining bounding boxes.

• Step 3: Take the bounding box with the second highest confidence as the target for comparison
and repeat Step 1 and Step 2 until all the bounding boxes are left.

The pseudocode of the algorithm is summarized in Algorithm 2.
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Algorithm 2: The pseudocode of non-maximum suppression (NMS) for our approach

Original Bounding Boxes:
B = [b1, . . . , bM], C = [c1, . . . , cM], threshold = 0.6
B refers to the set of original bounding boxes
C refers to the set of confidences of B
Detection result:
F refers to the set of the final bounding boxes
1: F← []

2: while B , [] do:
3: k← argmax C
4: F← F.append(bk) ; B← del B [bk] ; C← del C [ck]

5: for bi ∈ B do:
6: if IOU(bi, bk) ≥ threshold
7: B← del B [bi] ; C← del C [ci]

8: end
9: end
10: end

4. Experiment and Results

In order to verify the validity of our improved YOLO-V3 for remote sensing target detection, we
compared our approach with original YOLO-V3, YOLO-V3 tiny, and other state-of-the-art algorithms
on RSOD and the USC-AOD dataset. The conditions of our experiment are as follows: Framework:
python 3.6.5 and tensorflow 1.13.1, Operating system: Windows 10, CPU: i7-7700k, and GPU: NVIDIA
GeForce RTX 2070. We set 50,000 training steps in this experiment. The learning rate of the model
decreased from 0.001 to 0.0001 after 30,000 steps and to 0.00001 after 40,000 steps. We set the same
parameters for other comparison algorithms. The initialization parameters of training lies in Table 4.

Table 4. The initialization parameters of training.

Input Size Batch Size Momentum Learning Rate Training Step

416 × 416 8 0.9 0.001–0.00001 50,000

4.1. Loss Function

When training the network, loss function is used to measure the error between the predicted and
true value. The loss function of the network can be defined in Equation (6).

Loss = Errorcoord + Erroriou + Errorcls (6)

Errorcoord refers to a coordinate prediction error and it can be defined as:

Errorcoord = λcoord
∑s2

i = 1
∑B

j = 1 Iobj
i j [(xi − xi)

2 + (yi − yi)
2]

+λcoord
∑s2

i = 1
∑B

j = 1 Iobj
i j [(wi −wi)

2 + (hi − hi)
2
]

(7)

In Equation (7), λcoord refers to the weight of the coordinate error and we selected λcoord = 5 in
our model. S2 refers to the number of the grids (S × S). B refers to the number of bounding boxes
per grid. Iobj

i j refers to whether there is an object that falls in the jth bounding box of the ith grid cell.

(xi, yi, wi, hi) and (xi, yi, wi, hi) refer to the center coordinate, height, and width of the predicted box
and the ground truth, respectively.
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Erroriou refers to an IOU error and it is defined as:

Erroriou =
∑s2

i = 1
∑B

j = 1 Iobj
i j (Ci −Ci)

2

+λnoobj
∑s2

i = 1
∑B

j = 1 Inoobj
i j (Ci −Ci)

2 (8)

λnoobj refers to the confidence penalty when there is no object and we selected λnoobj = 0.5 in our
model. Ci And Ci refer to the true and predicted confidence, respectively.

Errorcls refers to the classification error and it is defined as:

Errorcls =
∑s2

i = 1

∑B

j = 1
Iobj
i j

∑
c∈classes

(pi(c) − p̂i(c))
2

(9)

where c refers to the number of classes of the targets.

4.2. The Evaluation Indicators

Based on the classification accuracy and prediction accuracy, the samples can be divided into
four categories: TP (true positive), FP (fault positive), TN (true negative), and FN (fault negative).
We define precision and recall in Equation (10) and Equation (11).

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

Mean average precision (mAP) is a performance metric for predicting target locations and
categories. The accuracy and recall are mutually restricted in practice, and there will be ambiguity
when compared separately. Therefore, in our experiment, we introduced mAP, which is one of the
most important metrics to evaluate the performance of target detection algorithms.

4.3. Experiment on Remote Sensing Target Detection

The classifier trained based on a conventional dataset is not good at detecting remote sensing
targets since remote sensing images have their particularities.

1. Scale diversity. Remote sensing images can be taken from hundreds of meters to nearly 10,000 meters
in height, and ground targets may be of different sizes even if they are of the same kind.
For example, ships in ports may be only tens of meters to more than 300 meters in size.

2. Perspective particularity. The perspective of remote sensing images is basically overhead, but most
of the conventional datasets are still ground level, so the mode of the same target is usually
different. The detector trained well on the conventional datasets, which may have a poor effect
on the remote sensing images.

3. Problem of small targets. Most of the remote sensing targets are small in size. As a result, the
target information is limited. The information of the targets has been lost due to the down
sampling layers of the Convolutional Neural Network (CNN). After four times of down sampling,
the feature map of the target with 24 × 24 pixels may take up only 1 pixel.

4. Problem of multi-directions. The viewing angle of remote sensing images are usually overhead,
while the directions of the targets are uncertain while there is a degree of certainty in
conventional datasets.

5. The high complexity of the background. The fields of remote sensing images are relatively large
(usually covering several square kilometers). The fields of vision may contain various backgrounds,
which will produce strong interference to the target detection.
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Based on the above reasons, it is often difficult to train an ideal target detector from conventional
datasets for target detection tasks of remote sensing images. A special remote sensing image database
is needed.

4.3.1. Dataset Analysis

Taking everything into consideration, we selected the RSOD and UCS-AOD dataset in the
experiment. RSOD is the dataset of aerial images. It contains the targets of four categories: aircraft,
playground, overpass, and oil tank. UCS-AOD is the dataset of target detection in aerial images.
We generally consider the target, which the ground truth takes up less than 0.12% of the whole image
as a small target. The ground truth takes up 0.12–0.5%, which is a medium target, and the ground
truth takes up more than 0.5%, which is a large target. Of the four categories, the aircraft targets are
mostly small in size. The oil tank targets are major of a small or medium size. The playground and
overpass targets are big in size. The dataset includes targets under different lighting conditions and at
different heights, and the shooting angles of the targets are also different.

Tables 5 and 6 show the statistics of our remote sensing datasets. The targets in the dataset are
mainly small or medium in size, and the distribution of the targets is relatively dense, which increases
the difficulty of target detection. Figure 7 contains eight samples of the datasets in this paper. The targets
in these samples are under a complex background. After a series of convolutional layers and down
sampling layers, the targets take up even fewer pixels, which makes it difficult to detect them.
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Table 5. Remote sensing object detection (RSOD) dataset statistics.

Dataset Class Image Instances
Target Amount

Small Medium Large

Training
Set

Aircraft 446 4993 3714 833 446
Oil tank 165 1586 724 713 149

Overpass 176 180 0 0 180
Playground 189 191 0 12 179

Test
Set

Aircraft 176 1257 741 359 157
Oil tank 63 567 257 213 97

Overpass 36 41 0 0 41
Playground 49 52 0 0 52

Table 6. Dataset of object detection in aerial images (UCS-AOD) dataset statistics.

Dataset Class Image Instances

Training Set Aircraft 600 3591
Car 310 4475

Test Set
Aircraft 400 3891

Car 200 2639

4.3.2. Experimental Results and Analysis in RSOD and UCS-AOD Dataset

In order to compare the accuracy and real-time performance of the algorithms, the mAP and
speed of our approach are evaluated. We compared our approach with the state-of-the-art target
detection models in the RSOD dataset, and the comparison results are shown in Table 7. Furthermore,
the comparison results of the targets with different sizes are shown in Table 8.

Table 7. Experimental comparison of accuracy and speed in the RSOD dataset.

Method Backbone
Metric (%)

FPS
Aircraft Oil Tank Overpass Playground mAP

(IOU=0.5)

Faster RCNN VGG-16 85.85 86.67 88.15 90.35 87.76 6.7

SSD VGG-16 69.17 71.20 70.23 81.26 72.97 62.2
DSSD ResNet-101 72.12 72.49 72.10 83.56 75.07 6.1
ESSD VGG-16 73.08 72.94 73.61 84.27 75.98 37.3

YOLO-V2 DarkNet19 62.35 67.74 68.38 78.51 69.25 35.6
YOLO-V3 DarkNet53 74.30 73.85 75.08 85.16 77.10 29.7

YOLO-V3 tiny DarkNet19 54.14 56.21 59.28 64.20 58.46 69.8
UAV-YOLO [52] Figure 1 in [52] 74.68 74.20 76.32 85.96 77.79 30.1

DC-SPP-YOLO [54] Figure 5 in [54] 73.16 73.52 74.82 84.82 76.58 33.5
ours (Figure 3) 86.42 87.57 89.37 91.56 88.73 25.8

Table 8. Experimental comparison of accuracy measured by size.

Method Backbone
Metric (%) Leak Detection

Rate (%)Small Medium Large

Faster RCNN VGG-16 84.73 87.87 89.18 11.8

SSD VGG-16 70.38 73.41 77.51 21.1
DSSD ResNet-101 74.42 75.18 77.70 15.2
ESSD VGG-16 75.12 75.84 78.12 16.5

YOLO-V2 DarkNet19 63.20 68.53 69.28 24.3
YOLO-V3 DarkNet53 74.52 75.63 76.14 19.5

YOLO-V3 tiny DarkNet19 55.26 56.47 60.17 31.4
UAV-YOLO [52] Figure 1 in Reference [52] 75.45 75.15 76.85 17.1

DC-SPP-YOLO [54] Figure 5 in Reference [54] 75.41 74.67 76.41 15.9
ours (Figure 3) 87.51 87.93 90.23 10.2
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Table 7 shows that our approach is superior to other classical algorithms in the index of mAP.
The detection speed is not significantly reduced relative to YOLO-V3. For aircrafts and oil tanks,
which are mainly small and medium-sized targets, our approach has a clear improvement in detection
accuracy compared to YOLO-V3. The experimental results show that our improved YOLO-V3 can
effectively detect the remote sensing targets under the complex background in the condition of real-time
detection. In Table 8, we divide target categories by size. We can see that our approach has more
advantages than YOLO-V3 in detecting small-sized targets.

For the universality of our algorithm, we ran the experiment on the UCS-AOD dataset.
The comparison results are shown in Table 9. In addition, from Tables 8 and 9, we can see that
the leak detection rate is significantly lower than YOLO-V3 and other state-of-the-art algorithms.

Table 9. Experimental comparisons of accuracy and speed in the UCS-AOD dataset.

Method Backbone
Metric (%)

FPS

Aircraft Car Leak Detection
Rate (%)

mAP
(IOU = 0.5)

Faster RCNN VGG-16 87.31 86.48 13.8 86.90 6.1

SSD VGG-16 70.24 72.61 23.7 71.43 61.5
DSSD ResNet-101 73.17 74.19 16.1 73.68 5.2
ESSD VGG-16 73.62 75.06 15.9 74.34 33.2

YOLO-V2 DarkNet19 63.17 68.42 23.0 65.80 34.3
YOLO-V3 DarkNet53 75.71 75.62 18.5 75.67 27.6

YOLO-V3 tiny DarkNet19 57.58 56.35 35.2 56.97 65.3
UAV-YOLO [52] Figure 1 in Reference [52] 75.12 75.60 16.5 75.36 28.4

DC-SPP-YOLO [54] Figure 5 in Reference [54] 76.52 74.61 17.4 75.57 30.4
Ours (Figure 3) 89.31 88.24 9.3 88.78 24.9

Under different backgrounds, partial detection results of our approach in RSOD and UCS-AOD
dataset are shown in Figure 8. In the conditions of different illumination, different distributions,
and different target sizes, our approach can detect the target accurately, which proves excellent detection
performance for multi-scale remote sensing targets.
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4.3.3. Ablation Experiments

In this section, we need to verify the effectiveness of each improved module we proposed. In order
to analyze the influence of module ‘DENSE 1st’ and module ‘DENSE 2nd’ (Figure 3) on the detection
accuracy, different combination modes were set up in the experiment under the condition of three
detection scales. The experimental results of each combination in the RSOD dataset are shown
in Table 10.
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Table 10. Experimental comparisons of each combination in the feature extraction network.

DENSE
1st

DENSE
2nd

Metric (%)

FPSAircraft Oil Tank Overpass Playground mAP
(IOU = 0.5)

1 74.30 73.85 75.08 85.16 77.10 29.7
2 X 76.81 75.38 77.21 85.37 78.69 30.9
3 X 77.28 76.39 79.65 85.92 79.81 31.4
4 X X 82.16 83.52 85.12 86.73 84.38 32.3

It can be seen from the first experiment and the fourth experiment that the feature extraction
network of the fourth experiment introduced dense connection modules based on Darknet53. mAP
of its model improved from 77.10% to 84.38%. On the other hand, the detection speed of the fourth
experiment increased from 29.7 FPS to 32.3 FPS compared to the first experiment. The experimental
results show that our proposed feature extraction network can improve the performance of remote
sensing target detection and also has advantages in detection speed.

In addition, Table 11 compared the experimental results of each module at the detection end
based on an improved feature extraction network. It can be found in the comparison of the first
experiment and the second experiment, and the comparison between the third experiment and the
fourth experiment, that the fourth detection scale increased and improved mAP up to 5.95% and
5.78%, respectively. Among them, for the small-sized targets like aircraft, the accuracy is improved by
8.72% and 7.04%, respectively. This shows that the increased detection scale can effectively improve
the detection accuracy of small targets. Compared with six convolutional layers, the ‘Res 3’ module
can avoid gradient fading and reduce the number of parameters. The comparison of experiment 1
and experiment 3, and the comparison between experiment 2 and experiment 4 show that the ‘Res 3’
module can slightly increase the detection speed.

Table 11. Experimental comparisons of each combination in detection layers.

4th Scale Res 3
Metric (%)

FPS
Aircraft Oil Tank Overpass Playground mAP

(IOU = 0.5)

1 77.25 76.38 84.36 86.12 81.03 29.7
2 X 85.97 85.18 87.15 89.61 86.98 24.8
3 X 79.38 78.85 85.29 88.28 82.95 30.1
4 X X 86.42 87.57 89.37 91.56 88.73 25.8

The ablation experiments result in Tables 9 and 10, which proved that the improved feature
extraction network and detection end we proposed can improve the feature extraction ability of
the network and enhanced the detection accuracy of multi-scale remote sensing targets, especially
small-sized targets. In addition, the detection speed of our approach is not significantly reduced when
compared to YOLO-V3 and meets the real-time requirements.

4.3.4. Expansion Experiment

In order to verify the effectiveness of our approach more intuitively, we selected several images
and compared the detection results with YOLO-V3 and Faster RCNN. The comparison of the detection
results are shown in Figure 9.
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In Figure 9, a total of 24 detection results of eight groups were chosen in the RSOD dataset
and UCS-AOD dataset to prove the superiority of the improved YOLO-V3. The pictures in the
first list are the detection results of the YOLO-V3 network. The pictures in the second list are the
detection results of Faster RCNN and the pictures in the third list are the detection results of our
approach. It can be clearly seen that there are several small targets missed and detected by YOLO-V3.
Although Faster RCNN performed better than YOLO-V3, leak detection still exists. On the other
hand, all the targets were detected by our approach. The contrast experiments of eight groups and
the ablation experiments showed that, by improving the feature extraction network and increasing
the fourth detection scale, our approach enhanced the performance of detecting small targets with
complex background conditions in remote sensing images.

5. Conclusions

In practical engineering applications, we need to consider both accuracy and speed of detection.
The existing remote sensing target detection algorithms often fail to consider both of them. In this paper,
we proposed an improved YOLO-V3-based model for multi-scale remote sensing target detection.
On account of the complexity of the background of remote sensing targets, this puts forward a
higher requirement for the ability of the network to extract features. In this paper, we focused on
improving the original feature extraction network. Several improvements have been introduced to
the original YOLO-V3 network. First, in order to extract feature information more effectively, a dense
connection network (DenseNet) was introduced in the feature extraction network. Second, to enhance
the performance of detecting small-sized targets, we extended the detection scales from 3 to 4. Third,
we replaced three residual units with five convolutional layers, which is in each detection layer to avoid
gradient fading. We can see from the ablation experiments that each improved module we proposed
is effective in improving the detection accuracy. Experiments on RSOD and UCS-AOD datasets
show that our approach achieves better performance on multi-scale remote sensing target detection.
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The improvement on the feature extraction network greatly improved the ability of extracting the
features of the targets. The additional fourth detection scale strengthens the performance of detecting
small targets. In the case of losing a portion of detection speed, the accuracy is greatly improved,
especially for small remote sensing targets compared with YOLO-V3. Although numerous improved
networks based on YOLO-V3 have been proposed, they usually detected targets in routine images.
When facing complex remote sensing images, they did not do well. On the contrast, with the above
measures adopted, our proposed algorithm is more suitable for remote sensing target detection than
other state-of-the-art target detection algorithms. In further work, multi-receptive fields for the feature
extraction of the network will be researched to boost the performance of remote sensing target detection.
In addition, the latest version of YOLO: YOLO-V4 [55] has been proposed and this will be researched
in further work.
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CNN Convolutional Neural Network
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RPN Region Proposal Network
FPN Feature Pyramid Network
ResNet Residual Network
DenseNet Densely Connected Network
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