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Abstract: Received signal strength indicator (RSSI)-based positioning is suitable for large-scale
applications due to its advantages of low cost and high accuracy. However, it suffers from low
stability because RSSI is easily blocked and easily interfered with by objects and environmental
effects. Therefore, this paper proposed a tri-partition RSSI classification and its tracing algorithm
as an RSSI filter. The proposed filter shows an available feature, where small test RSSI samples
gain a low deviation of less than 1 dBm from a large RSSI sample collected about 10 min, and the
sub-classification RSSIs conform to normal distribution when the minimum sample count is greater
than 20. The proposed filter also offers several advantages compared to the mean filter, including
lower variance range with an overall range of around 1 dBm, 25.9% decreased sample variance, and
65% probability of mitigating RSSI left-skewness. We experimentally confirmed the proposed filter
worked in the path-loss exponent fitting and location computing, and a 4.45-fold improvement in
positioning stability based on the sample standard variance, and positioning accuracy improved by
20.5% with an overall error of less than 1.46 m.

Keywords: trilateral indoor positioning; RSSI filter; RSSI classification; stability; accuracy

1. Introduction

With widespread Wi-Fi, Bluetooth (iBeacon), and smart mobile terminal deployment, received
signal strength indicator (RSSI)-based indoor positioning technology has attracted research attention
due to its advantages of low complexity, low cost and high accuracy [1,2]. However, the received
signal strength (RSS) is easily blocked and easily interfered with by objects and environmental effects.
These influences usually increase RSSI variance; thus, RSSIs vary sharply over time even when the
actual signal strength remains constant. The variation reduces accuracy and stability for an RSSI-based
indoor positioning system (IPS) [3–5]. Many assisted and combined technologies were proposed
to achieve higher accuracy, e.g., pedestrian dead reckoning (PDR), computer vision, space-scenario,
and artificial intelligence techniques [1,4]. However, fundamentally, dealing with RSSI is a crucial step
during the whole IPS process.

RSSI is environment-dependent. Therefore, it is significant to filter the raw RSSIs before substituting
them into the positioning process. Many RSSI purification technologies such as the Gaussian filter [6],
Kalman filter [7], and particle filter [8,9] are typically designed to mitigate either the linear or non-linear
noise through smoothing. Still, they may not effectively deal with the ever-changing dynamics of
the indoor environment [10] and have left-skewed distributions [11]. The mean filter [12] is widely
accepted because it has similar accuracy and anti-interference performance, but has less burden in
filtering computation [13,14]. Besides smoothing, RSSI screening is another effective filtering method,
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e.g., by selecting the max N RSSIs (N = 13 is optimal) [13], and the least variance RSSIs over time [15].
Importantly, RSSI classification is also an effective filtering method, especially in combination with
clustering algorithms for RSSI filtering and singular RSSI tracing [16,17].

RSSI-based IPS is generally divided into two categories: trilateration-based IPS and fingerprint-
based IPS [10,18,19]. The fingerprint-based IPS [20–22] gets more concern in terms of the number
of references retrieved, where the number is 1,910,000 vs. 30,000 from Google Scholar. It also gains
positive effect by using unsupervised machine-learning algorithms to reduce the data dimensionality,
and fingerprint matching calculations required [23]. Meanwhile, the trilateration-based positioning
system is widely applied in outdoor environments [24,25]. However, it faces challenges in indoor
environments, achieving 3–5 m accuracy without assistive technology and device, and lower stability [3].
The trilateration-based IPS positioning is easy to understand and easy to construct. Usually, RSSI-based
trilateration IPS is undertaken in two main steps: distance mapping and position computation [10].
The distance between the unknown position sensor and the known position sensor anchor is obtained
by some RSSI propagation model [26]; its accuracy depends on signal transmission anchor, path-loss
exponent in the RSSI propagation model, and RSSI sampling, etc. [10,13]. Based on this, the unknown
location is obtained by trilateration methods such as least square and maximum likelihood [4,10].

This paper will propose a new filtering technique to play a role in the propagation parameter fitting
and the RSSI sampling purification, to improve RSSI-based IPS accuracy and stability, particularly
for trilateration-based positioning, considering that accuracy and stability are equally important. The
overall accuracy may diminish due to energy consumption [27,28], and stability may significantly
influence the user experience and application promotion.

The main contributions of this study are as follows:

(1) We propose a tri-partition classification of RSSIs, considering that the interference effects are
finite and unambiguous, increasing and decreasing while the interference sources are multiple
and fuzzy. And we also propose a clustering algorithm to trace the tri-partition classification
quantitatively and seek the partition distribution centers, helping to reveal the interference and
judge whether the sun-classification conforms to normal distribution.

(2) We take the proposed algorithm as an RSSI filter and discuss its work mechanism. And we infer
that it is feasible by analyzing the features in terms of sample count and deviation and advantages
compared to the mean filter.

(3) We verify that the proposed filter works in path-loss exponent fitting and location computing,
and analyze the improvement of IPS it yields.

The remainder of this paper is arranged as follows. In Section 2, we review RSSI-based trilateration
positioning technologies and RSSI filters. We detail the proposed RSSI filter based on an RSSI
classification and tracing algorithm in Section 3. In Section 4, we analyze the filtering performance,
including features adapted to real-time IPS and advantages over the mean filter. Section 5 introduces a
test to examine the positioning performance using the proposed filter and compares its performance
with the mean filter. Finally, in Section 6, we summarize and conclude the paper.

2. Literature Review

2.1. Received Signal Strength Indicator (RSSI)-Based Trilateration Indoor Positioning System (IPS)

Trilateration-based positioning technology is easily understood and widely used in the positioning
of pedestrians and robots and things [1–3]. In the method we should know the position of the anchors
(reference nodes) as (x1, y1), (x2, y2), . . . , (xn, yn), and their distances from the target node, which is
calculated by the RSSI-distance mapping, d1, d2, . . . , d3. If we assume the target node’s coordinates as
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(x, y), then the essential geometric functions as follows. When the anchors are more than 4, the least
square and maximum likelihood [4,10] are used to calculate the target node’s optimal coordinates.

(x1 − x)2 + (y1 − y)2 = d1
2

(x2 − x)2 + (y2 − y)2 = d2
2

. . .

(xn − x)2 + (yn − y)2 = dn
2

(1)

The positioning complexity is partly to know the anchor points’ location in advance, especially
when anchors change and a lot of update work required. The difficulty is that RSSI-based trilateration
techniques depend on an accurate estimation of distance by RSSI-distance mapping. RSSI is a function
of distance and is generally affected by the environment and any changes therein. Usually, researchers
use the following simplified propagation model to measure RSSI (Formula 1) and map RSSI to distance
(Formula 2) [26,29,30]:

ρ = α− 10β log(d) (2)

d = 10((ρ−α)/(10∗β)) (3)

where d is the distance from the current position to some beacon, ρ is the RSSI at the current position,
α is the RSSI at some referenced distance (usually 1 m), β is the path-loss exponent, and the parameters
α and β are obtained to adapt to different sensors and environments; the path-loss exponent β generally
has a value in the range of 1.6–1.8 in an indoor environment [26,31,32]. More importantly, it is necessary
to fit the path-loss exponent according to the actual environment in which RSSIs are collected [33,34].
These parameters should be calculated again when a target node moves across the boundary of two
different environments [34], even be constantly updated if necessary [35]. Furthermore, the piecewise
fitting and min–max method are proposed for local adaption to the real environment, 4 m and 8 m are
the breakpoints, and the curvatures of different sections are noticeably different [15,34,36].

Accuracy is the most crucial performance metric of the positioning system. It is related to
devices and its effective coverage. Wi-Fi and iBeacon belong to high-frequency signals, but the RSSI
performance received is also different due to the difference in transmitting power and antenna angle.
For example, iBeacon, particularly the loss of packets, is serious for the interval beyond 10 m [10,15,36].
The deployment density is also computing- and maintenance-cost related. When the anchors’ density
is 0.27 nodes/m2, localization estimation error can be decreased to 1.5–2 m [37]. However, increasing
the number of anchor nodes does not result in higher average accuracy, and with more than 50 anchors,
the average accuracy declines [26]. Meanwhile, paper [38] proposes a sensor deployment method
based on wireless sensor network topology optimization, and [39] suggests a novel technique related
to pedestrian density, gaining an accuracy of 1.8–3.9 m.

Considering the overall accuracy may diminish due to energy consumption [27,28], that accuracy
and stability are equally important, and stability may significantly influence the user experience and
application promotion. This paper’s core contribution is to adopt the same positioning method without
increasing the calculation amount of positioning, which reflects the function advantages of proposed
classification and filtering in this paper.

2.2. RSSI Filtering Technologies

Raw RSSIs measurement is related to the parameter fitting and distance mapping process, and play
a decisive role for IPS performance [33]. Compared with the mean filter [11], Kalman filter [7], particle
filter [8,9], least-squares estimator [40,41], and maximum-likelihood estimator [42] have advantages in
terms of accuracy but are computationally expensive. They use a moment before estimation and the
current observations to update the state variables’ estimate, while the mean filter just takes the average.
Thus, the mean filter is widely recommended because it has similar accuracy and anti-interference
performance [11]. Considering their relatively small computational overheads and the fact they can
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be used in a real-time context, the rolling mean filter, exponential moving mean filer, and moving
median filter have been discussed [12]. However, these filters are typically intended to mitigate these
influences by smoothing and could suffer from left-skewed distributions caused by RSSI multipath
propagation [15].

RSSI screening is another effective filtering method based on analyzing the spatial resolution of
the signal strength and RSSI signal characteristics under different scenarios. Gaussian filter [6] selects
the high RSSI probability RSSIs and takes the average value as filter results, lowers the influence
of the small probability and interference over the measurement. An algorithm using the maximum
RSSI average has been proposed and suggests that N = 13 is optimal [13]. Relative to selecting the
maximum, [15] selected the least variance RSSIs over time, arguing that the normal variances are
not dramatic. Based on dichotomy, Study [16] and [17] propose an RSSI classification to distinguish
singular RSSIs from normal path-loss RSSIs. Paper [17] proposes a k-means clustering algorithm
tracing the rating.

Applying artificial intelligence (including statistical inference methods) for RSSI processing is
a new trend, e.g., using a k-means clustering algorithm for singular RSS tracing [22] and filtering,
and RSSI fingerprint matching [23,24]. Moreover, support vector machine (SVM) [43], artificial neural
network (ANN) [44,45] and deep learning [46] have been proposed to aid RSSI purification and high
positioning accuracy. However, in indoor environments, all of the above algorithms still face challenges
of spatial ambiguity, RSSI instability, and RSSI’s short collecting time per location [47,48].

This paper will propose a three-classification and tracking method to explore its distribution
center instead of the mean center based on the classification idea and unsupervised learning algorithm.
More importantly, we will discuss the filtering performance under the conditions of small samples and
small sampling time.

3. RSSI Classification and Tracing

3.1. Tri-Partition RSSI Classification

Environmental conditions, scenario changes, anchor deployment, transmission power,
and interferences between anchor nodes can affect the RSSI values. Furthermore, it is challenging
to determine antenna gains [10]. However, the actual effects can be summarized as increasing and
decreasing, so unlike the dichotomy, we propose a tri-partition of RSSIs, as shown in Figure 1.
We classify RSSI samples into three collections:

1. The decreased collection (DC) represents singular weakened RSSIs such as blocked and
reflected signals.

2. The normal collection (NC) represents normal path-loss and fading RSSIs.
3. The increased collection (IC) represents singular enhanced RSSIs caused by transmitting equipment

such as antenna gained power or transmitting power mutation.

The tri-partition can help with the quantitative analysis of the RSSI. Tracing the item count of
sub-classification can reveal that the subsequent positioning is dependable or not, where NC RSSIs
do not conform to normal distribution means more significant errors. Thus, it helps select different
path-loss parameters to adapt to the environment.
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3.2. RSSI Tracing Algorithm

We propose an RSSI tracing algorithm based on k-means clustering to determine the partition and
its distribution center. The proposed algorithm considers the RSSI sample (R) to be a one-dimensional
collection. It uses the absolute value of RSSI and sub-classification center subtraction as the clustering
factor, takes the maximum RSSI as the initial center of the IC, the minimum RSSI as the initial center of
the DC, the mean RSSI as the initial center of the NC, and then defines the assistant function MIN(R)
to obtain the minimum RSSI from R, the function MAX(R) to obtain the maximum RSSI from R,
and the function AVERAGE(R) to obtain the mean value from R. The algorithm steps are as follows
Algorithm 1:

Algorithm 1. Sub-Classification Tracing.

Input: R = {RSSI1, RSSI2, . . . , RSSIn}//the collected RSSI samples
Output: NC, IC, DC

Define://initial the center of IC, NC, and DC
IV = MAX(R), NV = AVERAGE(R), and DV = MIN(R)
ICT = φ, NCT = φ, and DCT = φ //temporal collections
TD = ID = ND = DD = 0.0 //temporal values.

Classify:
For each (RSSIi ∈ R){
//calculate its distance to IV, NV, and DV
ID = abs (IV- RSSIi)

ND = abs (NV- RSSIi)
DD = abs (DV- RSSIi)
//select the minimum distance
TD = MIN ({ID, ND, DD})
//add RSSIi to sub-classification
If (TD= =ID)
IC = IC + { RSSIi }
Else if (TD= =ND)
NC = NC+{ RSSIi }
Else
DC = DC + { RSSIi }
}
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Judge:
//judge the change of sub-classification
If (ICT = = NCT = = DCT = = φ){

ICT = IC
NCT = NC
DCT = DC
}

GOTO (Reset)
//if convergence, exit

If (ICT = = IC and NCT = = NC and DCT = = DC
GOTO (Exit)
Else {

ICT = IC
NCT = NC
DCT = DC
}

Reset: //reset the sub-classification center
IV = AVERAGE (IC)

NV = AVERAGE (NC)
DV = AVERAGE (DC)
GOTO (Classify)

Exit: //deal with φ

If (NC = = φ) {
TD = (ID + DD)/2
NC+ = {TD}
}

EXIT(-)

where NC equals φ in the Algorithm (1) means that sample R has a polarization distribution,
and partition NC is affected by substantial RSSI deviation from reality. When we set the mean value as
a new RSSI, the whole count will increase by one each time.

3.3. Apply to Trilateration-Based Positioning

Trilateration-based IPS includes many steps [10,13], here we divide these steps into two stages:
offline and online. The offline stage aims to adapt the path-loss exponent, including anchor deployment,
RSSI collecting, raw RSSI measurement, and path-loss exponent fitting (may fit as needed during the
online stage [15,34]). The online stage aims to optimize positioning, including real-time RSSI collecting,
raw RSSI measurement, distance mapping, coordinate calculation, and positioning optimization and
correction. This paper adopts the proposed tracing algorithm as an RSSI filter to re-establish the raw
RSSI measurement for the path-loss exponent fitting (offline) and distance calculating (online) steps,
as shown in Figure 2.

Figure 2 shows the application mechanism that focuses on the sample count and the partition item
count. The minimum sample count is related to real-time positioning, as RSSI’s shortest collecting time
per location usually less than 1 s. The partition item size is related to influences when the tri-partition
counts conform to a normal distribution, indicating that the filtering result is reliable. For the filtering
process, the partition center is the filtering result. Next, we will discuss the minimum sample and
performance to reveal the availability of the proposed filter.
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4. Feasibility and Performance as an RSSI Filter

To examine the proposed filter’s feasibility and performance advantages, we collected a large RSSI
sample (named Sample ALL) over approximately 10 min using iBeacon as the signal sender. And we
defined six type sample groups, named Sample X (X = 10, 20, 30, 40, 50, 60). Each sample group had 10
sample arrays, and each array had the same count RSSIs. The sample array data structure is as follows:

Test Sample = {Arrayi,j, I = 10, 20, . . . , 60, j = 1, 2, . . . , 10} (4)

where i represents different groups, and j represents different arrays in the current group. For example,
Array30,1 represents that the collection is in group 30, and the collection’s item count is 30.

In preparation, we cut the sample ALL into each test sample sequentially and continuously
according to the sample type, and then filter each test sample and the sample ALL. Figure 3 shows the
filtering results, where each node represents a filtering result of some Test Sample. For each type of
sample, ten filtering tests are conducted in sequence, with a total of 60 filtering times. Figure 3 also
shows Sample 10 has the max deviation from the Sample ALL, and with the sample count is larger
than 20, the gap range gradually stabilized.
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4.1. Features of the Proposed Filter

4.1.1. Low Deviation

RSSI fluctuation is an inherent issue for wireless signals, hence reducing the variance range for
each sample count is essential to improve the accuracy and stability [49,50]. Using the sample ALL as
the comparative standard, we measured the deviation and variance of each test sample, which is as
shown in Table 1. It summarizes the deviations from all samples, and together with Figure 3 shows that
the proposed filter achieves lower variance. Sample 10 and Sample 20 have the highest variation with
a maximum deviation range of less than 2.5 dBm and the mean deviation range of less than 1.44 dBm.
When the test sample count was greater than 20, the maximum deviation range was less than 1.64 dBm,
and the mean variation was below 0.92 dBm. As experiments have confirmed that a change of 1 dBm
represents 0.08 m at some distance [13], therefore, the filter obtained a significantly lower fluctuation,
and the test sample gains a similar performance to the sample. ALL, especially when the sample size is
more significant than 20.

Table 1. Low deviation feature of each sample group compared to sample ALL.

Sample Type Max Positive
Deviation (dBm)

Max Negative
Deviation (dBm)

Mean Absolute
Deviation (dBm)

Sample 10 1.99 2.51 1.44
Sample 20 2.22 1.572 0.89
Sample 30 1.36 1.17 0.83
Sample 40 1.64 0.87 0.70
Sample 50 1.53 1.56 0.92
Sample 60 1.36 1.17 0.83

4.1.2. Minimum Sample Count

While RSSIs are Gaussian distribution and random, the time of sampling can affect the collected
RSSI count and positioning quality [10,51]. Most current IPSs and RSSI analyses take a long-time interval
for sample collecting, such as 1–3 or 3–6 min, but it is a gap from second-level real-time requirements.

By counting the items of each sample, as shown in Table 2, the Sample 10 had an item count of
103 when the expected count was 100, and sample 20 s item count was 201 when the expected count
was 200, indicating that the NC in Sample 10 and Sample 20 generated φ during filtering. Further
calculating the sub-classification distribution rate, as shown in Figure 4, the tri-partition collection
items conform to the normal distribution when the sample count is over 20. Therefore, the proposed
filter obtained a minimum sample count of 20 suitable for the positioning process.

In summary, the proposed filter has such features; the small test sample gains a similar performance
to the larger sample ALL, and the sun-classification conforms to normal distribution when the sample
count is larger than 20. Therefore, the proposed filter adapts to real-time positioning, for it has a lower
deviation, and the minimum sample count is 20.

Table 2. Items count and rate statistics for sample groups. DC, NC, IC represnts the RSSI count of the
decreased, normal, and increased collection.

Sample Type Items Count DC Rate NC Rate IC Rate

Sample 10 103 28% 32% 38%
Sample 20 201 21% 60% 19%
Sample 30 300 26% 51% 23%
Sample 40 400 25% 55% 20%
Sample 50 500 25% 50% 25%
Sample 60 600 19% 57% 23%
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4.2. Advantages over the Mean Filter

Using the same RSSI test sample from the upper section, Figure 5 shows the filtering results
comparison by the proposed filter and the mean filter, respectively, where each node represents a
filtering result of some test sample. For each type of sample, 10 filtering tests are conducted in
sequence, with a total of 120 filtering computations. Based on the filtering performance, we discuss the
advantages associated with reductions in variance below.
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4.2.1. Reducing Variance over Time

The comparisons use variance range and sample variance (SV, calculated using the sample
standard deviation function in EXCEL) to measure the proposed and mean filters’ performance.
As Figure 5 shows the filtering result, Table 3 shows the variance comparisons in detail. The proposed
filter achieves a smaller maximum variance range than the mean filter, and a lower SV when the sample
count is greater than 10.

Table 3. Comparison between the mean and proposed filters in terms of variance range and sample
variance over time. SV = sample variance.

Sample
Type

Mean Filter Proposed Filter

Max
Range

Min
Range

Average
Range SV Max

Range
Min

Range
Average
Range SV

Sample 10 3.2 1.0 1.96 2.28 3.9 1.96 2.25 2.68
Sample 20 3.46 0.15 1.69 2.28 3.08 0.03 1.11 1.54
Sample 30 2.23 0.06 0.66 1.03 1.77 0.01 0.69 0.95
Sample 40 1.62 0.1 0.76 0.96 1.32 0.07 0.67 0.82
Sample 50 1.96 0.3 0.82 1.03 1.25 0.01 0.65 0.83
Sample 60 5.35 0.71 2.12 2.77 2.53 0.13 1.12 1.44

Overall, the average maximum variance for the proposed filter was 2.31 dBm, while for the mean
filter, this was 2.97 dBm. The average minimum deviation for the proposed filter was 0.37 dBm,
while the mean filter was 0.39 dBm. The average variance for the proposed filter was 1.08 dBm,
while the mean filter was 1.34 dBm, and the average SV for the proposed filter was 1.38 dBm, while the
mean filter was 1.73 dBm. Thus, the proposed filter resulted in a lower and more stable variance.

4.2.2. Reducing Left-Skewness

Traditional RSSI filtering commonly produces left-skewed distributions [11,26,50], i.e., the returned
value is lower than the actual value. Table 4 shows that the proposed filter mitigates this problem,
achieving a 65% superior performance in terms of skewness reduction. The left 35% which did not
mitigate skewness; they had an average of 96.7% deviation at less than one dBm and an average of
78.9% deviation at less than 0.5 dBm, so the proposed filter successfully reduced skewness.

Table 4. Skewness reductions by comparisons among filters.

Sample Type Mitigating Others Less 1 dbm Others Less0.5 dbm

Sample 10 70% 100% 66.7%
Sample 20 50% 100% 80%
Sample 30 70% 100% 100%
Sample 40 70% 100% 66.7%
Sample 50 80% 100% 100%
Sample 60 50% 80% 60%

In summary, the proposed filter shows feasibility because it has significant low variance and a
minimum sample of 20 properties and mitigating advantages over the mean filter which is vastly used.

5. Positioning Improvement

5.1. Experiment Design

Figure 6 shows the 4× 4 m testbed used to investigate the proposed filter’s positioning performance.
The experiment selects (1,1), (1,3), and (3,3) as test points, deploys four iBeacon (SEEKCY s1u) sensors
as RSS senders at the grid corners and selects an android mobile phone (MI max2) as the RSS receiver.
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To seek reliable positioning performance under real-time, we set the minimum sample count of 30 each
time. The experimental steps are as follows.Sensors 2020, 20, x FOR PEER REVIEW 12 of 17 
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1. Fit RSSI propagation model factors,

a. collect RSSI samples at each fixed distance (1 m, 2 m, . . . , 10 m),
b. filter each sample using the proposed and mean filters, and
c. fit the propagation model according to Formula (2).

2. For each positioning process,

a. filter RSSI samples using the proposed and mean filters,
b. perform traditional trilateral positioning, and
c. compare the positioning results.

3. Repeat step (2) for the next test process.

5.2. Experiment Results

5.2.1. Propagation Factors

Using MATLAB Fitting Tools and a similar fitting process in paper [14,15], Table 5 shows the that
α and β are distinctly different. It is foreseeable that the distance mapping process will still make a
difference using the factors.

Table 5. The simplified RSSI propagation model fitting.

Filter Filtered RSSI at 1 m (α) Fitted Path-Loss Parameter (β)

The proposed filter –80.14 dBm 4.613
The mean filter –83.82 dBm 2.326

The α is as RSSI sample filtering result at 1 m, and the b is as the fitting result of collected
RSSI samples at each fixed distance from 1 m to 10 m, by the proposed filter and the mean filter.
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Considering studies have confirmed that many packets may mass lose when the measured distance
exceeds 10 m [36,52].

5.2.2. Positioning Results

Table 6 shows a total of 24 positioning coordinates. Figure 7 shows the positioning results and the
relative positions of these test points. The proposed filter achieves a significantly compact location
distribution at each test point, whereas the mean filter has a relatively loose distribution, with point
(3,1) exhibiting the highest accuracy.

Table 6. Positioning results coordinates at point (1,1), point (1,3) and point (3,1).

Test Point
Positioning Results Using

the Mean Filter
Positioning Results Using

the Proposed Filter

Coordinate x Coordinate y Coordinate x Coordinate y

(1,1)

2.82 1.02 2.69 1.79
2.56 0.77 2.56 1.63
4.38 2.83 2.51 1.66
2.63 0.87 2.74 1.82

(1,3)

2.84 2.25 2.87 2.25
4.19 2.46 2.97 2.25
2.80 2.21 2.89 2.27
4.38 2.10 3.06 2.09

(3,1)

2.48 0.80 2.56 1.18
2.54 0.51 2.55 1.15
2.54 0.56 2.54 1.14
2.42 1.01 2.49 1.22
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5.3. Improvement Analysis

5.3.1. Accuracy

Figure 8 shows the calculated positioning errors in sequence. Based on the accuracy changes at
each test point, errors by the proposed filter change little, while the errors by the mean filter change
significantly. Unfortunately, despite the proposed filter gains in the overall improvement, it does not
improve every positioning, and about 58% have higher accuracy compared to the mean filter.

In detail, Table 7 shows the comparison of the proposed filter and the mean filter in accuracy
promotion. For each test point, the proposed filter achieves smaller maximum and average errors
than the mean filter, and the positioning accuracy is improved by approximately 20% for each test
point. The overall average error is 1.46 and 1.84 m for the proposed and mean filters, respectively,
and the overall average accuracy improvement is 20.5%. Still, it can be concluded that even if the
error by the proposed filter is larger, the difference between the errors by the mean filter is still small,
this phenomenon is consistent with the mitigation performance analysis in chapter 4.
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Figure 8. Positioning error comparison with the proposed filter and the mean filter at point (1,1), point
(1,3) and point (3,1).

Table 7. Positioning errors and average accuracy promotion.

Test Point
Positioning Errors Using

the Mean Filter
Positioning Errors Using

the Proposed Filter
Average
Accuracy

PromotionMaximum Minimum Average Maximum Minimum Average

(1,1) 3.84 1.57 2.22 1.92 1.64 1.78 19.8%
(1,3) 3.5 1.97 2.68 2.25 2.01 2.1 21.6%
(3,1) 0.67 0.56 0.61 0.55 0.48 0.51 16.0%

5.3.2. Stability

Using sample standard deviation (SSD) to measure positioning stability, the SSD will be calculated
by the following formula:

SSD = STDEV(R)/AVERAGE(R) (5)

where STDEV (–) is the sample standard deviation function in EXCEL, and AVERAGE (–) is the mean
function in EXCEL; R is the positioning error of each test point.

Table 8 shows that the proposed filter achieves smaller SV and closer average positions for each
test point than the mean filter. The positioning stability is 6.45, 5.82, and 1.08-fold better for test points
(1,1), (1,3), and (3,3), respectively, for the proposed filter compared with the mean filter. The overall
average stability is improved 4.45-fold.

Table 8. Positioning stability and increase for the proposed filter vs. the mean filter. SSD represents the
sample stand deviation and calculated by the Formula (5).

Test Point
Positioning Stability Using

the Mean Filter
Positioning Stability Using

the Proposed Filter
SSD

Promote

STDEV(R) AVERAGE(R) SSD STDEV(R) AVERAGE(R) SSD (–fold)

(1,1) 1.089 2.215 0.491 0.136 1.775 0.077 6.45
(1,3) 0.81 2.675 0.303 0.109 2.1 0.052 5.82
(3,1) 0.05 0.61 0.081 0.037 0.5 0.05 1.08

In summary, the proposed filter achieved a 20.5% improvement in positioning accuracy, with an
overall error of less than 1.46 m and a 65% probability of higher accuracy. Significantly, the proposed
filter gained a 4.45-fold improvement in positioning stability.

6. Conclusions

Considering RSSI is easily blocked and affected by things and the environment, RSSI-based
IPS faces the challenge of an unfortunate application effect. To improve the accuracy and stability,
particularly for trilateration-based positioning, we propose a tri-partition RSSI classification as the
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decreased RSSIs, normal RSSIs, and increased RSSIs, and proposed a novel RSSI tracing algorithm
based on k-means clustering as an RSSI filter.

The proposed filter adapts to the real-time IPS, for it shows a characteristic achieving a lower
variance (<1 dBm) when the minimum sample size is greater than 20. In contrast, traditional RSSI
variation can exceed 10 dBm [26]. The proposed filter offers several advantages compared to the
mean filter, including lower variance range and sample variance, and 65% probability to mitigate RSSI
left-skewness. Thus, the proposed filter is feasible in real-time positioning.

We design a trilateration-based positioning test within a room. The RSSI propagation model
fitting achieves a difference path-loss exponent where 4.613 by the proposed filter while 2.326 by the
mean filter. Based on this, the positioning results confirm a 20.5% improvement in positioning accuracy
and 4.45-fold improvement in stability for the proposed filter compared to the mean filter. Thus, the
proposed filter significantly outperforms traditional mean filtering, providing an excellent option for
large-scale IPS improvement.
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