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Abstract: In this study, an electronic nose (E-nose) consisting of seven metal oxide semiconductor
sensors is developed to identify milk sources (dairy farms) and to estimate the content of milk
fat and protein which are the indicators of milk quality. The developed E-nose is a low cost and
non-destructive device. For milk source identification, the features based on milk odor features from
E-nose, composition features (Dairy Herd Improvement, DHI analytical data) from DHI analysis and
fusion features are analyzed by principal component analysis (PCA) and linear discriminant analysis
(LDA) for dimension reduction and then three machine learning algorithms, logistic regression (LR),
support vector machine (SVM), and random forest (RF), are used to construct the classification model
of milk source (dairy farm) identification. The results show that the SVM model based on the fusion
features after LDA has the best performance with the accuracy of 95%. Estimation model of the
content of milk fat and protein from E-nose features using gradient boosting decision tree (GBDT),
extreme gradient boosting (XGBoost), and random forest (RF) are constructed. The results show that
the RF models give the best performance (R2 = 0.9399 for milk fat; R2 = 0.9301 for milk protein) and
indicate that the proposed method in this study can improve the estimation accuracy of milk fat and
protein, which provides a technical basis for predicting the quality of milk.
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1. Introduction

Milk contains more than 100 chemical ingredients such as water, fat, phospholipids, proteins,
lactose, inorganic salts, and other primary compounds [1,2]. The composition of milk is very complex.
The mixture of lower fatty acids, acetones, acetaldehydes, carbon dioxide, and other volatile substances
affects the odor of milk. Among them, sulfide is the main component of fresh milk odor. The flavor
substances in milk are influenced by many factors, mainly produced by four forms, one of which is the
reaction of milk fat, milk protein, and carbonic acid, etc. Triacylglycerols, fatty acids, diacylglycerides,
saturated/polyunsaturated, and phospholipids in milk fat are directly related to the flavor of milk [3,4].
The degradation products of protein, fat, and lactose in milk are fatty acids, sulfur-containing
amino acids, thiamine, etc. The decomposition process of these substances will produce volatile
compounds [5–7]. Due to the different feed and growth environment of the cows from each dairy
farm, the odor of milk produced is quite different [8]. The content of milk protein and milk fat
plays a significant role in milk quality evaluation. The process of degradation for milk fat and milk
protein or the interaction between derivatives can affect the milk’s odor compounds [9]. Therefore,

Sensors 2020, 20, 4238; doi:10.3390/s20154238 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-9745-664X
http://www.mdpi.com/1424-8220/20/15/4238?type=check_update&version=1
http://dx.doi.org/10.3390/s20154238
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 4238 2 of 14

the establishment of the milk detection model is of considerable significance to the identification of
milk source and improvement of milk quality.

The traditional method to identify milk’s geographical origin is through physical tracking methods
such as recording by experimenters. In recent years, many chemical analysis methods have been used
to distinguish the origin of milk, such as the stable isotope ratio analysis method [10,11], the trace
element content analysis method, and the nuclear magnetic resonance method [12]. At present,
domestic and foreign research by near-infrared spectroscopy [13], microorganism physicochemical
analysis [14,15], and DHI laboratory testing have achieved excellent results in quantitative detection of
milk components [16]. However, these methods still have the disadvantages of high cost, low detection
efficiency, vulnerability to damage, and cannot realize real-time detection of milk products. Therefore,
it is essential to find a fast and efficient non-destructive testing method.

As a new gas detection and analysis technology, E-nose has reliable portability and simple
operation, making food non-destructive testing easier [17–19]. The E-nose is a low cost digital electronic
device that can mimic human olfaction. It can quickly evaluate complex, volatile gas mixtures and
has been used in milk recognition, differentiation, and detection [20,21]. Bougrini et al. [22] used a
hybrid E-nose and a voltammetric E-tongue to distinguish different pasteurized milk brands and their
storage day. Tong et al. [23] analyzed the concentration of volatile substances in pre-heated skimmed
milk using an E-nose and found that there was a good relationship between volatile compounds and
sensory attributes through partial least squares regression (PLSR) model analysis. Although E-nose has
been applied to the detection of dairy products, its performance still needs improvement. Analyzing
E-nose signals using advanced machine learning techniques would enhance detection and estimation
performance [24].

Therefore, this study proposes a fast identification method based on E-nose technology and
machine learning techniques for milk source (dairy farm) identification and milk quality estimation.
The developed E-nose system is mainly composed of a gas sensor array consisting of seven metal
oxide semiconductor (MOS) sensors (FIGARO, Osaka, Japan) and a data acquisition module consisting
of Arduino hardware and software modules. The collected gas information is transmitted to the PC
through analog-to-digital conversion. After the data are preprocessed, pattern recognition algorithms
are used for modeling to achieve the detection target. Based on three different classification algorithms:
logic regression (LR), support vector machine (SVM), and random forest (RF), the milk source
identification models are developed and compared. Gradient boosting decision tree (GBDT), extreme
gradient boosting (XGBoost), and RF are used to construct models to estimate the content of milk fat and
milk protein by utilizing historical data from E-nose measurements and DHI analytical measurements.

2. Materials and Methods

2.1. The Developed E-Nose

The developed E-nose is an electronic system that mimics the animal’s olfactory organs and uses
sensor array responses to identify odors. The working process is as follows: firstly, the gas sensors
of the sensitive element react with the sample gas, and then the response signal is transmitted to PC
through analog-to-digital (A/D) converter, after data preprocessing, the model is built in combination
with pattern recognition algorithm to complete detection. The E-nose developed (length: 30 cm, width:
20 cm, height: 20 cm) in this study is composed of a gas sensor array module, signal acquisition and
data acquisition module, and signal processing and pattern recognition module, as shown in Figure 1.
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Figure 1. Structure diagram of E-nose system. Figure 1. Structure diagram of E-nose system.

The E-nose device designed in this study is divided into two layers. The upper layer is for gas
collection, gas and sensor reaction, which includes transmission pipes, filter devices, intake pumps,
exhaust pumps, and a gas chamber containing gas sensor arrays. Moreover, the upper wall is provided
with two power ports and two air holes, respectively. The power ports are for providing power to the
air pump. The air holes are divided into air intake holes and exhaust holes connected to the sampling
test tube or the external environment. The lower layer is for the collection of response signals and data,
including the Arduino development board and expansion board, and the USB connection port is set on
the lower layer wall to be responsible for power supply and data transmission.

The sensitivity of each sensor in the array to the measured gas is different, so the system uses
its response resistance value to identify the odor. In this study, the metal oxide semiconductor
(MOS) sensors are selected as the E-nose gas sensors because of its advantages of fast response speed,
high sensitivity, and strong stability. Ghasemi et al. [25] selected the E-nose device composed of TGS
(Taguchi gas sensor) 2600, TGS2610, TGS2620 (FIGARO, Osaka, Japan) sensors to classify different
types of cheeses. Sivalingam et al. [26] developed an E-nose prototype with an array of TGS 2620,
822, 813 (FIGARO, Osaka, Japan) sensors for real-time quality analysis of raw milk. Based on the
characteristics of sensors and the above applications, seven MOS sensors (FIGARO, Osaka, Japan)
were built into the E-nose gas sensor array. Table 1 shows the names of the gas sensors and the
corresponding sensitive substances.

Table 1. Gas sensor information in E-nose system.

No. Sensor Sensitive Substance

1 TGS2600 Polluting gas
2 TGS822 Volatile substances of alcohol and organic solvents
3 TGS2611 Methane gas
4 TGS826 Ammonia
5 TGS2602 Volatile organic compounds (VOC), benzene
6 TGS832 Freon gas
7 TGS2620 Alcohol, carbon monoxide, other volatile organic vapors

The sensitive element of the Figaro sensor is composed of SnO2 semiconductors. When the sample
volatiles enter the collection system from the sampling tube and contact the heated metal oxide sensor
array, the sensor resistivity G changes, and the ratio with the initial resistivity G0, G/G0 (relative
resistivity) changes accordingly. When the gas concentration becomes larger, G/G0 deviates from 1
(greater than or less than 1). If the gas concentration is lower than the detection limit or there is no
induction gas, it is close to or equal to 1.

The signal and data acquisition module uses Arduino hardware and software for design. In the
developed E-nose system, the Arduino functions are: (1) obtaining the response values of the sensors;
(2) processing data and communicating with the computer. The microcontroller on the development
board is programmed using the Arduino programming language, compiled into a binary file, and passed
to the microcontroller. Each sensor in the sensor array will digitally convert the response value to
different volatile substances through a multiplexer analog-to-digital converter (ADC) and store the
obtained data for subsequent computer analysis and identification and extraction of related features.
The processed digital signal is transmitted to the upper computer through the serial port and finally
presented on the serial port monitor.
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The signal processing and pattern recognition module in the E-nose system plays a decision-making
role. The original data from the sensors contain lots of complex information with high dimensions,
and most of it is useless. Therefore, before inputting the data into the pattern recognition system, it is
necessary to preprocess the original data, which mainly involves standardization processing, feature
selection, feature dimensionality reduction, and retain valid information. The pattern recognition
system can solve classification and regression problems by selecting different machine learning
algorithms for modeling. According to different detection targets, setting reasonable model parameters
can realize the binary classification problem and realize the multi-classification problem.

In addition, sample gas collecting and cleaning are realized by the gas collection system, which is
composed of three parts: filter, air chamber, and air pump. Activated carbon is used as a gas desiccant
to achieve gas filtration. The gas chamber is where the sample gas contacts and reacts with the sensor
and with strong sealing performance to ensure gas concentration. The air pump provides power for
gas transmission. The following parameter settings: cleaning time of 60 s, capture gas time of 90 s,
and gas flow rate of 200 mL/min (range: 10 mL/min–1.1 L/min).

2.2. Milk Samples

Milk samples from 10 cattle farms’ raw milk in Hebei province were collected. The test cows
to which the samples belong are lactating cows from 6 days postpartum to 6 days before milkless.
The initial screening of these samples was carried out. Samples with low liquid levels and sub-standard
temperatures were rejected. For DHI (Dairy Herd Improvement) machine detection, there will be a null
value phenomenon, and the interference value needs to be eliminated before the experiment. Finally,
100 milk samples from each of 10 cattle farms were taken in the same period time for DHI analysis and
E-nose measurement. In this study, three measurements for each milk sample were taken, and they
were averaged to reduce measurement error. The DHI test samples and the E-nose test samples are
the same.

2.2.1. DHI Analytical Data

The milk composition feature (DHI analytical data) from the DHI laboratory analysis uses
imported biochemical detection equipment, including milk composition analyzer, somatic cell counter,
fresh-keeping cabinet, and other facilities. Milk sample test temperature is 40 ± 2 ◦C. It includes 6 test
indicators: milk fat rate, protein rate, lactose rate, total solids, somatic cells (SCC), and urea nitrogen.

Milk fat contains linolenic acid, arachidonic acid, and various fat-soluble vitamins and phospholipids,
which are needed by the human body [27]. The content of fat and protein is an essential indicator
of evaluation for milk quality. In regular milk, the ratio of milk fat to milk protein is ranged from
1.12 to 1.30. If the value is too low, the cow may have rumen acidosis. The content of lactose in
milk is generally between 4.6% and 5%. Its value not only affects milk production but also relates to
rumen function. Cells are a collective term for macrophages, lymphocytes, and polymorphonuclear
neutrophils in milk. The number of somatic cells (SCC) is an indicator of the extent of cow mastitis
infection [28]. The number of SCC indicates the health status of cows’ milk, which is usually less than
50 × 104/mL. Urea nitrogen of milk is derived from the blood, ranging from 10 mg/dL to 18 mg/dL [29].
Excessive urea nitrogen content proves that cows are more likely to suffer from acidosis [30].

2.2.2. E-Nose Measurements

After heating in a 40 ◦C water bath, the sample gas is drawn. An amount of 20 mL of each milk
sample was extracted and stored in a 40 mL test tube, sealed and placed for 10 min to ensure that
the milk sample’s volatile matter filled the entire test tube. Before performing volatile gas capture,
the airway and air chamber of the E-nose were cleaned with fresh air to eliminate interfering gas.

The measuring probe of E-nose and the balanced pressure tube were simultaneously extended
into the headspace of the test tube. During the process of gas capturing, the filtered headspace gas
of the milk sample is sucked into the gas chamber by the gas collection system, and contacts and
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reacts with the sensors. Then, the response value increases and tends to turn into a steady state,
this process lasts for 90 s, and the gas flow rate is 200 mL/min. During the cleaning process, the filtered
air gradually removes the volatile gas, and the response value decreases and stabilizes to a constant
value, completing a sample measurement. This process lasts for 60 s. Three times for experiments were
performed per sample, and the results averaged to reduce experimental errors. The E-nose detection
process is shown in Figure 2. The obtained milk odor data are the relative resistivity ratios (G/G0) of
the sensor array under the sample gas and the pure air environment in the steady state.
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In this study, 10 different sources of milk (dairy farms) were selected and the volatile gas in
the milk samples was measured using an E-nose. A total of 1000 sample data after normalization
(Equation (1)) were used for model development, of which 800 samples were used as the training set
and the remaining 200 samples serve as the testing set.
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where X is the original data, X is the average of the original data, σ is the variance.
For the development of cattle farm classification models (or milk source identification models),

principal component analysis (PCA) and linear discriminant analysis (LDA) are used to reduce the
dimensions of model inputs. Three machine learning algorithms, LR, SVM, and RF, are then used to
construct the classification models.

For the development of milk fat content and protein content estimation models using E-nose
and DHI data, three nonlinear modeling algorithms, including GBDT, XGBoost, and RF, were used
and compared.

2.3.1. SVM

SVM is a supervised learning model that can perform pattern recognition, classification,
and regression analysis [31,32]. The principle of SVM is to find the separation hyperplane that can
correctly divide the classes in the training set and obtain the largest geometric distance. The objective
function of the SVM is as follows:
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where w and b are the SVM parameters, ξi is the classification loss of the ith sample point, φ(xi) is
the mapping function, C is the penalty parameter, x is the ith input sample, and n is the number of
training samples.

For nonlinear classification problems, the kernel (mapping) function in SVM can map samples
from the original space to high-dimensional space, making the samples linearly separable in the new
space. Among them, the most commonly used and the most effective is the radial basis kernel function
(RBF kernel):

K(x1, x2) = exp
(
−γ‖x1 − x2‖

2
)
,γ > 0 (3)

where x1, x2 are sample points of traing set; the parameter γ (gamma), defines the range of influence
for a single training example, with low values meaning ‘far’ and high values meaning ‘close’.

2.3.2. RF

Random forest is a crucial bagging-based ensemble learning method. It is composed of many
decision trees (CARTs). It can be used to solve classification and regression problems and has strong
anti-noise ability, can avoid overfitting. The procedure of developing an RF model is as follows: firstly,
m sample points are extracted from the training sample set S to form a new training subset; secondly,
a classification decision tree or regression model is constructed for each training subset, which is
obtained by randomly selecting k features among all features as split nodes; the output of the model is
the category (classification) with the highest number of votes or the average output (regression) of
each decision tree [33].

2.3.3. LR

Logistic regression is a supervised machine learning algorithm for solving classification problems.
The principle is to find the minimum value of the loss function to make the prediction function more
accurate, thereby solving the classification problem. The penalty term is a vital hyperparameter of the
LR model, and the solver parameter can optimize the loss function [34].

2.3.4. GBDT

Gradient boosting decision tree is an integrated boosting algorithm based on CART learner [35].
The purpose of its algorithm in each round of iteration is to minimize the loss function of the current
learner so that the loss function always decreases along its gradient direction, and the final residuals
approach 0 through continuous iteration, adding up all the tree results to get the final prediction.

2.3.5. XGBoost

Extreme gradient boosting algorithm is an improved version based on GBDT, which is not
sensitive to input requirements and is widely used in the industry. Compared with the general GBDT
algorithm, XGBoost uses the second derivative of the loss function about the function to be sought,
adds a regularisation term to prevent overfitting, and samples the attributes when constructing each
tree. It has fast training speed and high accuracy and fitting effect, etc. [36].

3. Results and Discussion

3.1. Response Curve and Radar Chart Analysis of E-Nose

Figure 3a–c shows the sample’s response curves in 90 s sampling for three measurements. During
the contact between the gas and the sensor surface, the ratio G/G0 (relative resistivity) keeps rising, and
finally reaches a steady state in about 60 s. Among the seven sensors, the responses of S1, S2, and S4
are significant.

Steady-state values of E-nose sensor responses (collected at 90 s) for one sample randomly selected
from each farm are used to produce a radar chart shown in Figure 3d, where each vertical axis represents
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a sensor. It can be seen from Figure 3d that the response values of sensor 1, sensor 2, and sensor 4
vary significantly with cattle farms. By observing the response curve and radar chart, the samples
of different farms are distinguishable. Therefore, milk from different cattle farms could be identified
based on E-nose measurement data.Sensors 2020, 20, x FOR PEER REVIEW 7 of 14 

 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

Re
sp

on
se

 v
al

ue
 ra

tio
 G

/G
0

time (s)

 S1  S2  S3  S4
 S5  S6  S7

 
(a) 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

Re
sp

on
se

 v
al

ue
 ra

tio
 G

/G
0

time(s)

 S1  S2  S3  S4
 S5  S6  S7

 
(b) 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

Re
sp

on
se

 v
al

ue
 ra

tio
 G

/G
0

time (s)

 S1  S2  S3  S4
 S5  S6  S7

 
(c) 

0.8

0.9

1.0

1.1

1.2

1.3

Sensor7

Sensor6

Sensor5 Sensor4

Sensor3

Sensor2

Sensor1

 No.1 Farm  No.2 Farm  No.3 Farm
 No.4 Farm  No.5 Farm  No.6 Farm
 No.7 Farm  No.8 Farm
 No.9 Farm  No.10 Farm

 
(d) 

Figure 3. Response curve and radar chart for E-nose data: (a–c) response curve of E-nose; (d) radar 
chart of E-nose. 

3.2. Milk Source (Dairy Farm) Identification 

In this study, the steady-state (90 s) value of the E-nose response is selected as the feature 
parameter of the E-nose and DHI analytical data as the composition of milk. A feature fusion method 
based on the milk component feature and odor feature is proposed to evaluate the identification of 
different cattle farms. During model construction, DHI analytical data, E-nose measurements, and 
fusion features are used as model inputs, respectively, to evaluate and compare model classification 
results. During data preprocessing, PCA and LDA are used to reduce the dimensions of the data for 
different features and retain valid information. Then milk source identification models are developed 
using support vector machine (SVM), random forest (RF), and logistic regression (LR) algorithms. 
The models are developed on the 800 samples of training data and tested on the remaining 200 
samples of testing data to verify the developed models. 

3.2.1. Results of Data Dimensionality Reduction 

The original DHI analytical data (six dimensions), the E-nose measurements (seven dimensions), 
and the DHI analytical and E-nose measurements fusion data (13 dimensions) were analyzed by PCA. 
The cumulative variance explanation rates of the first two principal components (PC) for these three 
cases are 99.908%, 95.96%, and 94.81%. Among them, PC1 and PC2 of DHI analytical data represent 

Figure 3. Response curve and radar chart for E-nose data: (a–c) response curve of E-nose; (d) radar
chart of E-nose.

3.2. Milk Source (Dairy Farm) Identification

In this study, the steady-state (90 s) value of the E-nose response is selected as the feature parameter
of the E-nose and DHI analytical data as the composition of milk. A feature fusion method based on the
milk component feature and odor feature is proposed to evaluate the identification of different cattle
farms. During model construction, DHI analytical data, E-nose measurements, and fusion features
are used as model inputs, respectively, to evaluate and compare model classification results. During
data preprocessing, PCA and LDA are used to reduce the dimensions of the data for different features
and retain valid information. Then milk source identification models are developed using support
vector machine (SVM), random forest (RF), and logistic regression (LR) algorithms. The models are
developed on the 800 samples of training data and tested on the remaining 200 samples of testing data
to verify the developed models.
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3.2.1. Results of Data Dimensionality Reduction

The original DHI analytical data (six dimensions), the E-nose measurements (seven dimensions),
and the DHI analytical and E-nose measurements fusion data (13 dimensions) were analyzed by PCA.
The cumulative variance explanation rates of the first two principal components (PC) for these three
cases are 99.908%, 95.96%, and 94.81%. Among them, PC1 and PC2 of DHI analytical data represent
99.9%, and 0.008% of the data variation respectively; PC1 and PC2 of E-nose measurements represent
88.38% and 7.58% of the data variation respectively; PC1 and PC2 of the fusion data represent 55.72%
and 39.09% of the data variation respectively.

Figure 4a–c shows the scatter plots in the principal component subspace, where the ten farms
are color-coded. It can be seen from Figure 4a that the farms are randomly distributed and cannot be
distinguished from the first two PCs of the DHI analytical data. Compared with Figure 4a, the first two
PCs of the E-nose measurements in Figure 4b show more grouping of the farms, but it is still impossible
to distinguish them. In Figure 4c, the first two PCs of the fusion data show more separations than the
other two cases.

The LDA method was used to reduce the dimensionality of the original data, and the cumulative
variance of the linear discriminant function in the three cases was 99.53%, 93.11%, and 91.5%
(Figure 4d–f). In particular, LD1 and LD2 of DHI analytical data represent 98.84% and 0.69% of
data variance respectively; LD1 and LD2 of E-nose measurements represent 84.63% and 8.48% of
data variance respectively; LD1 and LD2 of the fusion data represent 51.93% and 39.57% of data
variance respectively.
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Although the original data after PCA dimensionality reduction is more comprehensive, the data
distribution difference between different cattle farms after LDA dimensionality reduction is more
significant. In particular, the dimensionality reduction results of the combined fusion data can achieve
rapid differentiation, which proves that the samples are observed to be sufficiently representative,
and the LDA dimensionality reduction method can be applied to milk sample data.

3.2.2. Model Validation and Analysis

Each cattle farm draws 80 training sets and 20 testing sets, and a total of 800 training sets and 200
testing sets are available from the ten cattle farms. The SVM, RF, and LR methods are used to classify
the milk sources after PCA and LDA dimension reduction. The classification accuracy is based on 200
testing set, and calculated as:

Accuracy =
TP

TP + FP
(4)

where TP (True Positive) is the number of times the dairy farm was correctly classified, FP (False
Positive) is the number of times the dairy farm was incorrectly classified.

In the SVM classification model, radial basis function (RBF) is used as the kernel function of the
model, the penalty parameter C and kernel parameter γ are set as 10 and 0.1 respectively, which give
the best classification results.

The number of decision trees (N) is an important parameter of the RF-based model classification
model. The larger N is, the better the model tends to perform. However, a high N value leads to longer
training time and more memory consumption. It is found that the classification performance is best
when the value of N is 4 in this study.

In the LR-based model, the parameters of the penalty term model are selected to meet L2 that
meets the Gaussian distribution, avoid overfitting the model, and obtain results with more substantial
generalization capabilities easily. Iteratively optimize the loss function by selecting a second-order
derivative matrix.

The models of milk source identification are constructed with different features of milk, including
odor features and composition features obtained from E-nose and DHI analysis, and fusion features,
which are compared with the algorithm model based on these features after dimensionality reduction
of PCA or LDA, including SVM, RF, and LR models, as shown in Table 2. During training, the five-fold
cross-validation method is used to prevent overfitting. This method randomly divides the training set
into five subsets, each time using different subsets as the validation set to obtain the accuracy rate,
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and finally acquires the mean of accuracy rate of each subset. The classification performance with PCA
dimensionality reduction is significantly worse than that with LDA dimensionality reduction. The
reason is that PCA does not consider the category during the dimensionality reduction process, and
LDA is a supervised learning method with category output [37]. Each sample of the dataset for LDA
has a category output. The LDA dimension reduction method is more geared towards classification
than the PCA method.

Table 2. Accuracy (mean of five-fold cross-validation) in milk source identification based on PCA
and LDA (%).

Features
SVM RF LR

Train Test Train Test Train Test

DHI
PCA 19.50 15.50 17.63 18.50 19.88 18.00
LDA 57.75 58.50 52.13 53.50 53.38 56.00

E-nose
PCA 56.25 59.50 71.62 70.50 62.00 65.00
LDA 85.75 85.00 82.13 80.50 84.38 81.50

Fusion
PCA 41.50 45.00 53.38 51.50 39.75 34.50
LDA 95.50 95.00 92.50 94.00 93.50 92.50

When the input is the fusion features after LDA reduction, the model has the best classification
performance with the accuracy of 95% for SVM, 94% for RF, and 92.5% for LR (based on the testing set).
For the E-nose feature after LDA, the SVM model performs best with an accuracy rate of 85.75% for the
training set and 85% for the testing set. For DHI feature after LDA, the accuracy ranged from 53.5% to
58.5% (based on the testing set), the training set and testing set have not achieved the classification
effect. The results indicate that for milk source identification, SVM performs better than RF and LR
models. The feature fusion method effectively solves the problem of missing information of a single
feature. The fusion features contain both composition and odor information of milk, which effectively
improves the classification effect of the model.

3.3. Estimation Models of Milk Fat Content and Protein Content by E-Nose

3.3.1. Model Performance Indicators

In order to explore the established model, the following indicators are used to comprehensively
evaluate the developed models.

(1) Mean Absolute Error (MAE) calculated as:

MAE =
1
n

n∑
i=1

∣∣∣yi − ŷi
∣∣∣ (5)

(2) Mean Squared Error (MSE) calculated as:

MSE =
1
n

n∑
i=1

(yi − ŷi)

2

(6)

(3) Coefficient of Determination, R2 calculated as:

R2 =

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(
yi − yi

)2
(7)
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In the above equations, n is the number of samples, yi is the actual value, ŷi is the predicted value,
and yi is the average of the actual value.

3.3.2. Comparison of Different Models

Based on the above evaluation indicators, the three models developed using GBDT, XGBoost,
and RF are evaluated and compared. The milk fat content and protein content were used as the outputs
of the models, and the seven sensor outputs from the E-nose were used as inputs to establish the milk
quality estimation models. The performance indices of the developed models on the training set and
testing set are shown in Tables 3 and 4. The model errors on the testing set are shown in Figure 5.

As can be seen from Tables 3 and 4, as well as Figure 5, among the different modeling methods,
the RF method provides the best performance. Compared with GBDT and XGBoost models, the RF
model has the smallest estimation error. Furthermore, it gives smaller MAE, MSE values, and larger R2

values than the other two modeling methods. In actuality, both the XGBoost and RF models estimate
very well, with only a difference of 0.02 for milk fat and 0.01 for milk protein in R2 values. The results
prove the effectiveness of the E-nose method to estimate the rate of milk fat and protein.

Table 3. Estimation models for fat content based on three algorithms.

Model
Training Set Testing Set

MAE MSE R2 MAE MSE R2

GBDT 0.3267 0.1907 0.7201 0.3245 0.1926 0.7172
XGBoost 0.1063 0.0241 0.9645 0.1487 0.0573 0.9158

RF 0.1046 0.0253 0.9627 0.1253 0.0410 0.9399

Table 4. Estimation models for protein content based on three algorithms.

Model
Training Set Testing Set

MAE MSE R2 MAE MSE R2

GBDT 0.1773 0.0498 0.7003 0.1770 0.0501 0.6985
XGBoost 0.0616 0.0071 0.9572 0.0766 0.0123 0.9257

RF 0.0488 0.0052 0.9687 0.0607 0.0116 0.9301
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4. Conclusions

Milk source identification and estimation of milk fat content and protein content using an E-nose
with machine learning techniques are studied in this paper. The E-nose developed is composed of
a gas sensor array module, signal acquisition and data acquisition module, and signal processing
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and pattern recognition module. As for the rapid identification of milk source, LR, SVM, and RF
are used, in conjunction with PCA and LDA dimension reduction, to construct the classification
models. Classification models using DHI features, E-nose features, and fusion features are investigated
and compared. It is shown that milk source identification models using LDA extracted features as
inputs give better performance than those using PCA extracted features as inputs. The reason is
that, in contrast to PCA, LDA is a supervised learning method considering the categories of the data
samples. The results show that the SVM model based on the fusion features after LDA has the best
performance with an accuracy of 95%. Therefore, the feature fusion method can effectively improve
the classification effect of the model.

For the estimation of milk fat content and protein content using E-nose data measurement, GBDT,
XGBoost, and RF algorithms were used to establish the estimation models. The RF model has the best
fitting performance with the R2 values being 0.9399 and 0.9301 for fat and protein content, respectively.
The experimental results show that milk quality can be accurately estimated from E-nose measurements
using machine learning techniques. Further works on enhancing model accuracy and reliability will
be carried out.
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