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Abstract: This paper proposes a new solution to multi-target joint detection, tracking and
classification based on labeled random finite set (RFS) and belief function theory. A class dependent
multi-model marginal generalized labeled multi-Bernoulli (MGLMB) filter is developed to analytically
calculate the multi-target number, state estimates and model probabilities. In addition, a two-level
classifier based on continuous transferable belief model (cTBM) is designed for target classification.
To make full use of the kinematic characteristics for classification, both the dynamic modes and states
are considered in the classifier, the model dependent class beliefs are computed on the continuous
state feature subspace corresponding to different dynamic modes and then fused. As a result that
the uncertainty about the classes is well described for decision, the classification results are more
reasonable and robust. Moreover, as the estimation and classification problems are jointly solved,
the tracking and classification performance are both improved. In the simulation, a scenario contains
multi-target with miss detection and dense clutter is used. The performance of multi-target detection,
tracking and classification is better than traditional methods based on Bayesian classifier or single
model. Simulation results are illustrated to demonstrate the effectiveness and superiority of the
proposed algorithm.

Keywords: joint detection; tracking and classification; continuous transferable belief model;
marginal GLMB filter; multi-model

1. Introduction

Multiple target joint detection, tracking and classification is a critical problem in radar system, this
problem consists of three subproblems: estimate the number of the targets, estimate their kinematic
states and determine their classes. These three subproblems are usually coupled: tracking provides the
kinematic features to distinguish the target type; according to the target class, appropriate dynamic
models can be chosen for accurate tracking; besides, the detection of the target is the prerequisite of
accurate multi-target tracking and classification [1–3]. Therefore, multi-target detection, tracking and
classification need to be solved jointly.

The traditional joint detection, tracking and classification methods are usually developed based
on the Bayesian theory and density estimation in the case of only the position measurements are
available. The class probabilities and class dependent multi-target density are calculated based on
the Bayesian framework. Recently, the belief function theory has been proven effective in dealing
with uncertain information, and many credal models are proposed for target classification and
identification, especially the transferable belief model (TBM) proposed by Smets [4–6]. Various joint
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tracking and classification algorithms are also developed based on the TBM. These methods deal with
identification of objects as members of predefined classification categories. When only the position
measurements are available, the target classes are mainly judged according to the kinematic features,
and the proposed solution usually contains the tracker and the classifier. In [7], the dynamic behavior
is described using a set of maneuver modes with different acceleration quantity according to the
priori. The dynamic state estimates and model probabilities are first calculated using a bank of Kalman
filters in parallel, then the beliefs and plausibilities of dynamic behaviors are computed. According to
the relationship between dynamic behaviors and the target classes, the classification results are
finally obtained. In [8], the Kalman filter is derived within the TBM framework, and the target joint
tracking and classification problem is solved within the unified belief theoretical framework. In [9],
TBM is employed in the wireless sensor networks, and the terrain information is used to improve the
performance. In [10], particle filter is introduced into TBM framework to solve target joint tracking
and classification problem in multi-sensor scenario. In [11], a second-order uncertainty model is
proposed to describe the uncertain mapping from the dynamic feature space to the target class space,
and a practical method based on TBM is provided to calculate the class likelihood under a relaxed
dependence assumption. However, due to the discrete nature of such set theoretic uncertain reasoning
approaches based on TBM, these algorithms have difficulty in modeling continuous signals. Therefore,
the dynamic features such as the state estimates can not be directly used by the classifier. As a result,
the accuracy of the classification results is affected.

To overcome such inherent defects, the belief function theory on continuous frame is recently
developed by Smets, and the continuous transferable belief model (cTBM) is proposed in [12,13].
In this theory, the basic belief masses allocated on a real value is generalized into belief density on
the whole real axis R. The least committed belief functions are first built according to the priori
pignistic probability density. Then the basic belief assignment of the target classes is calculated,
and the classification results are finally derived using belief function tools. In these articles, the cTBM
is also used for target classification, and the advantages compared to the Bayesian methods is also
analyzed and illustrated. In [14], the target joint tracking and classification problem with nonlinear
trajectories is solved using cTBM and particle filter. As shown in the simulations, the classification
results derived based on cTBM are more accurate compared with that of the method based on TBM.
However, this approach is difficult to apply to n-dimensional state space Rn unless it is independent
between different dimensions [13]. Unfortunately, this is usually not satisfied during the dynamic
process. In [15], the belief functions are built on R2. In [16], a new algorithm is developed when
the knowledge of sensors is an α-stable probability density function, the plausibility functions are
calculated using a single Gaussian and α-stable model. However, the computational complexities of
these methods are high, and it is difficult to extend these approaches to more complicated scenarios.
Therefore, in the conventional algorithms, the cTBM based classification results are usually derived
based on the velocity or acceleration. Actually, the dynamic characteristics are not fully utilized.

The multi-target joint detection, tracking and classification problem in cluttered
environment is much more complex, especially with target number and observation uncertainty.
Inaccurate multi-target state estimates and model probabilities calculated under the condition of
association error may lead to incorrect classification results. In [17], the multi-target joint tracking
and classification problem is solved based on the global nearest neighbor (GNN) approach and TBM.
As shown in the simulations, when there exists association error in tracking process, the classification
performance is deteriorated. Recently, the random finite set (RFS) theory is developed, and many
multi-target tracker are proposed, such as probability hypothesis density (PHD) filter, cardinalized
PHD (CPHD) filter and cardinality balanced multi-target multi-Bernoulli (CMeMBer) filter [18,19].
These RFS based trackers are integrated approaches for multi-target joint detection and tracking,
and provide the approximated multi-target density with association uncertainty. Compared to
traditional approaches [20–23], the multi-target joint detection, tracking and classification problem
is also solved using multi-model PHD/CPHD [1,24–28] and CMeMBer filter [29]. However, due to
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track information of the RFS based filters can not be obtained directly, these algorithms only calculate
the class-dependent multi-target density without the explicit classification results for each target.
In [30], the concept of labeled RFS is proposed and the conjugate multi-target state distribution
is established. Several multi-target state filters are also derived, such as the generalized labeled
multi-Bernoulli (GLMB) filter [31], which provides analytical solutions for multi-target tracking and
produce track-valued target state estimates. As demonstrated in the simulations, the performance
of the GLMB filter is much better than that of the tracker based on unlabeled RFS. In [32], the target
birth intensity are adaptively modeled and introduced to the multi-Bernoulli filter to improve the
estimation performance, while the filtering efficiency are maintained. However, the amount of
calculation of the GLMB filter increases exponentially with time [33]. In [34], the marginal GLMB
(MGLMB) density is proposed to exactly match the posterior multi-target density and the cardinality
distribution, this approximate multi-target density is propagated during the estimation process
and the MGLMB filter is developed. The performance of MGLMB filter is close to that of the
GLMB filter, but the calculation complexity is largely reduced. In [35–37], multi-target detection,
tracking and classification problems have also been solved using the GLMB filter, these approaches
take advantages of the GLMB filter, and explicit class probabilities and state estimates of each target
are produced. However, the estimation and classification results are still calculated within Bayesian
theory framework.

In this paper, a joint solution is proposed to multi-target detection, tracking and classification
based on labeled RFS and belief function theory in the case of only the position measurements are
available. A class dependent multi-model MGLMB filter is developed to calculate the multi-target
cardinality, states estimates and model probabilities, and a two-level classifier is designed based on
the cTBM to identify the target classes using the kinematic data. According to different dynamic
models, the class beliefs are computed on corresponding continuous dynamic feature subspace given
the state estimates. Then the model-dependent class beliefs are fused to obtain the final classification
results. The proposed algorithm has an analytical form, explicit track-valued state estimates and class
probabilities of each target are obtained. In addition, as both the target dynamic state estimates and
dynamic modes are considered, the designed classifier makes full use of the dynamic characteristics
to improve the classification performance. Furthermore, because the uncertainty of the classes is
well described using cTBM, and the detection, tracking and classification problems are jointly solved,
both the state estimation and classification performance are improved. The particle implementation of
the proposed algorithm is also detailed.

This article is organized as follows. An introduction of the cTBM and the MGLMB filter is
presented in Section 2. Section 3 proposes a multi-target joint detection, tracking and classification
algorithm. The simulation results are illustrated in Section 4. Finally, conclusions are summarized in
Section 5.

2. Theory Foundation

2.1. Classification in the TBM Framework

The transferable belief model aims to represent quantified beliefs based on the belief functions.
This model works on two levels: (1) The credal level, in which the beliefs are quantified.
(2) The pignistic level, in which the decisions are made [4].

In [8], a joint tracking and classification (JTC) algorithm is proposed in TBM framework.
Compared to the probability theory, the likelihood of an hypothesis is equated to the conditional
plausibility of the observation given the hypothesis within the TBM. Assume that the B =

{bi}, i = 1, . . . , n is the set of target behaviors, and Zt is the measurements, then pli = pl(Zt|bi)

indicates the measurement likelihoods that matched to behavior bi. Consider a vacuous a priori on B,
the posterior belief can be computed using the General Bayesian Theorem (GBT).
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mB(b|Zt) = ∏
i:bi∈b

pli ∏
j:bj /∈b

(1− plj), ∀b ⊂ B (1)

Then the class beliefs can be derived according to the relation between the class set C and behavior
set B as

mC = M̄ ·mB (2)

where mB represents the vector of the basic belief assignments (BBAs), whose elements are
corresponding to that in the power set of B, and similarly for mC. Therefore, within the TBM framework,
the beliefs allocated to the elements of the class focal set, which is the power set of the classes, and the
explicit class probability is calculated until the decision is made. On contrary, the Bayesian classifier
computes the explicit class probabilities based on the measurement likelihood at each time.

2.2. Belief Functions on R and Least Committed Belief Density

In [12], Smets extended the belief theory on continuous frames and proposed the continuous
transferable belief model (cTBM). Compared with TBM, cTBM operates within continuous domain.
The basic belief masses generalized into basic belief densities (bbds), and the belief functions can be
computed by the integrations of density functions on the specific space.

Consider the construction of the belief functions on the real space R, and a nonempty interval
on the real axis R denoted as [a, b] ⊂ R, a < b. We assume that masses are only allocated to closed
intervals, and the function m : A → R is then a basic belief assignment, where A is the focal set
consists of the closed intervals A ⊂ R. As illustrated in Figure 1, each interval [a, b] corresponds
to a point K lies in the triangle, and the point K = (a, b) inside the triangle T[0,1] uniquely defines
the interval [a, b] ⊂ T[0,1]. The belief of each point is equal to that of the corresponding interval,
P{(x, y) = (a, b)} = mA([a, b]). Consequently, the belief, plausibility and commonality of an arbitrary
interval [a, b] defined to be the sum of the masses of the intervals [x, y] satisfies {x ≥ a AND y ≤ b},
{a ≤ x ≤ b OR a ≤ y ≤ b} and {x ≤ a AND y ≥ b}, respectively.
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Figure 1. Graphical representations of belief, plausibility and commonality.

The commonality denotes the mass that can be assigned on any interval, within, straddling,
or outside [a, b]. The pignistic probability is the result of mapping a belief measure to a probability
measure. For the singletons within the triangle space, it can be calculated as

Bet f (s) = ∑
s∈A⊂[0,1]

m(A)

|a∗ − a∗||1−m(∅)| (3)
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where a∗ = in f {a : a ∈ A} and a∗ = sup{a : a ∈ A}, and |a∗ − a∗| is the interval length. Assume that
f T[0,1] is the basic belief density function, when the number of the focal sets is infinite, this summation
is replaced by the integration

Bet f (a) = lim
ε→0

∫ x=a

x=0

∫ y=1

y=a+ε

f T[0,1](x, y)
y− x

dxdy (4)

As a result that there are many bbds which share the same pignistic transformation in Equation (2),
the belief density function that maximizes the commonality is defined as the least committed (LC)
belief density. As given in [12], the focal interval sets of this density can be represented by a line
on the triangle space, which has two properties: (1) For unimodal densities, the line starts at (µ, µ),
µ = arg maxa et f (a) and plT([µ, µ]) = 1. (2) For all symmetrical pignistic densities Bet f , the line is
straight and centered at µ

y = −(x− 2µ) −∞ < x < µ (5)

The LC belief density ϕ(a) of interval A is

ϕ(a) = −(a− ā)
Bet f (a)

da
(6)

where ā is defined by the property that: Bet f (ā) = Bet f (a). Note that ā is a function of a.
The plausibility function pl(x) can be computed by the integration of the basic belief density, and the
limits indicate the focal intervals have non-empty intersection with x, with the property that x ≤ a ≤ ∞

pl(x) = (x− x̄)Bet f (x) +
∫ ∞

x
(1− dā

da
)Bet f (a)da (7)

Suppose that the pignistic density is Gaussian Bet f (x) = N(x; µ, σ), the LC belief density and
corresponding plausibility pl(x) are

κ(y) =
2y2
√

2π
e−y2/2 (8)

pl(y) =
2y√
2π

e−y2/2 + er f c(y/
√

2) (9)

where er f c(s) = (2/
√

π)
∫ inf

s e−t2
dt.

To solve the JTC problem in the cTBM frame, beliefs transfer when new information is received.
Let Θ = {θ1, . . . , θn} is the frame of the target classes, the posterior conditional basic belief assignment
mΘ(A|Z) of x ∈ X can be calculated using the priori belief belΘ and the plausibility function plΘ(·|x)
given x ∈ X based on the GBT given in (1). Then the a posteriori conditional belief function over θ ∈ A
can be recursively calculated using m(A|Z) and the priori belief mk−1(A) based on the Dempster’s rule.

mk(A) = m(A|Zk)⊗mk−1(A) (10)

The main difference between TBM and cTBM is that, in TBM the least committed plausibility
is computed for the behavior, while in cTBM, the plausibility can be computed using the estimates.
In the multi-target tracking scenario, the dynamic states are continuous variables, therefore, the cTBM
is more effective than TBM.

2.3. Marginal Generalized Labeled Multi-Bernoulli Filter

In [30], Vo et al. introduced the notion of the labeled RFS and constructed conjugate prior.
Suppose that the state vector x in the space X is augmented with a unique label ` ∈ L, where L
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is a discrete label space, and X represents the labeled RFS. Let L : L× X → L be the projection
L((x, `)) = `, L(X) is then the label set of X. The distinct label indicator ∆(X) = δ|X|(L(X)) ensures
the distinctness of the labels of X. All the finite subsets of L are denoted by F (L). In a realization of
the marginal generalized labeled multi-target state X, the labels of two state vectors must be distinct.
The distribution of a marginal GLMB RFS is

π(X) = ∆(X) ∑
I∈F (L)

ω(I)δI(L(X))
[

p(I)
]X

(11)

where I ∈ F (L) denotes the set of track labels, ω(I) is the corresponding weight. p(·, `) is the state
probability density of track `.

As a result that the multi-target conjugate prior constructed by introducing the notion of labeled
RFSs is closed under the Chapman–Kolmogorov equation, the marginal GLMB density can be
propagated within the Bayesian framework. An analytic solution for the multi-target state estimation
is then provided, called marginal GLMB filter [31]. The marginal GLMB filter consists of the following
two steps

1. Prediction: suppose that the multi-target prior is a GLMB density of form (12), the predicted
multi-target density is then also a GLMB RFS with state space X and label space L+ = L ∪ B
(L∩B = ∅), where L and B are the label spaces of the surviving and birth targets. Use the standard
inner product notation 〈 f , g〉 =

∫
f (x)g(x)dx, the predicted multi-target density can be given by:

π+(X+) = ∆(X+) ∑
I∈F (L+)

ω
(I)
+ δI(L(X+))

[
p(I)
+

]X+
(12)

where

ω
(I)
+ = ωB(I ∩B)ω(I)

s (I ∩L) (13)

p(I)
+ (x, `) = 1L(`)p(I)

s (x, `) + (1− 1L(`))pb(x, `) (14)

p(I)
s (x, `) =

〈ps(·, `) f (x|·, `), p(I)(·, `)〉
η
(I)
s (`)

(15)

η
(I)
s (`) =

∫
〈ps(·, `) f (x|·, `), p(I)(·, `)〉dx (16)

ω
(I)
s (L) =

[
η
(I)
s

]L
∑
I⊂L

1I(L)
[
q(I)

s

]I−L
ω(I) (17)

q(I)
s (`) = 〈qs(·, `), p(I)(·, `)〉 (18)

For the predicted multi-target density given a predicted label set L, the weight ω
(I)
+ is the product

of the weight of the new birth and surviving target labels. The surviving target density is predicted
using the transition function f (x|·, `).

2. Update: if the multi-target prediction density is a GLMB has the form as (11), the multi-target
posterior density is then also a GLMB and has the following form:

π(X|Z) = ∆(X) ∑
I∈F (L)

∑
θ∈Θ

ω(I,θ)(Z)δI(L(X))×
[

p(I,θ)(·|Z)
]X

where Θ is the space of mappings θ : L→ {0, 1, . . . , |Z|}, such that θ(i) = θ(i′) > 0 implies i = i′, and



Sensors 2020, 20, 4235 7 of 24

ω(I,θ)(Z) ∝
[
η
(I,θ)
Z

]I
(19)

p(I,θ)(x, `|Z) = p(I)(x, `)ψZ(x, `; θ)

η
(I,θ)
Z (`)

(20)

η
(I,θ)
Z (`) = 〈p(I)(·, `), ψZ(·, `; θ)〉 (21)

ψZ(x, `; θ) = δ0(θ(`))(1− pd(x, `))

+ (1− δ0(θ(`)))
pd(x, `)g(zθ(`)|x, `)

κ(z(θ(`)))
(22)

In the update step, the posterior target density p(I,θ)(x, `|Z) given labeled ` is explicitly calculated
using the predicted multi-target density via Bayes rule with likelihood function ψZ. The updated
weight ω(I,θ)(Z) is proportional to the prior weight scaled by the product [η(I,θ)

Z ]I of single target
normalizing constants. Here, pd(x, `) is the detection probability of track `, g(z|x, `) is the likelihood
function for the measurement z and κ(·) is the intensity of Poisson clutter.

Compute the marginalized GLMB density to exactly match the posterior multi-target density and
cardinality distribution of (18), the approximate multi-target density is

π̂(X) = ∆(X) ∑
I∈F (L)

δI(L(X))w(I)
[

p(I)
]X

(23)

where
w(I) = ∑

θ∈Θ(I)
w(I,θ)

p(I)(x, `) = 1I(`)
1

w(I) ∑
θ∈Θ(I)

w(I,θ)p(I,θ)(x, `)
(24)

As given in (23), a principled GLMB π̂(X) is constructed approximation to the posterior density
π(X), which results in a marginalization over the association histories. As a result that the number of
components propagated in the Bayesian recursion is drastically reduced, the computational complexity
is largely reduced.

3. Multi-Target Joint Detection, Tracking and Classification Algorithm

This section first presents the mathematical formulation of the problem, then proposes the
multi-target joint detection, tracking and classification algorithm based on the labeled RFS and cTBM.
The particle implementation of the proposed algorithm is also detailed.

3.1. Problem Formulation

Assume that the class of each target is a time-invariant attribute that takes values from a
discrete set C = {c1, c2, . . . , cn}, and the class-dependent dynamic model set isMc = {o1, o2, . . . , om}.
These models transfer given an underlying Markov process with class dependent model transition
probability f (o|o′, c). The target dynamic and measurement equations at time k are

xk = fk|k−1,o(·|xk−1) + wk (25)

zk = hk(·|xk) + vk (26)

where fk|k−1,o(·) is the model-dependent dynamic equation, and hk is the observation function of the
targets. fk|k−1,o(·) and hk(·) are possibly nonlinear, and wk and vk are uncorrelated Gaussian process
and measurement noise.

In multi-target scenario, each target appears and disappears randomly with the birth probability
pb,k and the survive probability ps,k. At time k, Xk = {xk,1, xk,2, . . . , xk,n} is the multi-target state set
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with time varying target numbers, and Zk = {zk,1, zk,2, . . . , zk,m} is the observation set which consists
of measurements from targets and clutter with the detection probability pd,k(xk) and clutter density ck.

3.2. Multi-Target Joint Detection, Tracking and Classification Algorithm Based on Labeled RFS and cTBM

The proposed algorithm contains the tracker and classifier. Starting with prior multi-target density,
the class dependent multi-target posterior density is first calculated using the multi-model marginal
GLMB filter. Then, the classification results are derived using the two-level classifier based on cTBM.
In the classifier, the model dependent class basic belief assignments (BBAs) are computed using the
state estimates, then the beliefs are fused to derive the final classification results. The algorithm
diagram is shown in Figure 2. The particle implementation is also provided in this section.

Class 1 
dependent multi-
model tracker

Two-level 
classifier

Prior class 
dependent multi-
target density

cTBM based 
classifier

cTBM based 
classifier

Multi-model fusion

State filter 
for class 1 
model 1

State filter 
for class 1 
model o

estimates

belief

model 
probability

Class dependent 
multi-target 

posterior density

class conditioned multi-model prediction

estimates

belief

model 
probability

Class n 
dependent 
multi-model 

filter

Two-level cTBM based 
multi-model 
classifier

...

Figure 2. Algorithm flow diagram.

A. Class dependent multi-model MGLMB filter

(1) Prediction: Assume at time k− 1, the class dependent posterior multi-target density is

πk−1(X) = ∆(X) ∑
I∈L(X)

∑
c∈C

ω
(I)
k−1δI(L(X))[p

(I)
k−1,`(·, o|c)]X (27)

where [p(I)
k−1,`(·, o′|c)]X is the model dependent multi-target target density given the classes. The density

of each target ` can be further expressed as pk−1,`(x′, o′|c). At time k, the predicted multi-target
density is

πk+(X+) = ∆(X+) ∑
I∈L(X+)

∑
c∈C

ω
(I)
k+δI(L(X))[p

(I)
k+,`(·, o|c)]X+ (28)

where
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ω
(I)
k+ = ωB(I ∩B)ω(I)

s (I ∩L) (29)

p(I)
k+,`(x, o|c) = ∑

o∈Mc

p(I)
k+(o|c)

〈p(I)
s (x′) f (x|x′, o′, c), p(I)

k−1,`(x′|o′, c)〉

η
(I)
s (`)

(30)

η
(I)
s (`) = ∑

o′∈Mc

p(I)
k−1,`(o

′|c)
∫

ps,`(x′)p(I)
k−1,`(x′|o′, c)dx′ (31)

p(I)
k+,`(o|c) = ∑

o′∈Mc

p(o|o′, c)p(I)
k−1,`(o

′|c) (32)

In these equations, L and B denote the label spaces of the surviving targets and the new birth
targets, respectively, f (x|x′, o′, c) is the model dependent dynamic equation, p(o|o′, c) is the class
dependent model transition probability and ps,` is the surviving probability of track `.

(2) Update: Assume that the predicted multi-target density is represented as

πk+(X+) = ∆(X+) ∑
I∈L(X+)

∑
c∈C

ω
(I)
k+δI(L(X+))[p

(I)
k+,`(·, o|c)]X+ (33)

when the measurement set Z is received, the multi-target posterior density is

πk(X) = ∆(X) ∑
ξ∈Ξ

∑
c∈C

ω
(ξ)
k δI(L(X))[p

(ξ)
k,` (·, o|c)]X (34)

where ξ ∈ Ξ represents (I, θ) ∈ F (L+) × Θ, Θ is the space of mappings θ : L → {0, 1, . . . , |Z|},
such that θ(i) = θ(i′) > 0 implies i = i′, and

ω
(ξ)
c,k (Z) ∝ ω

(I)
c,k+[η

(ξ)
Z ]I (35)

p(ξ)k,` (x|o, c) =
p(I)

k+,`(x|o, c)ψ(ξ)
Z (x|o, c)

η
(ξ)
Z (`|o, c)

(36)

η
(ξ)
Z (`|o, c) = 〈p(I)

k+,`(x|o, c), ψ
(ξ)
Z (x|o, c)〉 (37)

ψ
(ξ)
Z (x|o, c) = δ0(θ(`))qd(x|o, c) (38)

+ (1− δ0(θ(`)))
pd(x)g(zθ(`)|x)

κ(zθ(`))
(39)

p(ξ)k,` (o|c) =
p(I)

k+,`(o|c)η
(ξ)
Z (`|o, c)

η
(ξ)
Z (`|c)

(40)

η
(ξ)
Z (`|c) = ∑

o∈Mc

p(I)
k+,`(o|c)η

(ξ)
Z (`|o, c) (41)

In these equations, δ0(θ(`)) indicates whether there is a measurement associated with the target,
g(zθ(`)|x) is the likelihood function and pd is the detection probability of the target. [p(ξ)k,` (·, o|c)]X is

the product of multiple target densities p(ξ)k,` (·, o|c) given predicted labels I and association map θ.
The class dependent marginal GLMB density that matches the class dependent posterior multi-target
density and the cardinality distribution is

π̂(X) = ∆(X) ∑
I∈F (L)

∑
c∈C

ω
(I)
k δI(L(X))[p

(I)
k,` (·, o|c)]X (42)

where
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ω
(I)
k = ∑

θ∈Θ
ω
(ξ)
k (43)

p(I)
k,` (x, o|c) = 1I(`)

1

ω
(I)
k

∑
θ∈Θ

ω
(ξ)
k p(ξ)k,` (x, o|c) (44)

and the target number is

N = ∑
I∈F (L)

n×ω
(I)
k (45)

where n is the number of the targets in label set L.

B. Classification based on cTBM

The dynamic features are associated with both dynamic states and motion modes. For example,
the target shows a higher maneuverability when executing a sharp turn than fling straight at the
same speed; the cruising speed of fighters may exceed sonic velocity, which is much faster than
most normal planes. Obviously, the classification based on either dynamic states or motion modes is
partial. Therefore, a two-level classifier is designed here, and both of these two factors are considered.
The proposed classifier consists of the following components.

(1) Classification on the state feature subspace

As a result that the dynamic states of different dimensions are usually considered as joint, such
as the speed and acceleration, the calculation of the beliefs based on cTBM in the framework of a
one-dimensional continuous state feature space is difficult to be directly extended to multi-dimensional
feature space. Assume that xk,o,` is the posterior state estimate of track ` ∈ I given the model o.
In the proposed algorithm, one-dimensional state feature subspace is firstly chosen corresponding
to the dynamic models, and the conditional LC plausibility pl(xk,o,`|ci) is calculated using the state
sub-vector x̃k,o,` ∈ R. Then the beliefs are fused to derive the final classification results. Suppose that
Bet f (x̃k,o,`|ci, oj) is the prior pignistic density function of target class ci and model oj, then the LC
plausibility can be computed as

pl(x̃k,o,`|ci, oj) = (x̃k,o,` − φ(x̃k,o,`))Bet f (x̃k,o,`|ci, oj) (46)

+
∫ ∞

x̃k,o,`

(1− dφ(a)
da

)Bet f (a|ci, oj)da (47)

where φ(x̃k,o,`) satisfies

Bet f (φ(x̃k,o,`)|ci, oj) = Bet f (x̃k,o,`|ci, oj) (48)

and the state sub-vector x̃k,o,` is selectable according to different modes. For example, velocity or
acceleration are chosen for classifying corresponding to CV or CA models, respectively. Using the
Generalized Bayesian Theorem (GBT), the model dependent BBAs of the classes are

m(C|x̃k,o,`, oj) = ∏
ci∈C

pl(x̃k,o,`|ci, oj)× ∏
ci∈C̄

[1− pl(x̃k,o,`|ci, oj)] (49)

(2) Classification with multi-model

Let (C,X,O) indicates the credibility space, where X and O are the state and model frames,
respectively, while the beliefs allocated to the elements of C. Combine the model dependent beliefs
m(C|x̃k,o,`, o) calculated before, the final class BBAs of target ` is
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m(C|xk,`) = ∑
oj∈Mc

m(C|x̃k,o,`, oj)m(oj) (50)

where m(oj) is the confidence allocated on the models, which is equal to the model probability [38].
This equation can also be represented using the matrix equation mC = M̄mo, where mC =

[mc1 , mc2 , . . . , mcn ] is the vector of BBAs, C is the power set of the class, and mo = [mo1 , mo2 , . . . , mom ]

is the vector of model belief masses. The dimension of these two vectors are not need to be
equal, this conforms the situation that the dynamic models and the classes are not in one-to-one
correspondence. Each column of the matrix M̄ is the model dependent BBAs of class focal given the
selectable state sub-vector x̃k,o,`.

(3) Time recursion using Generalized Bayesian Theorem

Combine the conditional beliefs with prior information using (9), the posterior class beliefs
mk(C|xk,o,`) at time k can be calculated. Then, the pignistic class probabilities are

BetPk{ci|xk,o,`} = ∑
ci∈C

1
|C|

mk(C|xk,o,`)

1−mk(∅|xk,o,`)
(51)

The proposed MGLMB-cTBM algorithm for multi-target joint detection, tracking and classification
based on labeled RFS and belief function theory is summarized as follows:

Algorithm 1: MGLMB-cTBM algorithm for multi-target joint detection, tracking and
classification

Initial the prior conditional pignistic density function of the dynamic states.
(1) Predict the multi-target density πk+(X+), and model dependent density p(I)

k+,`(x, o|c) and

model probability p(I)
k+,`(o|c) of each target using (28)–(32).

(2) Update the multi-target density πk(X), model dependent density p(ξ)k,` (x|o, c) and model

probability p(ξ)k,` (o|c) using (34)–(41).
(3) Compute the marginal GLMB density π̂(X) using (42)–(44).
(4) For different dynamic models, chose the state estimate sub-vector x̃k,o,` ∈ R to calculate the

conditional LC plausibility pl(x̃k,o,`|ci, oj), and then compute the model dependent beliefs
m(C|x̃k,o,`, oj) using (46)–(48).

(5) Combine the model dependent beliefs to compute the final BBAs of the class focal m(C|xk,`)
as (49).

(6) Merge the beliefs with the priori using GBT, and then go to step 1.

Analysis and discussion: 1. In this paper, an analytical algorithm is proposed to multi-target
joint detection, tracking and classification in radar system. In this application, the target is embodied in
the form of points. For the point targets, all the information about the target can be represented using
the state and category. Therefore, both the observations and the dynamic information can be directly
denoted using the measurement and state vectors. The posterior state and class probabilities can be
analytically updated, and the classification results can be explicitly derived based on the dynamic
states and the prior distribution of the class pignistic probability obtained directly from statistical data.
Therefore, the derived results are Bayesian optimal. Compared to the traditional methods in [28,36],
the dependence between estimation and classification is considered in this paper. Multi-target density
is predicted using the class dependent multi-model, and the classifier computes the target class
according to the both the dynamic models and estimates. The relation between multi-target class
and state estimation is reflected in both the prediction and update process of the proposed algorithm.
As given in (36)–(42), the mapping weights are updated based on the class dependent multi-model
likelihood, therefore, the target existing probability (detection) is derived related to the target class in
(45). As given in (43)–(45), the target density is the sum of weighed density updated given the target
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classes, therefore, the multi-target tracking result is also related to target classes. Therefore, according
to the target class, appropriate models are used for improve the detection and tracking performance.
Furthermore, more accurate estimation results lead to the improvement of the classification and
overall performance.

2. In the cTBM based classifier, the classification results are explicitly derived based on the
dynamic state estimates and the prior distribution of the class pignistic probability obtained directly
from statistical data. Therefore, the classification results provided by the classifier are Bayesian optimal.
During the solution process, the LC plausibilities of target classes are first computed, then the BBAs
of the class focal sets are derived. The target class focal set is the power set of the target classes.
The number of the focal elements in the set is 2n, where n is the number of possible class in the frame
of discernment. The beliefs allocated to the elements of the class focal set, which is the power set of the
classes. For example, when the two categories c1 and c2 can not be completely distinguished, the belief
mass is assigned to the elements {c1c2}. The belief assignments are combine with the prior beliefs
using the GBT, and the explicit class probability is calculated until the decision is made. On contrary,
the Bayesian classifier computes the class probabilities based on the measurement likelihood at each
time. Moreover, compared with the TBM based methods, cTBM based classifier can derive the
classification results directly using the dynamic estimates. When there is no effective information
contained in the dynamic model (the target moves straight with the same velocity all the time), the class
can still be judged according to the dynamic estimates. In addition, the models are selected according
to the dynamic modes. By contrast, for the TBM, the classification result is derived based on the
dynamic modes, which is actually an interval in the state space, such as the accelerate a ∈ [−g,+g].
Therefore, the uncertainty about the class is described more precisely and the cTBM based classifier
is better than the traditional approaches. Furthermore, as the number of model is largely reduced,
the computational complexity is reduced and the model competition is avoided.

3. The computation complexity of the proposed MGLMB-cTBM algorithm is generally higher
than that of the standard GLMB filter. Assume that P = max|L(X)| is the maximum number of the
targets, and M = |Z| is the maximum number of the measurements, as given in [33], the computational
complexity of GLMB filter is O(P2M), i.e., quadratic in the number of hypothesized labels and linear
in the number of measurements. The computational complexity of marginal GLMB filter is the same
as that of the GLMB filter in the worst case. In practical applications, for the classifier of the proposed
MGLMB-cTBM algorithm, the integral calculation in (46) can be calculated previously based on the
prior pignistic probability density, and the belief assignments given the estimates can be quickly
obtained by looking up the table. Therefore, the main difference of the computational complexity
between the MGLMB-cTBM and MGLMB filter lies in the estimation process given different classes
and models, which involves predicting and updating the target state according to the class dependent
multi-model. Assume that C and O are the maximum number of the target class focal sets and models,
the computational complexity of MGLMB-cTBM is O((COP)2M).

4. With the application of optoelectronic technology and the improvement of radar resolution,
the target morphological information can also be obtained, such targets are treated as the image targets
and extended targets, respectively. In [39–41], the graph neural network (GNN) is used for multiple
image targets tracking. The graph nodes are composed of all the targets in all frames. The attributes of
the nodes are composed of apparent features and geometric features (position and shape) obtained
through training, and the distance of the nodes are defined using Euclidean distance, etc. There are
connections between nodes across frames, and the weights of the edges are setting based on the
defined distance metric. The association and tracking results are derived through recursively updating
the weights of the edges and the attributes of the nodes. In [42,43], convolutional neural networks
(CNN) and long short-term memory (LSTM) are used to obtain the kinematic and morphological
characteristics of the target, and the dynamic states and association relationships of the targets are
calculated using the GNN. In [44], the importance of learned reID features for multi-object tracking is
shown. These proposed GNN-based methods can also be used for multiple extended targets tracking.
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Moreover, in the scenario when the attribute measurements are available, such as the signal features,
the belief of the attribute measurements can be fused with the beliefs calculated using the dynamic
estimates based on the D-S evidence theory. Relevant works can be done in the future.

3.3. The Particle Implementation

(1) Prediction: As given in (28), the predicted multi-target density πk+(X+) consists of the model
dependent density of each target. Using the particle description, the density p(I)

k+,`(x, o|c) of track ` can

be denoted as {x(n)k+,o,`, ω
(n)
k+,o,`}

Nk+,o,`
n=1 , where xk+,o,` and ωk+,o,` are the predicted state and weight that

calculated using the state transition matrix Fo and surviving probability p`s

x(n)k+,o,` = Fox(n)k−1,o,` (52)

ω
(n)
k+,o,` = p`sω

(n)
k−1,o,` (53)

The predicted density of new birth target ` can be indicated using particles {x(n)b,o,`, ω
(n)
b,o,`}

Nb,o,`
n=1 ,

where the state x(n)b,o,` and weight ω
(n)
b,o,` conform the prior.

(2) Update: The posterior density p(ξ)k,` (x|o, c) of target ` can be indicated using particles

{x(n)k,o,`, ω
(n)
k,o,`}

Nk,o,`
n=1 , where the weights

ω
(n)
k,o,` = ω

(n)
k+,o,`

(
δ0(θ(`))(1− pd) + (1− δ0(θ(`)))

pdq(x(n)k+ ,o,`)δ
(

x(n)k − x(n)k+ , o(n)k − o(n)k+

)
κ(zθ(`)) + ∑o∈Mc ∑

Nk+,o,`
n=1 q(x(n)k+ ,o,`)

)
(54)

q(x(n)k+ ,o,`) = N (zθ(`); Hkx(n)k , Rk) (55)

In these equations, the term x(n)k,o,` and ω
(n)
k,o,` are the posterior state particles and associated

weights, δ0(θ(`)) indicates whether there is a measurement associated with the target, q(x(n)k+,o,`) is the
likelihood function, and pd is the detection probability of the target. The dynamic model probabilities
are pc,k(o) = ∑

Nk+,o,`
n=1 ω

(n)
c,k,o,`.

(3) Resample: To avoid particle impoverishment and prevent exponential growth of the particle
number, a resample procedure is performed, and then the derived particles have equal weights

ω
(n)
k,o,` =

ω
(n)
k,o,`

∑o∈Mc ∑
Nk+,o,`
n=1 ω

(n)
k,o,`

(56)

(4) Compute the BBAs: For each particle {x(n)k,o,`, ω
(n)
k,o,`}, the state sub-vector x̃k,o,` is selectable

according to different modes oj. Suppose that Bet f (x̃(n)k,o,`|ci, oj) is the prior pignistic density function
of target class ci and model oj. Then, the LC plausibility and BBAs can be computed using the state
estimates of each particle as

pl(x̃(n)k,o,`|ci, oj) = (x̃(n)k,o,` − φ(x̃(n)k,o,`))Bet f (x̃(n)k,o,`|ci, oj) (57)

+
∫ ∞

x̃(n)k,o,`

(1− dφ(a)
da

)Bet f (a|ci, oj)da (58)

m(C|x̃(n)k,o,`, oj) = ∏
ci∈C

pl(x̃(n)k,o,`|ci, oj)× ∏
ci∈C̄

[1− pl(x̃(n)k,o,`|ci, oj)] (59)
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Combine all of the BBAs from each of the particles for model o using D-S theory [14], the fused
model conditioned BBAs can be calculated as

m1⊕2(C|x̃k,o,`, oj) =
∑B∩C m(C|x̃1

k,o,`, oj)m(C|x̃2
k,o,`, oj)

1−∑B∩C=∅ m(C|x̃1
k,o,`, oj)m(C|x̃2

k,o,`, oj)
(60)

(5) Classification with multi-model: Combine the model dependent beliefs m(C|x̃k,o,`, o), the final
class BBAs of target ` is

m(C|xk,`) = ∑
oj∈Mc

m(C|x̃k,o,`, oj)m(oj) (61)

Fuse the conditional beliefs with prior information to compute the posterior class beliefs
mk(C|xk,o,`). Then, the pignistic class probabilities are

BetPk{ci|xk,o,`} = ∑
ci∈C

1
|C|

mk(C|xk,o,`)

1−mk(∅|xk,o,`)
(62)

At last, proportionally correct the weights of the particles belong to the class ci conform that

∑o∈Mc ω
(n)
k,o,` = BetPk{ci|xk,o,`}.

The implementation can be realized using the open source tools (http://ba-tuong.vo-au.com/
codes.html), and the pseudo-code of the MGLMB-cTBM algorithm is given as follows:

Algorithm 2: Pseudo-code of the proposed MGLMB-cTBM algorithm
1: function MGLMB-cTBM algorithm
2: Input {x(n)k+,o,`, ω

(n)
k+,o,`}

Nk+,o,`
n=1 given different classes and models, input the measurements Zk.

3: Generate the k-shortest path to calculate k-best births and surviving hypotheses, predict the
target state x(n)k+,o,` and ω

(n)
k+,o,` using (52) and (53), add the birth particles {x(n)b,o,`, ω

(n)
b,o,`}

Nb,o,`
n=1 .

5: for i = 1, . . . , |Zk|
6: Compute the likelihood q(zi|x

(n)
k+ ,o,`) for each measurement zi ∈ Zk using (55).

7: end for
8: Calculate m-best assignment hypotheses/components using murty’s algorithm according to
the likelihood q(zi|x

(n)
k ).

9: Update the weights ω
(n)
k,o,` using (54).

10: Resample.
11: Look up the table and obtain the LC plausibility pl(x̃(n)k,o,`|ci, oj) and BBAs m(C|x̃(n)k,o,`, oj)

according to the estimates x(n)k+,o,` of particles. Compute the dynamic model probability

pk(o) = ∑
Nk+,o,`
n=1 ω

(n)
k,o,`.

12: Combine the BBAs for model m1⊕2(C|x̃k,o,`, oj) using (59).
13: Combine the model dependent beliefs m(C|x̃k,o,`, o), and then merge the beliefs with the

priori using GBT to derive the final class BBAs of target `. Then go to 1.
end function

4. Simulations

In this section, simulations are performed to illustrate the effectiveness of the proposed algorithm.
The scenarios under consideration contain several targets form three categories: ordinary targets,
medium maneuvering target and high maneuvering targets, such as commercial plane, bomber and
fighter, respectively. The model set consists of the constant velocity, constant acceleration and
coordinated turn models. For the commercial plane, the transition probability of the dynamic models is

http://ba-tuong.vo-au.com/codes.html
http://ba-tuong.vo-au.com/codes.html
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0.05, while the transition probabilities for the bomber and fighter are 0.1 and 0.2, respectively. The prior
pignistic probability distributions of velocity, acceleration and turn rate for each category are Gaussian,
i.e., Bet f ∼ N(x̄, σ), and the parameters are given in Table 1. In Figure 3, the pignistic probability
functions of these classes are illustrated using thick, normal and dashed line, respectively.

Table 1. Numerical values for priori pignistic class probability density.

Commercial Plane Bomber Fighter

Velocity interval (km/s) [680, 1020] [850, 1190] [720, 1580]
Velocity var (km/s) 120 160 250
Accelerate mean (g) 0 0 0
Accelerate var (g) 0.8 1.2 1.6
Turn rate mean (rad/s) 0 0 0
Turn rate var (rad/s) 0.1 0.2 0.4
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Figure 3. Prior pignistic class probabilities; (a) pignistic class probabilities for velocity, (b) pignistic
class probabilities for acceleration, (c) pignistic class probabilities for turn rate.

In our method, different state feature subspaces are chosen for classification according to the
dynamic modes. For CV, CA and CT models, the class beliefs are calculated based on the velocity,
acceleration and turn angular rate, respectively. The performance of our algorithm is compared with
the traditional methods in terms of the class probability.

In the scenario, five targets are involved, two are the high maneuvering targets such as the fighter,
two other are the ordinary targets such as the normal commercial planes and the last one is a medium
maneuvering target such as the bomber. These targets perform different maneuvers in (x, y) space.
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Target 1 appears at the beginning and firstly evolves with a constant velocity 870 km/h until 24 s,
then executes a coordinated turn during 24 to 32 s at 0.35 rad/s. Finally, it performs a normal flight
and disappears at 80 s. Target 2 appears at 8 s and disappears at the end, it firstly evolves with a
low constant velocity at 850 km/h, then turns during 24 to 30 s with the turning angle rate 0.2 rad/s.
Last, it speeds up to 1200 km/h within 8 s and escapes. Targets 3 and 4 appear from 16 s, and perform
the uniform speed flight at 780 km/h throughout the process. Target 5 appears at 20 s and performs
the uniform speed flight at 1080 km/h. The scenario is illustrated in Figure 4. The measurements of
the tracks are drawn using black ′∗′, and the clutter are drawn using blue ′∗′.

Figure 4. The tracks and measurements with miss detection and clutter.

In the simulation, the equation of the ith dynamic model is

xk = Fk,ixk−1 + wk,i (63)

where Fk,i is the model-dependent state transition matrix, and wk,i is Gaussian noise with covariance
Qk,i. The constant velocity (CV) model has the following parameters

Fk,1 = diag


1 T 0

0 1 0
0 0 0

 ,

1 T 0
0 1 0
0 0 0

 , 1

 (64)

Qk,1 = diag


T2 T 0

T 1 0
0 0 0

 σ2
v ,

T2 T 0
T 1 0
0 0 0

 σ2
v , 0

 (65)

where σv is the process noise with covariance σ2
v = 10 m2/s2. The parameters of CA model are
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Fk,2 = diag


1 T 1

2 T2

0 1 T
0 0 1

 ,

1 T 1
2 T2

0 1 T
0 0 1

 , 1

 (66)

Qk,2 = diag


 1

4 T4 1
2 T3 1

2 T2

1
2 T3 T2 T
1
2 T2 T 1

σ2
a ,

 1
4 T4 1

2 T3 1
2 T2

1
2 T3 T2 T
1
2 T2 T 1

σ2
a ,0

 (67)

where σa is the process noise with covariance σ2
a = 10 m2/s4. The parameters of CT model are

Fk,3 =



1 sin(ωT)
ω 0 0 − 1−cos(ωT)

ω 0 0
0 cos(ωT) 0 0 −sin(ωT) 0 0
0 0 1 0 0 0 0
0 1−cos(ωT)

ω 0 1 sin(ωT)
ω 0 0

0 sin(ωT) 0 0 cos(ωT) 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


(68)

Qk,3 = diag

([
T3l1

3
T2l1

2
T2l1

2 Tl1

]
, 0,

[
T3l1

3
T2l1

2
T2l1

2 Tl1

]
, 0, Tl2

)
(69)

where l1 and l2 are the process noise with covariance l1 = 10−1 rad2/s−4 and l2 = 10−4 rad2/s−4,
respectively.

The sensor receives range and bearing measurements

zk =

[
lk
θk

]
+ vk (70)

where lk and θk are the true range and bearing measurement of a target that can be given by

lk =
√
(px − sx)2 + (py − sy)2 (71)

θk = arctan
[

px − sx

py − sy

]
(72)

The position of the sensor [px, py] is located at [1000,−3000], and vk is the Gaussian measurement
noise with the covariance Rk = diag(σ2

r , σ2
θ ), where σr = 5m and σθ = (π/180)rad. The target

detection probability is pd = 0.92, there are on average 35 clutters per scan within the multi-target
moving area (clutter density is 2.08 × 10−7), and the sample time is 2 s. The target survival
probability is ps = 0.98, and the target birth probability is pb = 0.02. The density of the
new birth target is bk = N(x; mb; Qb), where the parameters mb is equal to the position of the
first measurement of each target, assume that the measurement in Cartesian coordinates is [x, y],
the initial state of the birth targets is mb = [x, 0, 0, y, 0, 0, 0]′, while the state covariance is
Qb = diag(100, 104, 10, 100, 104, 10, 0.1), respectively.

As shown in Figure 5a,b, take the targets 1 and 5 as example, the dynamic modes are correctly
identified by the multi-model MGLMB filter in the case of dense clutter and miss detections. The model
dependent class beliefs are calculated given corresponding dynamic state characteristics and then
fused. The final classification results are illustrated in Figure 5c,d. For target 1, the pignistic class
probability of commercial plane is the largest at first, the reason is that it performs a normal flight,
and the classification result is mainly derived on basis of the velocity. When it turns, the pignistic
probability of fighter rapidly increases because only the this kind of the target can do such sharp
maneuver with high turning angular rate. For target 5, the object flies at a constant speed from
beginning to the end, therefore, the classification results are derived using the velocity, the pignistic
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probabilities of fighter and bomber are approximately both equal to 1/2, while the commercial plane is
excluded by the velocity. As a result that the kinematic characteristics are not very distinguishable,
the target class cannot be effectively distinguished only from the speed, therefore the classification
results still contain much uncertainty about the fighter and bomber.
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Figure 5. Classification results; (a) model probabilities of target 1, (b) model probabilities of target 5,
(c) pignistic class probabilities of target 1, (d) pignistic class probabilities of target 5.

The comparison of the classification results for one target of the proposed MGLMB-cTBM
algorithm and the Bayesian classifier is shown in Figure 6. Take the target 1 as example, before the
target does a maneuver, the probability of normal commercial plane is larger using the Bayesian
approach. In contrast, the classification results of the proposed MGLMB-cTBM algorithm still contain
much uncertainties. When the target turns, the probability of the target being the fighter is the
highest in both algorithms. After the target completes the maneuver, the probability of commercial
plane obtained by the Bayesian classifier significantly increases again. The reason is that, the specific
classification results are produces by the Bayesian classifier at each moment, and the prior probability
of the commercial plane is larger under such speed. On contrary, for the classifier based on cTBM,
the uncertainty of the target class is indicated using the confidence assigned to the focal element
set C = {c1, c2, c1,2 . . . }, and the reliabilities are translated into pignistic probabilities only when the
decision is made. Therefore, when the evidences are insufficient, the difference among the pignistic
class probabilities of different categories is not obvious. This result reflects the reasonability of the
proposed MGLMB-cTBM algorithm.
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(a) cTBM based classification results of target 1
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Figure 6. The comparison of the classification results of target 1; (a) continuous transferable belief
model (cTBM), (b) Bayesian theory.

In Figure 7, the superiority of the two level classifier is shown. Take the target 2 as example,
as illustrated in the Figure 7a, the class probabilities of three classes are represented by the thick,
normal and dash line, respectively. Before the target accelerates, the pignistic probability of commercial
plane is larger because the classification results are derived mainly based on the velocity. After the
medium maneuver performed during 24–32 s, the pignistic probabilities of bomber and fighter increase
promptly. However, there still exists uncertainty about fighter and bomber, because all types of aircraft
can do this maneuver except the commercial plane. Finally, the target class is determined on basis
of the high velocity. The classification results of the method proposed in [7] are shown in Figure 7b,
in which the target class is identified only based on the acceleration. It can be seen that, because the
target makes medium maneuvering from 24 to 32s, the target class can be preliminary judged according
to the acceleration, but no effective classification result is derived when the acceleration is 0 during
the cruise section of flight. The kinematic characteristics are not fully utilized, and the acceleration is
insufficient for distinguishing of the bomber and fighter absolutely. In contrast, our method identifies
the motion mode firstly and classifies using appropriate dynamic characteristics, the target is finally
identified according to the high speed. The classification performance is improved.
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Figure 7. The comparison of the classification results of target 2; (a) Pignistic class probabilities of
target 2 based on multiple models, (b) Pignistic class probabilities of target 2 based on single model.

In Figure 8, the comparison of the overall detection, tracking and classification performance of
50 Monte Carol runs is illustrated. The proposed MGLMB-cTBM algorithm is compared with the
MGLMB-Bayesian method in terms of the cardinality estimates, class dependent optimal subpattern
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assignment (OSPA) like distance for tracks, and average error class probability (the error between
the classification results and the truth). In MGLMB-Bayesian method, the target class is introduced
into conventional multi-model MGLMB filter, the posterior class probabilities and class dependent
multi-target density are calculated based on the observation likelihood within Bayesian framework.
As shown in Figure 8c, because the classification results derived within belief function framework
is more reasonable and robust, the classification results of the cTBM based classifier is better.
In Figure 8a,b, the detection and overall tracking performance of our proposed method is also better.
The reason is that, according to more accurate classification results, appropriate dynamic modes
are chosen during the estimation process, and the overall performance is improved. In Figure 8c
The time scale represents the moving time of the targets. The proposed algorithm has an iterative
implementation form, the motion state and class probability of each target are recursively calculated at
each moment, and the number of iteration is actually equal to the time scan. The values of average
error class probability change over time because the conditional beliefs are calculated at the current
moment based on the dynamic state estimates, and then combined with the prior information using
generalized Bayesian theorem. As more dynamic information of the target obtained, the class are more
definite with the time recursion, and the values of average error class probability decreased over time.
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Figure 8. The comparison of tracking and classification results between multi-model marginal
generalized labeled multi-Bernoulli (MGLMB)-Bayesian and MGLMB-cTBM; (a) cardinality estimates,
(b) overall tracking performance, (c) average error class probability.

To further evaluate the overall performance of the proposed algorithm, the algorithm works
under 100 different scenarios that are randomly generated. Each scenario contains 5 targets moving
within 90 s. The real class, appearing time, initial dynamic state and position of these targets are the
same as in scenario 1. For the fighter, the beginning time of maneuver is random, and the probability
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of maneuvering is 0.02 at each moment during 10–80 s. The covariance of the Gaussian measurement
noise Rk = diag(200; 5× 10−3), and there are average 50 clutters per scan within the multi-target
moving area, both larger than scenario 1.

The proposed MGLMB-cTBM algorithm is compared with MGLMB-Bayesian and PHD-TBM
algorithms [28] in terms of the cardinality estimates, overall tracking performance, and average error
class probability. As illustrated in Figure 9a, although the cardinality estimates of all the algorithms
converges to the truth, the estimates of PHD-TBM is worse within several scans after the target appears,
the reason is that the MGLMB is an analytical multi-target tracker, and the dynamic state estimates
is more accurate than PHD filter. In Figure 9c, the classification result of TBM-PHD is also worse
because the results are derived only based on the dynamic modes, while the estimates are directly
used for classification in cTBM based classifier. Moreover, both the classification and state estimation
of MGLMB-cTBM algorithm is better than MGLMB-Bayesian method. Actually, the traditional method
based on Bayesian framework is optimal in the usual sense, the performance of the proposed algorithm
is better because it takes advantages of the belief function theory, the classification results derived
within belief function framework is more reasonable and robust, as the target class is considered
in state estimation, appropriate models are then used for multi-target tracking. As a result that the
estimation and classification problems are jointly solved, more accurate classification and estimation
results are both helpful to improve the overall performance.
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Figure 9. The comparison of tracking and classification results between MGLMB-Bayesian and
MGLMB-cTBM; (a) cardinality estimates, (b) overall tracking performance, (c) average error
class probability.

The proposed MGLMB-cTBM algorithm is realized using Matlab and the open source tools. In the
simulation, the density of each target is represented using 1000 particles. The operating environment



Sensors 2020, 20, 4235 22 of 24

of the program is Windows 10, i5 5200 Dual-core CPU 2.2 GHz, 8 GB RAM. The computational
time of each step of MGLMB-cTBM, MGLMB-Bayesian and PHD-TBM methods is 15.7 s, 14.5 s and
0.095 s, respectively. The computational time of these algorithms is given in Table 2. As shown in
the table, the computational time of PHD-TBM is far less than the other two methods, because the
computational complexity of the PHD-based tracker is much lower than the MGLMB filter. As the
target state estimates of MGLMB-cTBM need to be calculated given different classes and models,
in addition, compared to the MGLMB-Bayesian filter, the beliefs of the particles need to be fused.
Therefore, the computational time of MGLMB-cTBM algorithm is the largest. As illustrated in Figure 9,
the estimation and classification results of MGLMB-cTBM are the best, therefore, the increase in the
amount of the computation leads to an improvement in the performance. Actually, the Gaussian
mixture implementation can be used under linear Gaussian condition, and the computational time of
MGLMB-cTBM algorithm can be further reduced.

Table 2. Average computational time.

MGLMB-cTBM MGLMB-Bayesian PHD-TBM

15.7 s 14.5 s 0.095 s

5. Conclusions

This paper presents a new solution to multi-target joint detection, tracking and classification
with target number and observation uncertainty based on the marginal GLMB filter and cTBM.
Explicit state estimates and pignistic class probabilities of each target are produced by the proposed
algorithm, and the particle implementation is also given. For multi-target tracking, a class dependent
multi-model MGLMB filter is developed to calculate the target existing probabilities, dynamic model
probabilities and model-dependent target state estimates. For target classification, a two-level classifier
is designed, the class beliefs are first computed on corresponding state feature subspace according to
different models, and then fused to derive the final results. Numerical examples are also performed
to demonstrate the effectiveness and robustness of the proposed algorithm. As both the dynamic
modes and the state estimates are considered by the classifier, the kinematic characteristics are fully
utilized to improve the classification performance. Moreover, because the explicit class piginistic
probability is only computed when the decision is made, the uncertainty of the class is well described
using the belief functions during the recursion, and the classification results are more reasonable.
Actually, the designed classifier extracts more information from the measurement and kinematic states
to adaptively improve the tracking performance by choosing the proper motion modes, etc. In addition,
because the estimation and classification problems are jointly solved, the performance of the detection,
tracking and classification are further improved compared with the traditional methods.
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