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Abstract: A real-time implementation of a control scheme for a multirotor, based on angular velocity
sensors for the actuators, is presented. The control scheme is composed of two loops: an inner loop for
the actuators and an outer loop for the unmanned aerial vehicle (UAV). The UAV control algorithm
is designed by means of the backstepping technique and a robust sliding mode differentiator, and
the actuator control strategy is based on a standard proportional-integral-derivative (PID) controller.
A robust exact differentiator, based on high order sliding modes, is used to estimate the complex
derivatives present in the proposed control law. As the measurements of the propeller’s angular
velocities are required for the control law, velocity sensors are mounted in the axles of the rotors to
retrieve them and a signal conditioning stage is implemented. In addition, dynamical models for the
actuators of the aircraft were calculated by means of transfer functions obtained via experimental
measurements in a test bench developed for this purpose. This test bench permits to characterize the
parameters of the transfer functions by comparing the forces computed using the nominal parameter
to the measured forces. To this end, it is assumed that the loads in the actuators of the vehicle are
insignificant during flight. The effectiveness of the proposed sensor, its signal conditioning, and the
overall control scheme are validated by means of simulation results and real-time experiments.

Keywords: actuator dynamics; angular velocity sensors; backstepping; nonlinear controller; sliding
mode differentiator; unmanned aerial vehicle

1. Introduction

An unmanned aerial vehicle (UAV) is an aircraft with no aircrew, which is replaced by a control
computer system and radio-link for remote controllability or autonomous flight. The applications
of UAVs cover diverse technology areas from monitoring and surveillance to transportation, which
influence research fields as computer vision, mechanical design and automatic control. Moreover,
from a control point of view, a UAV is a complex, nonlinear, highly coupled dynamical system with
multiple inputs and outputs that is usually disturbed by diverse environmental factors as wind, air
density variations, and obstacles. Hence, in order to implement a UAV flight controller in real-time, it is
important to first validate the designed control scheme using simulation results and, then, implement
it in an electronic embedded system. In particular, multirotors are a type of UAV characterized by easy
construction and control.

A great diversity of research works oriented to the control for multirotors can be found in the
literature, as shown in [1,2]. The control scheme approaches include classic control schemes as PID
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(Proportional-Integral-Derivative) [3,4]; LQR (Linear Quadratic Regulator) [5]; and MPC (Model
Predictive Control) [6,7], the main feature of which is the ability to predict behavior of the controlled
system to react accordingly; nevertheless, its robustness depends on the accuracy of the obtained
model of the system, which usually is based on empirical experimentation. Moreover, standard control
techniques as backstepping methods have been merged with more advanced control algorithms to
add desired control features in the closed loop system as in [8–11]. Amongst these advanced nonlinear
control strategies, the so-called intelligent control schemes based on neural networks [12,13] and fuzzy
logic [14,15] have been implemented to provide an extension of linear control techniques for more
operating points of the plant, or to include the capacity of generalize the model of a subsystem of the
UAV for control purposes. These are attractive approaches for controlling multirotors, however, their
implementation is complex and computationally expensive which are undesirable features when a
real-time implementation of the control scheme is required. Additionally, another desired characteristic
for a multirotor controller is robustness as the vehicle is usually disturbed by external factors during a
normal real-time operation. In that regard, the adaptive control approach has been used to robustly
control multirotors in different flight modes as in [16,17]. But, when it comes to robustness, the
sliding mode theory [18] has demonstrated excellent results for quadrotor controllers as in [9,11,19,20].
Nonetheless, it is usually accompanied by an undesirable phenomenon called chattering, which is
characterized by high frequency components in the control signal, affecting negatively the actuators of
the controlled system.

On the other hand, the standard instrumentation of multirotors includes a global positioning
system (GPS) sensor module to retrieve the position of the vehicle, and an inertial measurement unit
(IMU) to obtain the angular and linear velocities of the UAV. However, the angular velocities of the
axles of the actuators are usually discarded even when this information could permit to obtain the
generated thrust, consumed current, and fault detection in the actuators [21]. This could enable the
development of applications for accurate range and endurance estimation, model-based control design,
real-time aerodynamic drag estimation and propeller performance tracking. Some works have been
oriented to implement sensors to monitor the thrust generation during flight in multirotors using
force sensors [22–24]; and model-based estimations [25]. Also, the rotors angular velocities can be
fused with other sensors signals as in [26] where rotor speeds where merged to the accelerometer’s
outputs using a Kalman filter for attitude stabilization of the UAV. In addition, several algorithms
have been used for speed control of Brushless Direct Current (BLDC) motors but, amongst them, the
PID control features ease implementation and avoids the necessity of modelling the actuator, which
tends to be troublesome due to the parameter identification. For instance, in [27,28] a PID algorithm
combined with fuzzy control was used for reference tracking of the angular velocity of a BLDC motor.
In [29], an adaptive PID control algorithm was designed and in [30] an adaptive fuzzy PID control
scheme was used, both for the same purpose. Finally, the PID control has also been combined with
more complex intelligent algorithms as deep neural networks. In [31] such a controller was designed
for the speed control of a BLDC motor and its stability analysis was presented. In summary, the best
performance for a multirotor control scheme is usually obtained by combining control techniques that
add up features as disturbance robustness, energy efficiency, transient characteristics, and steady state
error. However, as the objective of this work is to present the performance of a control scheme with
the inclusion of velocity sensors for the actuators, we aimed to the simplicity and ease embedded
implementation of the proposed control strategy. Due to that, in this work, a backstepping controller is
proposed for the trajectory tracking of the attitude and altitude of a quadrotor. The overall control
scheme considers an inner loop PID controller for the actuators (BLDC motors) of the multirotor and
the implementation of velocity sensors for their axles. First, the dynamic model of the UAV and its
actuators is obtained. It is worth to note that insignificant loads in the actuators of the vehicle are
assumed, i.e., small accelerations of the multirotor and negligible external disturbances during flight.
Then, the backstepping control algorithm is designed, and simulations results for the closed loop
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system are shown. Afterwards, real-time experiments are developed, and their results are documented
and discussed. Finally, the conclusions of the presented work are outlined.

2. UAV’S Dynamical Model

A graphical representation of the multirotor considered in this work is depicted in Figure 1.
The position of the vehicle is defined by its Cartesian coordinates (x, y, z) which corresponds to the
translation vector between the origins of and inertial reference system xE, yE, zE and a coordinated
system xB, yB, zB fixed to the centre of gravity of the UAV. Therefore, the orientation of the vehicle
is defined by the Euler angles between these two coordinate systems: roll (φ), pitch (θ) and yaw (ψ).
Defining a state vector as X = [φ, φ̇, θ, θ̇, ψ, ψ̇, z, ż, x, ẋ, y, ẏ]T , the state space representation of the
vehicle can be obtained as:

Ẋ =



x2

f2 + b2U1

x4

f4 + b4U2

x6

f6 + b6U3

x8

f8 + b8U4

x10

b10U1

x12

b12U1



(1)

where f2 = −g, f4 = x4x6
Iy−Iz

Ix
− Jr

Ix
x4Ω, f6 = x2x6

Iz−Ix
Iy

+ Jr
Iy

x2Ω, f8 = x2x4
Ix−Iy

Iz
, b2 = c1c3

m , b4 = l
Ix

,

b6 = l
Iy

, b8 = l
Iz

, b10 = c1s3c5+s1s5
m , b12 = c1s3s5−s1c5

m ; with Ix, Iy, and Iz as the moments of inertia of the
multi-rotor frame body, Jr the total inertia, g as the gravity acceleration, m as the total mass of the
aircraft, Ω = ω2 + ω4 −ω1 −ω3, ωi as the angular velocity of the ith rotor of the vehicle, ci = cos xi,
si = sin xi, and X = [x1, . . . , x12]

T . The variables U1, U2, U3, and U4 are given by
U1

U2

U3

U4

 = M


ω2

1
ω2

2
ω2

3
ω2

4

 (2)

where

M =


b b b b
p −p −p p
q −q q −q
d d −d −d


with b = CTρD4 as the thrust factor, p as the thrust factor seen from the x axis, q as the thrust factor
seen from the y axis, and d = (CDρA)/2 as the drag factor of the propellers, where CT is the thrust
coefficient, ρ is the air density, D is the propeller diameter, CD is the drag coefficient, and A is the
cross-section of movement.
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Figure 1. The unmanned aerial vehicle’s (UAV’s) configuration and related variables.

2.1. Actuators Dynamical Model

The actuators of the vehicle correspond to brushless DC (BLDC) motors that are controlled in open
loop by electronic speed controllers (ESC) by means of suitable pulse-width modulation (PWM) signals
generated by the electronic control unit. The dynamical model of this type of motor consist of a set of 5
ordinary differential equations and diverse parameters as electrical resistance and inductance, inertia,
friction and back EMF (electro-mechanical force). In order to avoid the cumbersome characterization
of these parameters, we propose to obtain their approximated transfer functions in an experimental
manner, defining the duty cycle of the PWM signal and the rotor’s angular velocity as its input and
output, respectively. The methodology consists of introducing a test input signal to the real motor and
measuring the generated angular velocity. The test input signal was defined as a step signal of 100% of
duty cycle at t1 = 120 ms, and 50% of duty cycle at t2 = 3950 ms. The experimental measurements are
shown in Figure 2.

Figure 2. Step response of the actuators for transfer function characterization.

Then, this data is used to obtain an estimated transfer function by means of the System
Identification Toolbox from Matlab [32]. Several pole-zero configurations were tried and the best result,
with 95.6% accuracy, corresponded to the estimated transfer function Gm(s) defined as:

Gm(s) =
716.6s2 + 1.377× 105s + 7066

s2 + 11.16s + 0.4724
(3)

2.2. Dynamical Parameter Characterization

To determine completely the dynamic model of the quadrotor defined by Equations (1)–(3), the
mechanical and electric parameters of the UAV must be characterized. The mechanical part of these
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parameters was obtained by means of a 3D model of the system designed in a computer-aided design
(CAD) software [33], which is shown in Figure 3.

Figure 3. Top (top-left), isometric (top-right) and front (bottom) views of the 3D model of the quadrotor
obtained in a Computer-Aided Design (CAD) software.

From this model, nominal values for the inertia terms Ix, Iy, Iz, the mass m, and length l were
defined. On the other hand, the terms b and d are related to the drag and thrust forces generated by
the propellers, these forces are depicted in Figure 4.

Figure 4. Force vectors produced by the propellers.

In addition, these parameters are defined by the following formulas:

b = CTρn2D4 (4)

d =
CDρAv2

2
(5)

where D is the propeller diameter in meters, n is the propeller/motor speed in rev/s, ρ is the air
density in kg/m3, CT the thrust coefficient, A is the cross-section of the movement in m2, v is the
drone velocity in m/s, and CD is the drag coefficient. The terms ρ, D, and A are assumed constant
and approximated by nominal values. The terms n and v are measured by the UAV sensors and,
in particular, the propeller velocity n sensor will be explained in detail in a following section. The
remainder terms CD and CT are indicated as nominal values by some research works as in [9] where
a thrust coefficient of 2.98× 10−3 and a drag coefficient of 1.14× 10−7 are presented, but there is
no explanation or methodology to obtain these values, which is very important when it comes to
motor control. Due to the fact that the cross-section area A facing the direction of movement of the
drone is very difficult to calculate during flight, a fixed drag coefficient is proposed as 43× 10−3. This
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value was adjusted experimentally during flight tests to obtain the best closed-loop performance. The
thrust coefficient was obtained experimentally by means of a bench and a scale to create characteristic
curves for the parameter. The overall test bench is shown in Figure 5. Its working principle is based
on manually varying the propeller velocities and measuring the generated thrust by means of the
scale. Figure 6 shows the obtained characteristic curve for n− CT . From this, a CT value is proposed
based on a minimal root mean squared error (RMSE) of the obtained curve and its correspondent
function. In order to validate the obtained parameter, a comparison between the behavior generated
by the manufacturer value, the proposed value and the measurements is presented in Figure 7. With a
proposed CT = 0.0817445, a minimal RMSE of 0.077301668 N (0.7882576369 g f ) is obtained. Compared
to the measured values, this is relatively small with respect to the thrust force difference. Finally,
this experimentally adjusted value for CT was used in this work, and the nominal value used in [9]
for the drag coefficient CD was defined, as no experimental measurements related to this parameter
were obtained.

Figure 5. Thrust force test-bench for obtaining the thrust coefficient.

Figure 6. Thrust coefficient graph based on EMAX MT2204 2300KV motor thrust force measurements.
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Figure 7. Thrust force graph from the thrust coefficient at different motor speeds using the measured
coefficient, the motor manufacturer coefficient, and the proposed coefficient.

3. Controller Design

The control proposal is composed of two controllers: the UAV controller and the actuator controller.
The input for the UAV controller is a reference vector Xr that includes the altitude (z) and the Euler’s
angles (φ, θ, ψ) of the multirotor, and its outputs are references values for the angular velocities of
the actuators (or the propellers). The actuator controller is composed by four PID controllers, which
receives the desired angular velocity and defines a correspondent PWM value as the input of the motor.
This inner control loop is the same for all the four motors of the UAV. The overall control scheme is
shown in Figure 8 and the UAV and actuator controller are defined in the following subsections.

Figure 8. Overall proposed control scheme. Two control loops are depicted: the inner loop for the
actuators and the outer loop for the UAV.

3.1. UAV Controller

The control objective is the reference tracking for the orientation (x1 = φ, x3 = θ, x5 = ψ) and the
altitude (x7 = z) of the UAV. Hence, it is assumed that the references variables x1r, x3r, x5r and x7r are
known, as well as their derivatives. Then, in order to obtain a concise controller design procedure,
four different sub-systems from Equation (1) are defined as:

ẋi = xi+1

ẋi+1 = fi+1 + bi+1U(i+1)/2, for i = 1, 3, 5, 7 (6)
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The error variables for these subsystems are given by zi = xir − xi, and their dynamics yields:

żi = ẋir − ẋi = ẋir − xi+1 (7)

After that, a Lyapunov’s function is designed as Vi =
1
2 z2

i and its derivative results of the form:

V̇i = zi żi = zi(ẋir − xi+1) (8)

Then, the term xi+1 is proposed as a virtual control term, which is designed as:

x∗i+1 = ẋir + kizi, ki < 0 (9)

which will allow us to define the error variable for the next block. The term x∗i+1 is the desired value
for xi+1, so, the error variable zi+1 is defined as zi+1 = x∗i+1 − xi+1 which can be used to re-shape the
Equation (8) as V̇i = zi(ẋir − x∗i+1 + zi+1) = −kiz2

i + zizi+1. Now, the dynamics for zi+1 results of the
form:

żi+1 = ẋ∗i+1 − ẋi+1 = ẍir + ki(ẋir − xi+1)− fi+1 − bi+1U(i+1)/2 (10)

where the control term U(i+1)/2 will be designed for the convergence of Equation (10). To this end, the
candidate Lyapunov’s function Vi+1 = Vi +

1
2 z2

i+1 is proposed, the derivative of which is given by:

V̇i+1 = −kiz2
i + zizi+1 + zi+1żi+1

= −kiz2
i + zizi+1 + zi+1[ẍir − fi+1 + ki(ẋir − xi+1)− bi+1U(i+1)/2] (11)

and the control term U(i+1)/2 is designed as:

U(i+1)/2 = b−1
i+1[ẍir − fi+1 + ki(ẋir − xi+1) + zi + ki+1zi+1] (12)

with ki+1 < 0. Using Equation (12), the term V̇i+1 yields:

V̇i+1 = −kiz2
i − ki+1z2

i+1 (13)

which fulfils V̇i+1 ≤0 and the convergence of zi and zi+1 to zero is assured. Hence, the control objective
is achieved.

3.2. Levant’s Differentiator

The terms ẋir and ẍir of the control term Equation (12) are not defined. To avoid cumbersome
computations for these expressions, a robust exact differentiator, proposed by Levant in [34,35],
is used. The main problem with usual differentiator designs is the combination of exactness and
robustness with respect to possible measurement errors and input noise. Moreover, if the input signal
present disturbances, the differentiator’s output will be also disturbed. To overcome this, Levant’s
differentiator provides the square of the maxima of the measured input signal from the base signal,
reducing the rate error that can be present in the output [36], by means of a sliding mode control term.
The Equations of the second order differentiator, used in this work, are given by

ż0 = −λ2 |z0 − f (t)|2/3 sign (z0 − f (t)) + z1

ż1 = −λ1 |z1 − v0|1/2 sign (z1 − v0) + z2 (14)

ż2 = −λ0sign (z2 − v1)

where f (t) is the input signal, zi is the estimation of the ith derivative of f (t), and λ0, λ1, λ2 are
differentiators parameters to be tuned. Hence, it can be used to obtain ẋir and ẍir with f (t) = xir.
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3.3. Actuator Controller

The UAV controller generates the desired values for U1, U2, U3, and U4. Afterwards, the desired
values for the actuators’ velocities ω1r, ω2r, ω3r, and ω4r can be obtained from Equation (2) as:

ω2
1r

ω2
2r

ω2
3r

ω2
4r

 = M−1


U1

U2

U3

U4

 . (15)

From here, the error variables for the actuators’ controllers are defined as:

ei = ωir −ωi, i = 1, 2, 3, 4. (16)

Finally, the equation of the PID controllers are defined as:

PWMi = kPiei + kIi

∫
eidt + kDi ėi (17)

where the control gains kPi, kIi, and kDi are tuned heuristically. The PWMi signals correspond to the
duty cycles of the ESC for each motor. It is worth to note that, as the motors can only rotate in one
direction, the PWMi values are bounded by the interval [0, 100]%.

4. Experimental Setup

The UAV used for the experiments is composed of a quadrotor QAV250 frame with
MT2204-2300KV brushless motors and 6030 propellers. Each motor is driven by a 2-4S 12A electronic
speed controller (ESC) with an 11.1 V 2200 mAh Lithium-Polymer battery as a power supply. The main
control board of the vehice is a PIXHAWK PX4 2.4.6 which is an STM32F427 microcontroller based
board that uses an STM32F100 as a failsafe system. It includes an L3GD20H 3-axis gyroscope sensor,
an LSM303D 3-axis accelerometer, an MPU6000 inertial measurement unit (IMU), and an MS5611
barometer. The board provides 1 ADC channel, 1 CAN port, 1 I2C port, 5 UART ports, and supports
up to 14 pulse protocol outputs. In order to implement the proposed controller for the real-time
experiments, it is necessary to obtain measurements of the rotors angular velocities; nonetheless, there
are no available ports in the main board. Hence, a daughter board that allows capturing of the rotors
sensors signals was included. It is based on an ATMEGA328/P microcontroller, which is capable of
running at a frequency of 16 MHz, has 8 ADC channels available with up to 10-bit precision, and a
universal synchronous and asynchronous receiver-transmitter (USART). As a result, it can be used to
sense up to 8 analog sensors and transmit the data through serial communication to the main board.

4.1. Angular Velocity Sensor for the UAV Rotors

As part of the inner loop controller for the motors, a sensor for the propeller’s velocities must
be designed. Since the motors used in this work do not have any type of encoder, an intermittent
black and white band is attached to the motor case acting as encoder. Additionally, CNY70 reflective
sensors are used for capturing the light intensity change in the band when the motor is rotating,
generating a pulse frequency that feeds a pin voltage level change interrupt in a daughter board.
The interconnection between the reflective sensor, the motor and the daughter board are presented
in Figure 9.
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Figure 9. Propeller’s velocity sensor implementation based on a CNY70 reflective sensor.

This daughter board is proposed to provide modularity to the firmware development and to
implement the digital conditioning of the signals generated by the reflective sensors. The signal
generated by the reflective sensors triggers an interruption in the daughter board. This interruption
is time tracked with a timer and five different captures are obtained. The first capture takes a false
pulse that was observed and is taken in the middle of a pulse generated (not at the rising or falling
edge), and then the next four pulses are timer captured, having two complete periods observed, which
are averaged to obtain better accuracy. The encoder black and white band attached has 40 alternating
stripes within a motor revolution. To avoid overlap in the different interruption’s tasks, an interrupt
scheduler routine is designed to assign execution status to the different sensing tasks. In that way,
only one interruption is running at a time, avoiding the interrupt miss for the speed period capturing,
which is extremely time sensitive.

4.2. Velocity Sensor’s Signal Conditioning

Due to the switching nature of the velocity sensor and the noisy characteristics of its optical
transducer, the retrieved measurements presented undesired high frequency fluctuations. Hence, a
digital filtering stage was designed in the daughter board. Two different proposals were implemented:
a moving average (MA) filter and an exponentially weighted moving average (EWMA) filter. The first
is a finite impulse response filter which consists in obtaining the average value of the last m samples of
the measured signal according to the following Equation:

yk =
∑k

i=k−m xi

k−m
(18)

where xk is the current sample of the measured signal and yk is the current output of the filter. The latter
filter is a recursive or infinite impulse response filter which is implemented by the following Equation:

yk = yk−1 + α(xk − yk−1) (19)

where α is the constant weight assigned to the filter. The performance comparison between both
filters provided a solid ground to choose the more promising filter. The EWMA exposes a smaller
RMSE (root-mean-square error) and provides smoother output behaviour as the input data becomes
gradually less influential as it ages. On the other hand, MA treats each of the samples equally during
the output computing but these are regarded as soon as the samples fall off the end of the number of
elements considered in the filter. Therefore, the EWMA filter was selected to be used in this work.

4.3. Overall Controller Implementation

The global designed embedded control scheme was implemented in the main board of the vehicle
using the model based approach as in [37,38]. It is characterized as a closed-loop controller where the
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control laws are computed based on the measured states of the vehicle as depicted in Figure 8. The
stages of the implemented control strategy are described in the Algorithm 1. All the simulation and
real-time experiments were carried out using the controller implementation described in this method.

Algorithm 1: Overall Controller Execution.
Result: PWM signals for BLDC motors
Initialize system and controller constant parameters;
while Receive UAV reference signals Xr do

Calculate derivatives of reference signals;
Retrieve UAV states X;
Filtering Z measurement with EWMA filter;
Compute UAV control law to obtain ωr;
Calculate derivatives ω̇r and ω̈r;
Retrieve motors velocities ω;
Filtering ω measurements with EWMA filter;
Compute motors control law to obtain V1−4;
Transform V1−4 to PWM1−4 signals;
Set PWM1−4 signals at the main board output ports;

end

5. Results

The control proposal was implemented in simulation and real-time experiments considering the
same control and system parameters aiming to analyse the results, which are presented in this section.

5.1. Simulation Results

The parameters used for the simulation experiments are listed in Table 1. These correspond to the
parameters obtained by the methodology described in the previous sections. The control objective is to
track the Euler angles (φ, θ, ψ) and the altitude (z) of the multirotor vehicle.

Table 1. Multirotor parameters.

Parameter Description Value

m Mass of the vehicle 0.85 kg
g Gravity force 9.80665 m/s2

l Arm length 0.1272 m
CT Thrust coefficient 81.7445 × 10−3

CD Drag coefficient 45 × 10−3

Ix Moment of inertia in the x-axis 2.14571 × 10−3 m2

Iy Moment of inertia in the y-axis 3.28887 × 10−3 m2

Iz Moment of inertia in the z-axis 4.94533 × 10−3 m2

ke Back EMF constant 6.4 × 10−4

kτ Torque constant 0.432140018
Ra Motor inertia resistance 0.05 Ω
Bm Coefficient of viscous friction 341.336 × 10−6

Jm Rotor inertia 1.47106 × 10−5 kg·m2

Lm Inductance 0.012 H

The resulting trajectory of the UAV position describes a square path as depicted in Figure 10. It
is worth to note that, as a stabilize flight mode is considered, the references received by the overall
control scheme are for the attitude (φr, θr and ψr) and altitude (zr) of the vehicle. Hence, the square
shaped position depicted in Figure 10 is a direct result of the definition for φr, θr and ψr. The labels
t1, t2, t3 and t4 indicate the instants where the trajectory reaches the corners of the square. For easy
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correlation, these timestamps are also indicated in Figures 11–13 by means of vertical blue dashed
lines. This is a direct result of the reference defined for the attitude of the UAV which is shown in
Figure 11. Moreover, the references for the three angles are depicted as well. The tracking performance
is satisfactory as the proposed control scheme obtains the convergence of the error variables to a small
vicinity to zero.

Figure 10. Position of the vehicle resulting from the attitude and altitude reference tracking.

Figure 11. Euler angles of the multirotor and their references.
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Figure 12. Cartesian coordinates of the position of the multirotor. Only the altitude z is tracking its
reference zr.

Figure 13. Commanded propellers velocities and their references.

Figure 12 depicts the generated Cartesian coordinates of the vehicle during the simulation, and
for the case of the attitude signal the reference is also presented. The convergence of the altitude to its
reference in a finite time can be noted. Furthermore, the angular velocities of the propellers, and their
references, are shown in Figure 13. This behavior validates the effectiveness of the PID controllers for
the actuators of the vehicle in the inner loop, as the tracking performance is satisfactory. Moreover, the
references for the propeller’s velocities are within the range of commercial motors for drones, which
indicates the applicability of the proposed control scheme in a real vehicle.

5.2. Experimental Results

The results of the real-time experiments are depicted in the following figures. The roll, pitch, and
yaw angles of the vehicle and their references are shown in Figures 14–16, respectively. It can be noted
that the tracking performance is satisfactory as the convergence of the attitude of the vehicle follows
the desired values. Also, a noise component is present in all the measured variables which is normal
due to the normal behaviour of the vehicle in flight. On the other hand, the altitude of the vehicle and
its desired value are depicted in Figure 17. Its convergence to the reference value can be appreciated
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as the tracking error variable converges to a small vicinity to zero in a finite time. Finally, a video
recording of the real-time experiment can be found in [39] where the performance of the overall control
scheme is presented. It is important to mention that the period corresponding to the Figures 14–17
corresponds to the period from 0:41 to 1:41 of the reported video.

Figure 14. Roll angle (dashed) and its reference (solid) during the real-time experiment.

Figure 15. Pitch angle (dashed) and its reference (solid) during the real-time experiment.
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Figure 16. Yaw angle (dashed) and its reference (solid) during the real-time experiment.

Figure 17. Altitude z (dashed) and its reference zr (solid) during the real-time experiment.
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6. Discussion

The proposed control scheme for a UAV based on rotor velocity sensors establishes a solid
foundation for developing research related to robust control design, implementation and testing. Also,
the developed instrumentation permits to approach real-time thrust computation and wind estimation.
On the other hand, although the backstepping technique is widely used and applied in the automatic
control field, this work allows to define a comparative reference for more robust and innovative control
strategies such as sliding modes, neural networks and adaptive controllers. Moreover, the UAV can
be easily adapted to function as a test bench for educational and research purposes related to the
design and testing of new control algorithms for multirotors. Finally, the next steps for this research
work are related to the design and implementation of robust control schemes based on sliding modes
and adaptive control. Also, we are currently exploring fault tolerant controllers which will use the
information from the actuators angular velocities and current consumption to detect a failure and
reconfigure the controller according to the identified fault.

7. Materials and Methods

The manuscript describes the overall structure of the control scheme and the interconnection of the
components of the UAV. The proposed angular velocity sensor for the rotors is graphically described
in detail so any interested researcher can replicate its implementation. Regarding the software, all the
code is available at the repository in [40].

8. Conclusions

A control scheme for the trajectory tracking of the attitude and altitude of a multirotor was
presented and its effectiveness was demonstrated by means of simulation and real-time experiments.
The control strategy is based on the measurements of the angular velocities of the actuators which
are open-loop driven BLDC motors. The overall controller consists of two control loops: an outer
control loop for the UAV and an inner control loop for the actuators. The UAV controller is designed
using the backstepping methodology which assures the closed loop stability of the system. It receives
the references for the attitude (Euler angles) and altitude (height) to generate the necessary angular
velocities of the actuators to assure the tracking of these references by the vehicle. The actuator control
loop receives these necessary angular velocities for the actuators and generates the necessary PWM
signals for the BLDC motors to perform the tracking of these angular velocities. This controller is
designed based on the PID scheme, which was heuristically tuned to obtain the desired performance.

The simulation results were obtained considering approximated transfer functions for the motors,
which were calculated experimentally by means of a proposed test bench. For the real-time experiments,
a simple and effective encoder design was implemented based on reflective sensors and a striped band.
This is necessary as commercial UAVs do not usually include encoders in the actuator’s axles. Moreover,
a conditioning stage for the output of the reflective and the altitude sensors was implemented based on
the exponentially weighted moving average (EWMA) filter. The simulation and real-time experiments
were satisfactory as the control objectives were fulfilled.
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The following abbreviations are used in this manuscript:

3D Three Dimensional
BLDC Brushless Direct Current
CAD Computer-Aided Design
EMF Electro-Mechanical Force
ESC Electronic Speed Controller
GPS Global Positioning System
IMU Inertial Measurement Unit
LQR Linear Quadratic Regulator
MPC Model Predictive Control
PID Proportional-Integral-Derivative
PWM Pulse-Width Modulation
RMSE Root Mean Squared Error
UAV Unmanned Aerial Vehicle
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