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Abstract: Perceptron is an essential element in neural network (NN)-based machine learning,
however, the effectiveness of various implementations by circuits is rarely demonstrated from
chip testing. This paper presents the measured silicon results for the analog perceptron circuits
fabricated in a 0.6 µm/±2.5 V complementary metal oxide semiconductor (CMOS) process, which
are comprised of digital-to-analog converter (DAC)-based multipliers and phase shifters. The
results from the measurement convinces us that our implementation attains the correct function
and good performance. Furthermore, we propose the multi-layer perceptron (MLP) by utilizing
analog perceptron where the structure and neurons as well as weights can be flexibly configured.
The example given is to design a 2-3-4 MLP circuit with rectified linear unit (ReLU) activation,
which consists of 2 input neurons, 3 hidden neurons, and 4 output neurons. Its experimental case
shows that the simulated performance achieves a power dissipation of 200 mW, a range of working
frequency from 0 to 1 MHz, and an error ratio within 12.7%. Finally, to demonstrate the feasibility
and effectiveness of our analog perceptron for configuring a MLP, seven more analog-based MLPs
designed with the same approach are used to analyze the simulation results with respect to various
specifications, in which two cases are used to compare to their digital counterparts with the same
structures.

Keywords: neural network; chip testing; analog perceptron; multi-layer perceptron; ReLU activation

1. Introduction

Artificial neural network (ANN)-based machine learning, known as a promising technology,
has been researched widely to enable electronic devices more intelligent and efficient [1–4]. ANN is
inspired by the brain of living creatures, which contains components such as neurons, connections,
weights, and a propagation function. ANN has a huge set of neurons that are highly interconnected
and arranged in layers. The structure of an artificial neuron mimics the function of dendrites, soma,
and axon. Perceptron is an essential element of ANN, which has multiple inputs and a single output.
It is commonly represented by a mathematical model as follows: Each input is multiplied by a weight
and all weighted inputs are summed at the output, the resulting sum is then passed through an
activation function. ANN-based machine learning fits the transfer function of the system by a training
process where input-output pairs are iteratively presented, while the variable parameters/weights are
adjusted with the process.

Many digital- or analog-implemented circuits for perceptron have been proposed in the literature,
showing good results in the simulation phase [5–8], however the drawback of these works is the
lack of silicon measurement results, which are of a great importance for the investigation of the
fundamental characteristics of a perceptron circuit. Besides, the multi-layer perceptron (MLP) is
constituted by perceptron, which is a fundamental structure for the feedforward neural network (NN),
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in VLSI (very-large-scale integration) implementations incorporating various learning algorithms,
thus making MLP a common choice as it has been continuously researched for many years [9–14].
In the state-of-the-art works, the authors in [15] implement a low-latency MLP processor for
real-time cancer detection using field programmable gate arrays (FPGAs), under mass-spectrometry
benchmarks, it outperforms both the central processing unit (CPU) and graphics processing unit (GPU)
implementations, with an average speedup of 144× and 21×, respectively. The work [16] presents
FPGA-based electrocardiogram (ECG) arrhythmia detection by using principal component analysis for
feature reduction and a MLP for classification with an accuracy of 99.82% achieved on average for the
MIT-BIH database. A recent work implemented on FPGA can also be seen in [17] where an efficient
MLP designed with 16-bit fixed-point data precision is used for human activity recognition and to
obtain a high recognition accuracy.

On the other hand, the analog MLP has been popular in recent years for NN-based machine
learning. Several analog MLPs have been implemented to solve classification problems in the past
decade, which show promising results. One can see a recent work in [18], where the metabolic adders
and perceptrons presented are the first engineered biological circuits that use metabolism for analog
computation, the authors highlight the higher efficiency of analog computation on a continuous input
compared with digital logical circuitry. In [19], the authors demonstrate a one-hidden layer perceptron
classifier circuit based on passive memristive crossbars for pattern classification, where they highlight
the higher energy efficiency and neuromorphic performance of the anaolg and mixed-signal integrated
circuits, compared with their digital counterparts. In [20], an analog MLP with programmable neuron
is introduced that achieves the accuracy of more than 99.9% for XOR gate implementation and a 48%
reduction in power consumption compared with previous works. The authors emphasize that digital
NNs have high accuracy, low speed, high chip area, and high power consumption whereas analog NNs
are optimized in chip area and processing speed as well as power consumption. A precise quantitative
comparison in neuron implementation between digital and analog designs can be found in [21], in the
same technology node and the same level of performance, the analog implementation requires five
times less area and consumes 20 times less energy than the digital design.

Aiming at the advanced sensor nodes, such as the biological sensor systems introduced in [22,23],
Ishiguchi (our group member) et al. has proposed an analog perceptron circuit with a DAC-based
multiplier in [24]. In comparison with the traditional sensor system where the central processing unit
and signal processing unit are necessary. Analog VLSI implementations are preferable for a sensor
node as they have lower power and a smaller device area. The preliminary results provided in [24] is
the base of developing our research. In this work, an analog perceptron comprising of DAC-based
multipliers and phase shifters is fabricated in a 0.6 µm/±2.5 V CMOS process. The measurement
results of the chip are reported as well, which shows good functionality and performance for circuits.
In addition, the noise issue arising from the circuit and the accuracy issue of the resistor have been
discussed.

Furthermore, after the fundamental characteristics of our analog perceptron is verified, we propose
the MLP-based neural network by utilizing analog perceptron, where the structure and neurons as well
as weights can be flexibly configured. Since the MLP realized by analog circuits is vulnerable to many
factors, such as offset voltage, noise coupling, impedance, limited scalability, and process-introduced
variation [20,25,26], these accumulated effects degrade the feasibility of the MLP circuit. Besides, most
of the analog MLP implementations adopt complicated circuits for the activation function, which are
difficult to train, and in addition the weights are not easy to control. After tackling these challenging
problems, this paper presents a successful implementation of a 2-3-4 analog-based MLP circuit.
We design the MLP circuit with rectified linear unit (ReLU) activation in a 0.6 µm CMOS technology
process with supply voltages of ±2.5 V. The circuit utilizes an improved source follower with a simple
structure to approximate the ReLU function greatly. Since an operational amplifier (OPAMP)-based
adder and an inverting amplifier are inserted in each perceptron, the DC biasing of the ReLU circuit
following the perceptron is adjustable, so that the reliability of the whole circuit is improved. In
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addition, we present the impedance issue in the cascading of neurons in the MLP, which is critical
to the feasibility of the whole circuit. Finally, seven more analog-based MLPs are designed using
the same way as in a 2-3-4 MLP, where the structure and neurons are selected under the geometric
rule and rounding rule. We summarize simulation results with respect to various specifications and
make a comparison to FPGA-based MLPs with the same structures, which show the feasibility and
effectiveness to construct a MLP-based neural network by utilizing our analog perceptron.

The rest of the paper is organized as follows. Section 2 introduces our motivation for analog-based
MLP implementation and configurable neural networks based on analog perceptron. Section 3
describes the perceptron chip and a measuring system for the circuits as well as the measured results.
Section 4 presents configurable neural network by utilizing analog perceptron and introduces some
critical aspects to the success of the implementation of the MLP circuit. Section 5 explains the simulation
of the whole MLP circuit and summarizes the simulation results. Finally, Section 6 concludes this
work.

2. Preliminary

In this section, we present an idea of Fourier series approximation in the time domain aiming at
electroencephalogram (EEG) signal processing and also show the advantages of analog-based MLP
as compared to FPGA-based MLP. Our motivation for analog-based MLP implementation is introduced.
Subsequently, we introduce the process to implement the configurable neural networks based on
analog perceptron, which consists of the choices for the analog-based MLP structure and an activation
function as well as a learning algorithm. Furthermore, we highlight that the main contributions of
this work are the measurement of the perceptron chip and the circuit simulation for MLP physical
hardware.

2.1. Motivation for Analog-Based MLP Implementation

EEG signals can be measured from the surface of the head using appropriate electrodes and
instrumentation. The signals are time-varying patterns of electrical energy that are typically in
the microvolt range, which are reflections of underlying human brain states and thus be used for
medical diagnosis. On the other hand, according to the theory of the Fourier series, a period (or
close to period-fashion) signal is constituted by the sum of a series of weighted sine or cosine waves.
An arbitrary signal in that interval (or the entire signal if it is period) can be approximately synthesized
by a period of summation with appropriate weights.

For periodic signals on unbounded intervals, the Fourier series aims to use a series of sine
waves or cosine waves of different magnitudes and frequencies, along with a method of choosing the
appropriate weights, so as to produce an approximation to the original signal. The error between the
true signal and its estimate can be reduced as more terms (sine and cosine waves) are added. The terms
can be completely described if we know their magnitudes and frequencies as these are very convenient
basis functions. The basis functions and weights that describe a given signal can be derived from the
Fourier transform. Inspired by this, we attempt to use the Fourier series incorporating a machine
learning mechanism to decompose or reconstruct the raw EEG signal in the time domain, as shown in
Figure 1a. Note that pre-processing is necessary for the training dataset when employing our machine
learning, we can truncate a certain period of EEG signal and repeat it with multiple times, so as to turn
it into a signal close to periodic fashion.

In a conventional way to extract the feature of the EEG signal for evaluating the brain states,
electrodes (analog front-end) for EEG signal acquisition and analog signal processor (analog back-end)
for post-processing and digitization are typically employed [22], and then digitized signals are
processed in the frequency domain by software, where the Fourier series approximation is implemented
by a process referred to as the fast Fourier transform (FFT). Finally, the feature of an EEG signal such
as, spectrum, frequency components, and power can be extracted. However, the whole system from
EEG signal acquisition to feature extraction is very complicated and expensive. Therefore, our idea
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is to use the neural network to realize the Fourier series approximation in the time domain directly,
as the neural network has multi-input or multi-output which is appropriate to the situation. There is
an analog method and digital method for choosing, as shown in Figure 1b.

(a) (b)

Figure 1. Comparison between the analog method and digital method aimed at
electroencephalogram (EEG) signal processing with machine learning mechanism. (a) EEG
signal decomposition/reconstruction by using fourier series approximation. (b) The analog-based
multi-layer perceptron (MLP) and field programmable gate array (FPGA)-based MLP in the handling
of the EEG siganl.

For the same target of signal decomposition, however, FPGA-based MLP needs more hardware
than analog-based MLP since it can only deal with discrete-time signal, back-end processor with
analog-to-digital converters (ADCs) and digital-to-analog converters (DACs) are needed in its
preceding and succeeding stages, respectively. Compared with its counterpart, analog-based MLP,
FPGA-based MLP is not only expensive in hardware cost but also has a lower efficiency in learning
algorithms and consumes more power.

Suppose that there is a three-layer m-h-n (m are input neurons, h are hidden neurons, and n are
output neurons) for the MLP whose neurons are fully connected, it needs to do (h×m + n× h) times
of multiplication and (h + n) times of addition for the signal propagation from the inputs to outputs of
the network. For analog-based MLP, it needs (h + n) multipliers and (h + n) adders, the total power
consumption is that of multipliers and adders as well as activation circuits. Its outputs nearly respond
to inputs synchronously. For FPGA-based MLP under the assumption of input analog signal frequency
f , ADC with a resolution of X bits, clock frequency fCLK, sampling frequency fs, the bit number of
connection weight, Y bits (Y ≤ X), and the propagation delay time from the inputs to outputs of
MLP at each sampling period, td. The FPGA-based MLP needs (h×m + n× h) X-bit multipliers and
(h + n) 2X-bit adders. The total power consumption is that of all logical modules. Note that the above
assumption uses a simple-structure MLP with a single hidden layer for both methods, compared with
analog-based MLP, the logical modules of FPGA-based MLP increase more drastically as the hidden
layer number and neuron number increase.

Furthermore, for FPGA-based MLP, the total delay t at a period of the input analog signal can
be formulated as follows: t = X × ( f / fs + 1) × td. We take a specific case as an example, for an
analog signal f = 1 Kz, an 8-bit ADC with fCLK = 10 MHz, fs = 1 MHz, a FPGA-based MLP with 8-bit
connection weights, and td = 100 ns. By applying the above formula of the total delay at a period, it
yields t which is around 0.8 ms, meaning its output is 0.8 ms behind the analog-based MLP output
at each signal period and its total delay over the whole training time becomes very large compared
with the analog-based MLP. Note that the result is under the consumption of the best case and without
considering DAC conversion. Thus, analog-based MLP shows a higher efficiency than FPGA-based
MLP when deployed in machine learning.
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2.2. Configurable Neural Networks Based on Analog Perceptron

The process to implement the configurable neural networks is shown in Figure 2a. The network
employs the analog-based MLP structure where all neurons are fully connected. The structure
connected in the red line is an example of 2-3-4 MLP. The structure connected in the black-dashed
line represents other candidate structures within the available hardware resources, which shows
the possibility of exploring different structures depending on the hardware resources and the needs.
The neuron is constituted by one or multiple DAC-based multipliers, and more multipliers are needed
when the input ports of a neuron are not sufficient.

(a) (b)

Figure 2. (a) Configuration of our proposed analog-based MLP and learning algorithm.
(b) Contributions in this work.

The activation module can be implemented by simple analog circuits to achieve common functions
such as Sigmoid, tanh, and ReLU. Among these functions, the standard ReLU shows more advantages
than other functions in terms of the gradient vanishing problem, convergence speed, and computation
efficiency. Besides, the standard ReLU is the most popular and promising activation function in
convolutional neural networks (CNNs) and deep neural network (DNNs) as it shows the more
generalization ability and ability to deepen the hidden layer, which are important for a complex EEG
signal processing by using analog-based MLP. Last but not least, we can approximate the standard
ReLU function by using an improved source follower with simple devices, which is more appropriate
to our case as other activation circuits need design specifically. Even though compared with the
standard ReLU, the employed ReLU circuit in this work decreases a bit of advantage due to the use of
capacitor and resistor, it has achieved a great approximation targeting at the standard ReLU. However,
our analog-based MLP maintains the possibility of exploring other activation functions as the network
is configurable.

As for the learning algorithm, we can use a publicly-available EEG dataset as our training dataset,
but we need to pre-process the EEG signals of the dataset to make them close to periodic and then the
processed EEG signals are decomposed in the time domain by the Fourier series approximation, and
the decomposed signal components with different frequencies and amplitudes are used to compare to
the predicted results of our neural network. The whole process for dataset preparation can be realized
by an efficient algorithm. Next, the MLP software is implemented in the TensorFlow which is an
open-source machine learning platform. The choice for the structure and neurons in each layer of the
MLP commonly uses the geometric pyramid rule as referred in [27].
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For a three-layer network with n input neurons, m output neurons, the hidden layer has
√

n ·m
neurons. For the networks with n input neurons, m output neurons, and i (i ≥ 2) hidden layers, a basic
parameter r for the hidden layers (from h1 to hi) can be expressed as: r = (n/m)1/i+1. Thus, the neuron
number of the i-th hidden layer can be expressed as: h1 = m · ri, h2 = m · ri−1, ... , hi = m · r. The input
neuron number n and the output neuron number m need to be set based on actual needs. The geometric
pyramid rule also applies to this work but with a slight difference, when the neuron number derived
from the rule is not an integer, we need to round the number. For instance, a 2-3-4 MLP demonstrated
herein yields 2.83 for the hidden neuron number but it is rounded to 3. We set a constraint for the
learning algorithm to limit the total number of neurons, the layout area for neurons cannot exceed the
sum of all the layout space available, the upper bound is the die size that is assigned for neurons. Thus,
the learning algorithm enumerates all the candidate structures under the constraint and can avoid the
infinite loop. Besides, the backpropagation (BP) algorithm is based on the Levenberg—Marquardt
(LM) algorithm [28], which computes the error between the true values (frequencies and amplitudes)
and the predicted values, and then updates the gradient and weights to minimize the error. Note that
our analog-based MLP hardware uses off-line learning manner, i.e., we first implement an optimal
MLP model in the software and determine its structure and weights, and then implement analog-based
MLP in hardware whose structure and weights are consistent with software.

Once a neural network model is trained by the back-propagation algorithm in the software,
the weight value of each connection can be determined. As long as it is ensuring the configuration
and weights are consistent with the software, our circuit can be used to recover a learning model
in hardware. In this paper, we primarily focus on the implementation of the circuit and verify the
feasibility of configuring analog-based MLP by perceptron, the software part is beyond the scope of
this paper.

By utilizing the analog perceptron circuits and activation circuits with some electronic components,
after fine-tuning, we can construct analog-based MLP hardware for a learning model obtained from
the software. The reasonability of the number of layers and neurons per layer as well as component
values can be verified by circuit simulation. If the simulated result for the circuit is unsatisfactory,
we can iterate the process until determining a network and weights suitable for our requirements.
Once a learning model is obtained and each weight of connection is determined, as well as a fine-tuned
analog-based MLP hardware is implemented, the digital circuit sets each weight of the MLP circuit to
a corresponding value consistent with the software. We configure the neurons of our analog-based
MLP by digital codes of DAC-based multipliers, so that the effectiveness of the learning model can be
verified in hardware. In this manner, the configurability and flexibility of our method are improved,
which is helpful for our circuit devoted to analog front-end of the biomedical sensor.

Our contributions in this work are illustrated in Figure 2b. The feasibility of MLP hardware
implementation is most essential to our final aim, thus this work mainly focuses on the measurement
of the perceptron chip and the circuit simulation for MLP physical hardware, so as to find the issue of
interconnecting perceptron circuits and optimal parameters for activation circuits. Physical hardware
implementation of analog-based MLP for a given learning model is a future work, since the learning
algorithm in the software still needs to be optimized.

3. A Measurement-Verified Perceptron Chip

This section introduces a measuring system which is comprised of software and hardware.
The schematic and layout for the circuits under test are used to detail the implementation of our analog
perceptron. Finally, we report the measurement results by which the fundamental characteristics
of analog perceptron are verified and the effectiveness of the perceptron chip is demonstrated. We
analyze the noise issue and the resistance accuracy issue, and propose solutions to tackle these issues.
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3.1. A Measuring System for Perceptron Chip

Aimed at an analog front-end of a sensor node, Ishiguchi et al. propose an analog perceptron
circuit with DAC-based multiplier in the work [24] to improve the sensing information. An analog
perceptron circuit with a DAC-based multiplier (namely, Cir.01.) and DAC-based perceptron circuit
with phase shifters (namely, Cir.02.), have been fabricated to validate the effectiveness of circuits.
The general architecture of the measuring system for our perceptron chip is illustrated in Figure 3.
The chip is fabricated in a 0.6 µm/±2.5 V CMOS process and mounted on a custom printed circuit
board (PCB). All the chip pins are carefully connected by wires to the ports of the experimental setup,
analog discovery 2, which is a portable and powerful device with high performance comparable to
a stack of traditional measurement instruments, such as oscilloscope, arbitrary waveform generator,
power supply, digital pattern generator, etc. With a software running on a computer, WaveForms, the
device can be configured to measure, visualize, record, and control mix-signal circuits of all kinds. In
our measurement, oscilloscope and arbitrary waveform generator are capable of providing sample
rate of up to 100 MS/s and a bandwidth of up to 12 MHz. Two power supplies ranging from −5 V to
+5 V can satisfy the measurement requirement for the power source. A digital pattern generator can
also provide sufficient channels to generate or visualize patterns for the test chip.

Chip under test

Experimental setup

Connection wiresSoftware WaveForms

Test PCB Test bench 

Measuring system

Figure 3. The general architecture of the measuring system for the perceptron chip.

3.2. Schematic and Layout for the Circuits under Test

The analog perceptron circuit with DAC-based multiplier employs the mechanism of neural
network-based machine learning, the model of which can be represented as: fout(t) = w1 · f1(t) + w2 ·
f2(t) + · · ·+ wn · fn(t). Where f1(t), · · · , fn(t) are the inputs, each of which is multiplied by a weight
w1, · · · , wn, all weighted inputs are summed at the output fout(t). All the weights are controlled only
by digital codes. Two DACs are used in a DAC-based multiplier, a DAC is inserted at the input of the
negative feedback of the OPAMP circuit, while the other is at the loop of the feedback. DACs serve
as two variable resistors and a changing of the DAC output current looks as if the resistance value
were to change. The input-output/Vin − Vout relationship of the multiplier can be represented as:
Vout = −X1

X4 Vin, where X1 and X4 are the decimal input codes of DAC1 and DAC4, respectively. For a
three-input perceptron circuit, the input-output/Vin−Vout relationship of the circuit can be represented
as: Vout = −X1

X4 Vin1 − X2
X4 Vin2 − X3

X4 Vin3, where X1, X2, and X3 are the decimal codes of DACs for the
input Vin1, Vin2, and Vin3, respectively. While X4 is the decimal code of DAC in the negative feedback
of the OPAMP circuit.

In addition, Ishiguchi et al. also introduces phase shift circuits to the perceptron model to deal
with time series inputs. It is applicable to prediction algorithms such as the recurrent neural network
and chaos pass filter. The only difference from Cir.01 is that one phase shifter is inserted between inputs,
Vin1 and Vin2, while the other phase shifter is inserted between inputs, Vin2 and Vin3. A model of time
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series by Cir.02 can be formulated as follows: fout(t) = w1 · f (t) +w2 · f (t+ d) +w3 · f (t+ 2d), where t
and d are time and delay variables, respectively. In their work, by applying different component values
for different frequencies in the phase shifter, Cir.02 can achieve that the phase delay is evenly generated
by 90° among the multiplier output signals. That is because phase shifters can control the absolute
delay.

Figure 4 shows a schematic of a perceptron chip and block diagram of the measurement.
Our perceptron chip consists of two circuits, Cir.01 and Cir.02. When measuring the former, phase
shifters are disconnected and excluded from the Cir.01. When measuring the later, phase shifters
are connected and included in the Cir.01 by connecting the peripheral pins of the chip. In the figure,
phase shifters enclosed by the dashed box and the inputs of Cir.01 are in virtual connection, it means
that phase shifters are disconnected to Cir.01 when Cir.01 is in measurement and phase shifters are
connected to Cir.01 when Cir.02 is in measurement. Thus, the layout area can be smaller, and also the
number of pads to be occupied can be reduced.

Figure 4. A schematic of a perceptron chip and block diagram of the measurement.

In the circuit under test, there is a sum module following after the outputs of three multipliers,
which is constituted by an OPAMP-based adder and an inverting amplifier. The whole circuit is
slightly different from that reported in the work [24]. This is because in the previous design, it is
found that the feedback current noise arising from the outputs of DACs can affect the biasing of each
other, leading to the waveform distortion in the final output. Therefore, we assign three multipliers
separately and collect their outputs by a summator, rather than combining the outputs of DACs at the
inverting input of the OPAMP. Another benefit of the improved design is that we can obtain the
inverting and non-inverting output simultaneously, which is useful for negative and positive weight
generation. There are two types of phase shifters in the circuits for input frequencies 1 KHz and 10
KHz, respectively. Each type has two identical phase shifters as shown in the schematic. Phase shifter
requires different component values for different frequencies. At 1 KHz, the resistance values for R4,
R5, and R6 are all 1.55 MΩ, the capacitance value for C1 is 100 pF. While at 10 KHz, the resistance
values are all 155 KΩ and the capacitance value is 100 pF.

In the periphery of the chip, our experimental setup, analog discovery 2, provides testing signals
for the inputs of the perceptron circuits. The digital pattern is provided for the digital codes of DACs to
control the weight of each analog input. The oscilloscope is used to measure the analog signal nodes of
interest. I/O pads serve as the interface between the experimental setup and chip. Finally, the power
supply provides supply voltages of ±2.5 V for the I/O pads and the whole circuit. Two decoupling
capacitors in parallel with power supply are also used to reduce the power noise.

The top-level layout of the perceptron chip is shown in Figure 5. The layout is implemented
in a 0.6 µm CMOS process with supply voltages of ±2.5 V. The total area is 1.6 × 1.6 mm2 and the
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active area excluding pads and empty space is 1.01 mm2. Note that the two phase shifters for the same
frequency are combined into one in the layout. One can see the layout, for the input frequency 1 KHz,
two identical phase shifters are implemented that are symmetrical with respect to the horizontal line;
for the input frequency 10 KHz, two other phase shifters are implemented that are symmetrical with
respect to the vertical line. Phase shifters for Cir.02 occupy the most area due to the large capacitors
and resistors, whereas the area of the Cir.01 is only around 0.17 mm2. Cir.01 is comprised of three
DAC-based multipliers and an analog summator whose topology is fully consistent with the schematic
in Figure 4. Cir.02 is comprised of Cir.01 and phase shifters, the connection of Cir.01 and phase shifters
depends on the input frequency. When Cir.01 is in measurement, phase shifters are disconnected
to Cir.01. When Cir.02 is in measurement, phase shifters are connected to Cir.01 by the peripheral
pins of the perceptron chip. Furthermore, the fabrication process is a three-layer metal process with a
single-well. The p-channel device is formed within n-well in the p-type substrate while the n-channel
device is formed directly in the substrate.

Summator
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Figure 5. Top-level layout of perceptron chip.

3.3. The Measurement Result and Analysis

The resolution of the measurement instrument is a critical consideration for a high-accurate
measurement for the circuit, our experimental setup can provide a high-resolution thanks to
its resolution of up to 100 uV per division. Noise reduction is another critical consideration in
the field of measurement [29–33]. A clean target signal without significant noise interference can
improve the measurement, thereby obtaining a reliable evaluation on the circuit. However, it is
a challenging problem for the analog circuit measurement in the presence of noise, especially for
the low-frequency and small-signal circuit, which can be easily overwhelmed by noise. The circuit
noise generally contains the external part induced by electromagnetic interference and power supply,
and also contains the intrinsic part such as thermal noise, flicker noise (i.e., 1/f noise.), and shot noise.
In our measurement for the experimental case, the method for the electromagnetic shielding was
employed and decoupling capacitors were connected in parallel with the power supply to reduce
voltage fluctuation. After dealing with the external noise issue, large numbers of experiments were
performed among a set of chips. All the experimental chips obtained identical measured results, which
are shown in Figure 6.

In the measurement for Cir.01 shown in Figure 6(a-1), there are three input sinusoidal signals
Vin1, Vin2, and Vin3, with an amplitude of 5 mV, 10 mV, and 15 mV at 1 KHz frequency, respectively.
The multiplication factors (i.e., weights.) of three multipliers are set to be 3, 2, and 1, respectively.
Therefore, the weighted-sum amplitude of the final output at the Vout-node should be 50 mV. However,
the intrinsic noise from the circuit affected the final output so that the amplitude is actually 57.2 mV.
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After inserting a two-order Butterworth low-pass filter with the cut-off frequency of 1 MHz at the Vout-
node, the effect of noise coupling is significantly alleviated, and the amplitude is 49.7 mV as compared
to the desired value 50 mV. The frequency of all of the sin waves in the graph is 1 KHz, and the phase
of the final output is inverting to that of the input. The offset of the final output is negligible and has
only hundreds of microvolts, and all the sin waves are adjusted to the appropriate position so that
they can be observed clearly. The measured results are consistent with the simulation results reported
in the work by [24].

(a-1) measurement result for Cir.01 (a-2) measurement result for Cir.01

(a-3) measurement result for Cir.01 (a-4) measurement result for Cir.01

(a-5) Measurement result for Cir.01 (b) Measurement result for Cir.02

Figure 6. Measurement results for perceptron chip.

Furthermore, for comparison to the experimental case in Figure 6(a-1), various experiments with
different settings are conducted to validate the circuit. Figure 6(a-2,a-3) shows the measurement
results with the same amplitude and frequency but with different weights and Figure 6(a-4) shows
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the measurement result with the same frequency and weights but with different amplitudes. For a
comparison to Figure 6(a-4), Figure 6(a-5) shows the measurement result with the same amplitude
and weights but with different frequencies, and the shape of the waveform for the final output can
change with the input frequency. Note that the measuring method for all of the conducted experiments
is kept consistent as in Figure 6(a-1), and all the settings for noise filtering are the same. Therefore,
all measured results above demonstrate that the Cir.01 could be correctly controlled by digital codes,
the amplitude, and the frequency of the input signals, respectively. In terms of the amplitude of
the final output, it can be verified by the weighted-sum calculation. After filtering the noise, the
Cir.01 shows a good performance with respect to the consistency between the measured values and
theoretical values.

The Cir.01 demonstrates the effectiveness of our design and it is applicable to the MLP model,
though, we still measure the noise for the critical module. From the function of the noise spectral
density of OPAMP, it is found that the total input-referred noise of OPAMP over the frequency from
0 to 20 MHz is 1.9uV/

√
Hz. As compared to the low-noise OPAMP with tens of nV/

√
Hz within

the same bandwidth, the specification of our OPAMP is disadvantageous. Since the noise of OPAMP
is dominated by the white noise (i.e., thermal noise) and flicker noise (i.e., 1/f noise), thus the noise
power can be reduced by a low-pass filter. In addition, since the chip is implemented in a single-well
process, the substrate noise also contributes a portion of noise at the final output [34]. It suggests that
in future works, the twin-well process and low-noise design technique such as chopper OPAM [35–37],
can be used to further optimize the Cir.01.

As shown in Figure 6b, in the measurement result for Cir.02, we can observe that the phase delay
is evenly generated by 90° among the output signals of multipliers. However, the measured result
is inconsistent with the simulated result reported in the work [24]. All the weights of multipliers
are set to be 1 for both the simulation and measurement. The input signal of 0.01-V amplitude and
10-kHz frequency is applied in the simulation, whereas the input signal in the measurement actually
needs 0.1-V amplitude and 58-kHz frequency for the 90-degree phase delay. However, the post-layout
simulation result is verified to be correct and has no discrepancy with the pre-simulation. According
to the experience of circuit designers using the same manufacturing process, such a difference is
mainly caused by the poor accuracy of the high-poly resistor in the process. Given that the phase
delay of our phase shifter is formulated as: d = −2tan−1(2π f CR), where d is an absolute phase
delay between the input and output signals, f is the input frequency, C is the capacitance value, and
R is the resistance value. In a fabricated chip, both R and C are constant. Therefore, the function d
monotonously decreases with the frequency, f. When setting the frequency f to be 10 KHz in our
measurement, the measured phase delay is bigger than that of the simulated. Therefore, the actual
resistance value is smaller than that of the simulated. When increasing the input frequency, the phase
difference among the multiplier output signals is finally adjusted to 90°. However, due to the very
large difference between the actual resistance value and theoretical resistance value for 1 KHz, the
measurement for Cir.02 at 1 KHz failed to perform. Thus, only the measurement result for Cir.02 at 10
KHz is reported in this work. Nevertheless, our perceptron chip is applicable to prediction algorithms
for the application targeting at 58 KHz signal.

4. An MLP Circuit for Configurable Neural Network

After fundamental characteristics of our analog perceptron are verified by measurement, as an
extended work of perceptron, in this section, a multi-layer perceptron circuit with a non-linear
activation function is introduced. We present a process to configure a MLP by utilizing analog
perceptron, and also verify the effectiveness of the selected structure by circuit simulation.

A block diagram of the MLP circuit is shown in Figure 7. This network is constituted by three
layers: An input layer with two neurons, a hidden layer with three neurons, and an output layer with
four neurons. The neuron number is annotated in the corresponding module, the net name is annotated
as well and the connection relationship is indicated by its name directly. Each neuron in the hidden and
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output layers is followed by a ReLU module, which is used to approximate the ReLU function in the
neural network. The function of a perceptron and ReLU circuit can be represented by a mathematical
model, as shown in the dotted box of the figure. Where wij denotes the weight for the connection of two
neurons. The subscript i represents the sequence number of the starting neuron, and j represents that
of the target neuron. For example, the weights of the sixth neuron are w36, w46 and w56, respectively.
xi denotes the input of the j-th neuron, and yj denotes the output of the j-th neuron. The perceptron
module is comprised of three or two DAC-based multipliers and other function circuits. The ReLU
module is comprised of an improved source follower and an OPAMP-based buffer. The weight of each
perceptron module is controlled by digital codes.
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Figure 7. Top-level schematic of our MLP circuit.

4.1. An Improved Source Follower

ReLU is the most commonly used activation function in neural networks, especially in CNNs
and DNNs. Mathematically, it is defined as: y = max(0, x), x ∈ R. Inspired by the input-output
characteristic curve of a source follower, we attempt to implement a ReLU circuit by since the curve is
approximately similar to the ReLU function. However, the output voltage of a typical source follower
(see Figure 8a) always has a significant difference with the input voltage, which reduces the accuracy
of the neural network model and prediction correctness. Therefore, we modify the circuit and its
configuration is shown in Figure 8b. The value of each component is annotated as well. When a proper
DC operating voltage is applied at the input, the NMOS transistor works in a saturation condition.
The DC operating voltage applied influences not only the drain current of M2, but also the linearity of
input-output characteristic. Hence, a proper DC biasing is important to approximate the ReLU function.
In the preceding stage of the ReLU circuit, we have an OPAMP-based adder that incorporates a DC
biasing, which can adjust the DC operating point of the ReLU circuit. The input-output characteristic
of the above two circuits is shown in the Figure 8c. The output of both circuits is at the source node
of transistor. An improved source follower (b) can better approximate the ReLU function, as the
difference between the input and output is smaller.

Note that both the gain of circuits in Figure 8 is not larger than 1, even if the R1 and R3 are close
to infinite. When R3 reaches a certain value, increasing the value of R3 only contributes a little to the
slope of the curve. Capacitor C1 is floating and prepared for AC coupling so as not to influence the DC
operating point of the next stage. In order to increase the accuracy of the source follower, R2 is used
to reduce the second-order effect which is channel length modulation. However, the voltage loss on
the ReLU circuit is inevitable as the output cannot perfectly follow the input. We also note that when
the input voltage for (b) is beyond 4.7 V, the output voltage does not increase and that is because as
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the gate-source voltage increases, the number of carriers in the transistor channel no longer increases,
and the drain current tends to be constant. Last, we have to mention that transconductance amplifiers
(OTAs) are good choices for resistors to reduce the silicon area and power consumption [38].
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Figure 8. Circuits and simulation for the rectified linear unit (ReLU) activation function.

4.2. Summator for Improving Reliability

Inside the perceptron module of the top-level schematic, there are DAC-based multipliers and
summators. The circuit shown in Figure 9 is a sub-circuit of a twp-input perceptron, which is
constituted by an OPAMP-adder and an inverting amplifier. The port name and value of all resistors
are annotated in the figure. In our implementation of the MLP circuit, V0 connects to ground, VIN1,
and VIN2 connect to the outputs of multipliers, respectively. VBIAS connects to a biasing generator
circuit that provides various biases needed. It can serve as a bias in the mathematical model of the
neural network. By utilizing the bias, the centering voltage of the summed signals can be adjusted.
Besides, the DC biasing can also be used to bias the ReLU circuit, which follows after the perceptron,
so as to adjust its operating point. Note that the bias of each ReLU can be different and independent,
therefore the reliability and flexibility of MLP is improved.

AMP

AMP

V0

VIN1

VIN2

VBIAS

VBIAS

VOUT_MINUS

VOUT_PLUS

R1=1K

R2=1K

R3=1K

R4=1K

R5=2K

R6=1K

R7=1K

Figure 9. Summator inside our perceptron module.

The inverting amplifier is used to invert the phase of the summed signals. As a perceptron circuit
with a DAC-based multiplier always generates an inverting signal, such as Vout = (−X1/X2)Vin1 +
(−X3/X4)Vin2, here, X represents the decimal value of the digital codes of DAC. It is hard to verify
the output of each neuron in this form, especially in a complicated neural network with multiple
hidden layers. Therefore, we use an inverting amplifier to achieve that the output of neurons always
has the same phase with the input, so that the calculation at each neuron becomes easy. Note that the
positive port of the inverting amplifier connects to VBIAS rather than the ground. That is because the
OPAMP-based adder has a DC component at its output. For a three-input perceptron, when necessary,
we reserve a periphery pin for the non-inverting input of the OPAMP-based adder, so that the DC
biasing can be coupled to that input through a resistor.
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4.3. Impedance Issue of Cascading Neurons

Since the output impedance of the ReLU circuit is extremely high, therefore it has a poor ability to
drive its succeeding stage. The high output impedance of the ReLU circuit results in not working when
combining two neurons. Consequently, it is critical to deal with the impedance issue when cascading
neurons. In our implementation of a MLP circuit, we measure the output impedance of a ReLU circuit
following a two-input perceptron, and the input impedance of a three-input perceptron, which follows
the ReLU circuit. As shown in the graphs of Figure 10a, Zout1 represents the output impedance of
a ReLU circuit: Zin1, Zin2, and Zin3 represent the input impedance of three inputs, respectively and
Zout2 represents the output impedance of the ReLU circuit inserting an OPAMP-based buffer after
it. When the circuit works at 1 KHz, before inserting a buffer, the output impedance is very high,
reaching 15.9 MΩ, whereas the input impedance of three inputs is 34.1 KΩ, 22.9 KΩ, and 18.3 KΩ,
respectively. It is far smaller than the output impedance of the ReLU circuit, therefore ReLU cannot
drive the next stage without dealing with impedance issue. In dealing with the impedance issue of
cascading circuits, inserting a buffer between two stages is an effective way. As seen in the graph
for Zout2, in our implementation of the circuit, the output impedance is significantly reduced after
inserting a buffer, which has only 6.1 mΩ and load-carrying capacity has been improved.
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Figure 10. Impedance issue of cascading. (a) Comparison between the output impedance and the input
impedance. (b) The output impedance of the circuit after inserting buffers.

However, it is not any buffer that can alleviate the issue of high output impedance. We need
to design the output impedance of the buffer carefully. Figure 10b shows the measuring results of
the output impedance of four buffers. There are OP1-based, OP2-based, OP3-based, and INV-based
buffers. When working at 1 KHz, their output impedance is 335.1 Ω, 2.7 KΩ, 333.9 mΩ, and 1.8 KΩ,
respectively. Finally, we chose the OP3-based buffer as it has the lowest output impedance. Besides, it
has a stable frequency characteristic ranging from 0–1 MHz. However, the other three buffers cannot
enable the MLP circuit to work, even inserting them after a ReLU circuit. Note that the ReLU circuit
inserting with an OP3-based buffer is packed inside the ReLU module in the top-level schematic.

Furthermore, from both figures of the measuring results, it shows that the impedance of the circuit
is relevant to the working frequency, as the impedance value of the circuit is changed dramatically when
the frequency is beyond 1 MHz. It implies that our MLP circuit is constrained by the working frequency.

5. Experimental Case for MLP Circuit

After the 2-3-4 MLP is successfully constructed, in this section, we first explain the simulation
settings for a 2-3-4 MLP, and then summarize the simulation results of a 2-3-4 MLP. Finally, seven more
analog-based MLPs are also designed through the same method exampled in the 2-3-4 MLP, in which
two cases are used to compared to their digital counterparts with the same structures. The simulation
results relative to various specifications are summarized and analyzed, demonstrating the feasibility
and effectiveness of our analog perceptron for configuring a MLP.
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5.1. Simulation Explanation

After each module of the 2-3-4 MLP circuit is well tuned, we conduct a system simulation for
the top-level schematic (see Figure 7). Since the experiment demonstrated in this work is used to
verify the feasibility of configuring an analog-based MLP, and determine the most suitable circuit
parameters, the connection weights in this experiment are preset by the digital codes of DAC-based
multipliers. Subsequently, two test signals are applied to the inputs. Each measuring net of the MLP
circuit is plotted and the amplitude of the waveform is recorded. Since the result of each measuring
net is a simple weighted sum, the measuring result of simulation can be used to verify the behavior
of a learning model on hardware easily, the effectiveness and feasibility of our MLP circuit can be
demonstrated as well.

In our system simulation, we apply two of the same signals with ab amplitude of 1 mV and
frequency of 1 MHz at inputs, and measure the points of interest on the nets of the top-level schematic.
As seen in the Figure 11, we obtain five sets of graphs, corresponding to the measuring nets of inputs
(see Figure 11a), neuron outputs of the hidden layer (see Figure 11b), ReLU outputs of the hidden
layer (see Figure 11c), neuron outputs of the output layer (see Figure 11d), and ReLU outputs of the
output layer (see Figure 11e), respectively. The legend of each set of graphs is directly corresponding
to the net name on the top-level schematic. The amplitude of each graph is annotated in the figure and
recorded in a table in the after-mentioned subsection. As seen from the figure, each measuring net
has sinusoid outputs, which implies that our MLP circuit can work. In the following subsection, we
introduce the performance of our circuit. When comparing Figure 11c to Figure 11b, and Figure 11e to
Figure 11d, it was found that the offset of the outputs is eliminated and this is because the capacitor
following after the improved source follower filters out the offset.

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

V
IN

(m
V

)

0.0 0.5 1.0 1.5 2.0

Time(µs)

VIN_N1 VIN_N2

999.6234uV

999.6234uV

(a) measuring nets-1

10.0

5.0

0.0

-5.0

-10.0

-15.0

-20.0

V
O

U
T

(m
V

)

0.0 0.5 1.0 1.5 2.0

Time(µs)

N3_out N4_out

N5_out
7.452061mV

1.731482mV

592.1157uV

(b) measuring nets-2

15.0

10.0

5.0

0.0

-5.0

-10.0

-15.0

V
O

U
T

(m
V

)

0.0 0.5 1.0 1.5 2.0

Time(µs)

N3relu_out N4relu_out

N5relu_out13.51404mV

4.536489mV

2.722749mV

(c) measuring nets-3

30.0

20.0

10.0

0.0

-10.0

-20.0

-30.0

V
O

U
T

(m
V

)

0.0 0.5 1.0 1.5 2.0

Time(µs)

N6_out

N7_out

N8_out

N9_out

-40.0

27.877mV

15.1622mV

9.27896mV

7.16248mV

(d) measuring nets-4

Figure 11. Cont.



Sensors 2020, 20, 4222 16 of 22

40.0

30.0

20.0

10.0

0.0

-10.0

-20.0
V

O
U

T
(m

V
)

VOUT1

VOUT2

VOUT3

VOUT4

-30.0

0.0 0.5 1.0 1.5 2.0

Time(µs)

30.7911mV

17.8119mV

11.7885mV

9.44969mV

(e) measuring nets-5

Figure 11. Simulation results for the top-level schematic.

5.2. Summary and Discussion of MLP Circuit

The specifications and weights of our 2-3-4 MLP circuit are summarized in Table 1. Our entire
circuit is designed in a 0.6 µm CMOS technology process with supply voltages of ±2.5 V. The working
frequency of our circuit ranges from 0 to 1 MHz, which can satisfy the most of applications. In the
implementation of the MLP circuit, the interaction of neurons is complicated, such as the impedance
issue in cascading and the unit-gain frequency of OPAMP, both can influence the working frequency
of the entire circuit. In terms of power dissipation, the measured result shows a power dissipation
of 200 mW, as we adopt not an advanced process considering the manufacturing cost. Based on our
layout implementation for a perceptron in a 0.6 µm PHENITEC technology, the expected area of the
MLP circuit is approximately 1.69 mm2.

Table 1. The specifications and weights of our 2-3-4 MLP circuit.

Technology process 0.6 µm CMOS

Supply voltage ±2.5 V

Working frequency 0–1 MHz

Power dissipation 200 mW

Expected area 1.69 mm2

Weight value

w13 = 2, w23 = 1 w36 = 3, w46 = 0.6, w56 = 0.4

w14 = 5, w24 = 10 w37 = 2, w47 = 0.25, w57 = 0.75

w15 = 3, w25 = 2 w38 = 3, w48 = 1, w58 = 2

n/a w39 = 0.83, w49 = 0.16, w59 = 1.16

With respect to the weight value, we list them in the form of two columns by referring to the
top-level schematic corresponding to the weight value of neurons in the hidden layer, and neurons
in the output layer, respectively. The weight is set to the value consistent with the software by
configuring the digital codes of each perceptron. For example, the sixth neuron in our MLP circuit has
weights of w36 = 3, w46 = 0.6, and w56 = 0.4, the subscript 3, 4, and 5, represent the starting points, the
third, fourth, fifth neuron, respectively. The subscript 6 represents the target point, the sixth neuron.
Similarly, the other weights follow the same rule. In this experiment, all biases for neurons are set
to 0 for the simplicity of demonstration. However, if bias is enabled in each neuron, we can insert
an OPAMP-based adder at the final output of the MLP circuit, adding the amount generated by the
weights. Since the bias in each neuron is a constant in the neural network model, the total amount
generated by the network is also a constant.
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Table 2 shows the amplitude of the measuring nets, their corresponding mathematical calculation,
and error ratio. We omit some measuring nets and only list the values at the outputs of the ReLU
circuits, as the omitted measuring nets are not final outputs of neurons and also have the offset. In the
following, we give an example of the mathematical calculation for a measuring net. For the net
N3ReLU_out at the output of the ReLU circuit after the third neuron, which has weights of w13 = 2, w23

= 1, thus, the output is: y3 = x1·w13 + x2·w23. Since the amplitudes of x1 and x2 are both 1 mV in our
implementation, the amplitude of y3 is 3 mV. Ideally, the amplitude of y3 is the final result for the net
N3ReLU_out if the circuit can realize the ReLU function perfectly. In the same way, we can calculate
that the output of the net N4ReLU_out is 15 mV and that of the net N5ReLU_out is 5 mV. After all
of the outputs in the hidden layer is obtained, they are used as inputs of the next layer. The output
of neuron in the output layer is equal to that its inputs are multiplied by corresponding weights and
are then summed up, the output for the sixth neuron is as: y6 = x1·w36 + x2·w46 + x3·w56. Here x1, x2,
and x3 denote the inputs of the sixth neuron, the amplitude of y6 is 20 mV, the final result for the net
VOUT1 is also 20 mV under assumption of the ideal circuit. Similarly, the outputs for the nets VOUT1,
VOUT2, and VOUT3, are 13.5 mV, 34 mV, and 10.83 mV, respectively. Note that all the outputs of
neurons are positive, as the inverting amplifier inside perceptron module inverts the summed signal.
The amplitude for each measuring net is listed in Table 2, and the error ratio is given accordingly.
The error ratio is calculated by the difference between the mathematical calculation and simulation
result divided by the mathematical calculation.

Table 2. Evaluation to our MLP circuit.

Measuring Net Mathematical Simulation Error
Calculation (mV) Result (mV) Ratio (%)

N3ReLU_out 3 2.72 9.3

N4ReLU_out 15 13.51 9.9

N5ReLU_out 5 4.54 9.2

VOUT1 20 17.81 11.0

VOUT2 13.5 11.79 12.7

VOUT3 34 30.79 9.4

VOUT4 10.83 9.45 12.7

Furthermore, in order to demonstrate the effectiveness of our analog-based MLP, we configure
MLPs with different structures and measure the neuron outputs, power dissertation, and working
frequency by using the way as in a 2-3-4 MLP. Finally, analog-based MLPs and comparison to
FPGA-based MLPs with the same structures are shown in Table 3. In analog-based MLPs of this
work, the structure selections use the geometric pyramid rule and rounding rule as clarified in
Section 2, thus the circuit topologies are significantly reduced. Note that the eight cases shown in
the table are only for demonstration, as we cannot enumerate all possible structures herein even if
we employ the geometric pyramid rule and set a constraint for a die size of 3.6 × 3.6 mm2. The best
structure can be chosen in a machine learning algorithm by software in our future works. The hidden
layer number of cases 1, 2, 7, and 8 is a rounding number as the results by applying the geometric
pyramid rule to these cases are not integers.

We also use a specification, RMES (root-mean-square error) of error ratio, to evaluate an
analog-based MLP with given structure, which can be obtained by applying RMSE calculation to the
error ratio of all neuron outputs (as referred to Table 2), our error ratio is a parameter that characterizes
the intrinsic error generated from the analog-based MLP, ideal error ratio for each neuron output is
0. After we obtain a set of error ratio for MLP hardware, the connection weights of the MLP in the
software are calibrated to correct values according to the error ratio from hardware. Thus, our learning
model from software can achieve a higher precision as compared to the one without considering the
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hardware error. According to our extensive experience of tuning the connection weights in software,
when the RMES of error ratio for a selected MLP hardware is beyond 20%, the selected structure needs
to be abandoned as the calibration for the model mismatch in hardware becomes very complicated. To
the best of our knowledge, this is the first work that proposes to take the hardware error into account
when finding the connection weights.

Table 3. Analog-based MLPs and comparision to FPGA-based MLPs with same structures.

Case Structure RMSE(%) Power Expected Working Configurable Hardware
MLP of Dissipation Area Frequency Weight Bits Cost

Error Ratio (mW) (mm2) (MHz) (bit)

This work

1 2-3-4 10.70 200 1.69

2 4-3-2 10.73 192 1.56

3 1-2-4 10.40 131 1.17

4 4-2-1 10.33 118 0.96 1 4 Perceptron

5 1-3-9 10.59 223 2.73 chip

(Analog-based 6 9-3-1 10.41 219 2.17 (low)

MLPs) 7 7-6-5 10.58 234 3.05

8 12-3-1 10.37 228 2.68

FPGA-based MLPs [17] 7-5-6 - 241 - 100 16 Artix-7 (high)

[39] 12-3-1 - 1776 - 100 24 Zynq-7000 (high)

The specification shows that there is not much difference between the selected different structures.
It implies that the system errors resulting from the analog-based MLPs are nearly constant and within
the tolerance. For the error ratio, on the one hand, the ideal ReLU function and approximated function
generated by the circuit have a difference that is inevitable. On the other hand, the interaction between
the analog circuits is complicated, especially in a highly-interconnected neural network, designers
need trade-off in the consideration of many aspects, such as noise, offset, impedance, the input, and
output range, and the weight value accuracy. The error ratio can be reduced from solving the above
issues.

As for power dissipation, analog-based MLPs show that power dissipation varies with the adopted
structure, depending on the number of DAC-based multipliers and activation circuits utilized in the
MLP circuit. Power dissipation is also different even if in structures with the same neuron number, this
is because their multiplier number and activation circuit number are different. Power dissipation for
our analog-based MLPs can still be further optimized as our circuits achieve low design complexity and
good functionality at the expense of some power. In future works, we can reduce power dissipation by
using the following low power design techniques: It is suggested that the OPAMP circuits in a MLP
can be replaced by chopper amplifiers with low noise and low power [35,36]. Thus, the signal-to-noise
ratio can be improved and power dissipation can be reduced. For the summator block inside an analog
perceptron, it can be implemented with lower anlog circuitry using OTAs instead of voltage amplifiers,
thus reducing silicon area and power dissipation [40]. Furthermore, aiming at low-power applications,
the active resistor comprised of MOS transistors operating in sub-threshold region can achieve high
resistance and good tuning capability [41–43]. It is suitable for large value resistor implementation for
the analog-based MLP.

As for the expected area of a layout, we can obtain a reasonable estimate from the silicon
implementation of an analog perceptron. The reason for the difference in power dissipation also
applies to the case in the area estimate.

As for the working frequency, our analog-based MLPs with different structures show a wide range
of up to 1 MHz, in terms of most common applications that deal with analog signals. This is because
the impedance issue of interconnecting neurons has been carefully handled by the buffers inside ReLU
modules. We can extend the working frequency range if needed by carefully designing the output
impedance of buffer, and the input impedance of analog perceptron. Note that the simulated working
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frequency demonstrated herein is in the context of no noise present, the noise can be filtered out by
a low-pass filter embedded with the MLP, or clean signals are already acquired by filters before the
target signals are input into analog-based MLP. Besides, analog-based MLPs have the specification of 4
bits for connection weights. Each connection weight is configured by digital codes of DACs. Lastly,
our analog-based MLPs have the merit of low-cost hardware, which facilitates the training for a sensor
network where machine learning is applied.

Cases 7 and 8 in analog-based MLPs are used to compare to FPGA-based MLPs in [17,39],
respectively. In terms of power dissipation, case 7 consumes less power compared with the best case
in [17]. However, case 8 consumes less power considerably compared with the case in [39], this is
because the case in [39] utilizes a large number of flip-flops in this structure. As for the comparison to
expected area, it is hard to make a rigorous comparison as the FPGA-based MLPs are not implemented
in custom chips. However, they provide information that core FPGA chips used for structures in
cases [17,39] are 10 × 10 mm2 and 17 × 17 mm2, respectively. It is significantly larger than ours as
even the die size of analog-based MLPs is no more than 3.6 × 3.6 mm2. In terms of working frequency
and configurable weight bits, FPGA-based MLPs show more advantages than analog-based MLPs.
FPGA-based MLPs have very high working frequency, however, a 1 MHz working frequency range
is sufficient to most of analog signal applications. The weight value accuracy of FPGA-based MLPs
is very high as they employ the fixed-point number, whereas the weight value accuracy of ours is
limited. Our analog-based MLPs can be improved by increasing the number of the weight bits. Last,
the hardware cost of MLPs based on Xilinx FPGA platform for training or deployment in sensor nodes
are very high compared with analog-based MLPs.

Last, it is worth mentioning that when dealing with analog design, process variation becomes one
of the critical factors in design. The passive components such as R and C will vary each from 10% to 20%.
The lumped variation can be huge, thus harming the circuit function. However, for digital-based design,
this issue is avoided. To overcome the stated issue, in future works for our silicon implementation
of analog-based MLP, the passive resistors and capacitors can be classified into two types. One has
relatively small components whose nominal values are below tens of KΩ or pF. The other has relatively
large components whose nominal values are beyond tens of KΩ or pF.

As for the relatively small components, we need to apply some layout techniques to reduce
the process variation that degrades the absolute accuracy and matching accuracy. Good practice
in compensating the accuracy can be gained from the following rules: Integrated resistors and
capacitors are decomposed into many unit cells whose dimension, orientation, and material are
identical. The width is 5 times larger than the minimum feature size for high-accuracy resistors, and the
perimeter-area ratio is the same for matched capacitors. These unit cells are arranged closely in an array
with the same pitch and placed far away from power devices. More precise absolute accuracy and
matching accuracy can be achieved by using interdigitated or common centroid structures. For keeping
the boundary of all the sides of the capacitor or resistors uniform, dummy strips need to be placed
around the components. As for the relatively large components, it is a good choice to use the MOS
capacitor and MOS resistor to replace passive capacitor and resistor, respectively. Alternatively, we can
use discrete passive components to implement capacitors and resistors with large values in circuitry,
since the discrete components generally have a higher absolute accuracy than those implemented in
integrated circuits. A more effective method can be referred as in [44], where adjustable resistors and
capacitors are implemented in an integrated circuit, based on an external resistor (first reference) and
an accurate clock (second reference), one can tune the resistance value and capacitance value to the
target percentage of accuracy, respectively.

6. Conclusions

This paper presented the measured silicon results for the analog perceptron circuits fabricated in
a 0.6 µm/±2.5 V CMOS process, which were comprised of DAC-based multipliers and phase shifters.
Based on the measurement-verified perceptron circuits, we implemented a 2-3-4 MLP circuit with
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ReLU activation, and emulationally demonstrated the feasibility and effectiveness to flexibly configure
a MLP-based neural network by utilizing our analog perceptron. The simulation results showed that
our MLP circuit had a power dissipation of 200 mW, a range of working frequency from 0 to 1 MHz,
and an error ratio within 12.7%. In the implementation of our MLP circuit, an improved source follower
was proposed to greatly approximate the ReLU activation function. One summator was adopted to
improve the reliability of the whole circuit, so that the DC biasing of the ReLU circuit was adjustable.
In addition, the impedance issue in the cascading of neurons in MLP was presented, which is critical to
the feasibility of the whole circuit. Moreover, seven more analog-based MLPs designed with the same
approach were used to analyze the simulation results with respect to various specifications, in which
two cases were used to compare to their digital counterparts with the same structures. The results
measured from the simulation are summarized and analyzed in this work. As prototyping circuits for
the proof-of-concept of on-chip learning, our circuits showed issues with respect to noise, resistance
accuracy, and prediction accuracy. Optimizing these specifications is one of our future works.
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