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Abstract: Sensor networks in real-world environments, such as smart cities or ambient
intelligent platforms, provide applications with large and heterogeneous sets of data streams.
Outliers—observations that do not conform to an expected behavior—has then turned into a crucial
task to establish and maintain secure and reliable databases in this kind of platforms. However, the
procedures to obtain accurate models for erratic observations have to operate with low complexity
in terms of storage and computational time, in order to attend the limited processing and storage
capabilities of the sensor nodes in these environments. In this work, we analyze three binary classifiers
based on three statistical prediction models—ARIMA (Auto-Regressive Integrated Moving Average),
GAM (Generalized Additive Model), and LOESS (LOcal RegrESSion )—for outlier detection with
low memory consumption and computational time rates. As a result, we provide 1) the best classifier
and settings to detect outliers, based on the ARIMA model, and 2) two real-world classified datasets
as ground truths for future research.

Keywords: abnormal data; Ambient Intelligence platform; binary classifier; outlier detection;
prediction model; sensor

1. Introduction

In the two last decades, technology innovation has led to intelligent environments [1] such as smart
homes [2], smart hospitals [3], or even smart cities [4]. IT (Information Technology) infrastructures
such as sensors enable making decisions by providing real-time information of the environment to end
users, leveraging interconnected devices in a huge number of domains. Sensor systems offer real-time
monitoring information on a wide variety of contexts, such as health monitoring, environmental
applications, transport utilities, or manufacturing [5]. Sensors can provide measurements about almost
everything – temperature, health parameters, weather, material composition.

In sensors-based systems—Ambient Intelligence (AmI) platforms, smart-city applications, and
so forth—the highly diverse and distributed data sources make the flow and interoperability among
devices a complex challenge [6]. On a conceptual level, a main aspect to deal with is due to the different
types of data to manage. The solution that emerged to manage this problem is the use of techniques
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such as semantic technologies [7], where data information from different sources is integrated into a
common “semantic graph”, forming a shared vocabulary or ontology.

However, on a quality level, a key element in the use of multiple sensors in this kind of platforms
is the reliability of the distributed information they are actually delivering. In large-scale platforms
with so many devices, it is very common to observe sensors injecting corrupt information into the
overall system, in most cases due to a malfunction of either the data transportation or the sensors
themselves [8]. This causes the platform to deliver inaccurate information, losing end-users’ confidence,
and forcing them to filter and clean the data, which may be an unfeasible task.

Monitoring erratic sensors can:

• report about incorrect observations, allowing data managers to isolate and handle the point of
failure where the corrupted data have been injected.

• improve data reliability.
• maintain the consistency and integrity of AmI databases.

As Figure 1 illustrates, there are two types of incorrect or erroneous data measurements—1)
correct values after missing data– that is, when a sensor has failed or has been removed and no value
is provided in the large-scale system until a time later; and 2) incorrect values, that is, when a sensor
has failed in giving the correct measure, because of a sensor failure, an attack, and so forth, and an
abnormal and inaccurate value is provided. In both cases, the erratic observation is considered as an
outlier – out of the normal data pattern of the dataset.
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Figure 1. Examples of outliers: (a) from missing observations; and (b) from abnormal observations.

Outlier detection finds extensive use in a wide variety of applications such as fraud detection for
credit cards, health care anomalies, intrusion detection in computer networks, production faults in
factories or military surveillance for enemy activities [9].

After working in our previous research with Fiesta-IoT [10], an AmI platform, we observed that
sensors may eventually produce and deliver corrupted information into the overall platform. For
this large-scale context, it is crucial to implement a high-accuracy outlier detection system whose
requirements in terms of calculation time and storage are maintained to a minimum. As Figure 2
illustrates, an Outlier Detection System (ODS) may be set either into each separate sensor with limited
computational power (Figure 2c), or into the integration AmI platform (Figure 2b) which, in the case
of Fiesta-IoT, may tackle more than 100,000 sensor devices. These two ways can operate:
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• Online: If the ODS is set into each device, it is suitable for analyzing streams of sensor
observations, providing classifications with low latency.

• Offline: The ODS can also process a particular collection of observations offline to classify a
complete history of data from a sensor.

Figure 2. Possible outlier detection systems of erratic sensors in AmI platforms.

In this research work, we examine three binary classifiers based on statistics to detect outliers
produced and delivered by sensors in a large-scale platform with multiple devices. More specifically,
our approach a) collects real-world datasets as ground truths; and b) analyzes the performance of
those models in these datasets to detect both types of outliers. The three statistical predicting models
we evaluate in the present work are ARIMA (Auto-Regressive Integrated Moving Average), GAM
(Generalized Additive Model), and LOESS (LOcal RegrESSion), and they are oriented to particular time
series. Time series are sets of numerical data observed with a fixed frequency—such as temperature or
humidity—and are used in weather forecasting, econometric, mathematical finance, communications
engineering, and so forth.

These specific models are selected due to their low computational time. The experimental analysis
in this approach resumes a comparison among the different classifiers in terms of accuracy and other
related metrics, and identifies the ARIMA-based classifier as the best technique for outlier detection.

This paper is structured as follows. Section 2 makes a general overview of the techniques already
applied to outlier identification. Section 3 introduces our solution. Section 4 explains the experimental
analysis of our approach, including dataset, models and parameters used, and ground truths applied
for the evaluation. Section 5 shows and discusses the results obtained after the analysis. In the end,
Section 6 exposes conclusions and final remarks.
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2. Background and Related Work

The term outlier is referred to as any data object that does not comply with the general behavior
or model in a data set. Outliers correspond to observations that deviate from other observations in
a sample and do not conform to an expected pattern or other items in a dataset [9]. They may refer
either to inconsistent data or good data that may point missing values. The existing works explained
in the next subsections apply different approaches to detect outliers, which can be mainly grouped
into a) statistical techniques and b) data-mining or machine-learning algorithms.

Both types can also be divided into unsupervised or supervised methods. Observations on
unsupervised approaches are not previously labeled – previously classified as outliers or not. In
supervised methods, samples of both normal and outlier values are used to construct models that
identify new observations as one of the two classes.

The following subsections list some of the most relevant works according to the main kind
of approaches.

2.1. Statistical Models

Essentially, statistical methods for anomaly detection are based on comparing the observed data
with expected values. Liu et al. [11] propose LPS (Local Projection Score) to represent the degree of
deviation of an observation relative to its neighbors. The nearest neighbors are first obtained for a
given observation; then, the low-rank approximation, calculated from the nearest neighbors, is used to
calculate the LPS. Observations with higher LPS were considered to be points with a high probability
of being outliers. Here, the suitable LPS threshold was difficult to determine without information
about anomalous observations, that is, with unsupervised datasets.

Markov models have also been used in Reference [12], which takes into account the last few
commands (rather than the last single command) of a user in a UNIX system in order to determine the
next normal command and avoid abnormal intrusions. However, the authors express their concerns
about the large computing requirements needed to build the profiles.

Reunanen et al. [13] use LR (Logistic Regression) to predict outliers in streams of sensor data. The
approach predicts the occurrence of outliers in t time steps in the future; however, it has to use labeled
data—normal and anomalous observations—previously identified with an auto-encoder algorithm.

The work in Reference [14] uses an enhanced ARIMA algorithm for erratic traffic observations in
wireless sensor networks. The ARIMA model is used in fitting time series data to make predictions.
Their improved method has good accuracy and low complexity, but their model is updated after each
time sliding window—the sliding window is the historical data used to predict the future data.

2.2. Machine-Learning Models

Most works based on machine-learning techniques apply unsupervised algorithms. These
algorithms are usually distance-based methods, such as the work in Reference [15], where an outlier is
defined as an observation that is D minimum distance away from a percentage p of observations in
the dataset. The approach uses the KNN (K-Nearest Neighbor) algorithm; however, even though the
authors state distance-based methods improve accuracy and efficiency, they do not provide quantitative
results. The approach in Reference [16] uses a density-based anomaly detection called LOF (Local
Outlier Factor), but a drawback of this technique is the O(n2) complexity required.

Clustering-based algorithms are also one of the common approaches selected for anomalies
detection. In Reference [17], an improved k-means clustering algorithm is proposed to the problem
of outlier detection. The enhanced algorithm makes use of noise data filter and uses a density-based
method. However, the drawback of this approach is that while dealing with large scale data sets, it
takes more time to produce the results. In Reference [18], authors compare the k-means algorithm and
the NOF (Neighborhood Outlier Factor) algorithm to identify intrusion detection in computer network
traffic flows. The k-means approach groups the traffic flow data into normal and abnormal clusters.
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NOF algorithm [19] calculates an outlier score for each flow record, whose value decides whether a
traffic flow is normal or abnormal. Overall, k-means approach is slightly more accurate and precise
and has a better classification rate than NOF. Also, k-means precision increased as compared to NOF
when the size of the dataset increased. In terms of performance, the outcome shows that the k-means
algorithm consumes 10% to 20% of the CPU and takes approximately 5–10 s to execute; on the other
hand, NOF consumes 50% to 60% of the CPU and takes approximately 40–50 s to execute on all the
datasets.

As supervised approaches imply that both normal and anomalous observations are classified in the
training dataset, and this collection may be difficult to obtain, the authors of References [20,21] propose
hybrid semi-supervised anomaly detection models for high-dimensional datasets. In semi-supervised
approaches, only normal samples are available in the training set; that is, the user cannot obtain
information about anomalies. Unknown samples are classified as outliers when their behavior is far
from that of the known normal samples. In Reference [20], they propose an anomaly detection model
that consists of two components: a deep auto-encoder (DAE) and an ensemble KNN graphs-based
anomaly detector, whose consuming time is a quadratic function, O(n2). In Reference [21], their hybrid
approach is based on k-means clustering and Sequential Minimal Optimization (SMO) classification,
whose consuming time has a complexity of O(n3).

Some works have paid attention to real large-scale environments with sensors. The work in
Reference [22] proposes a classification approach for outlier detection in wireless sensor networks
(WSNs), where dynamic nature and resource limitations have to be considered. This approach tries
to identify outliers with high detection accuracy while maintaining the resource consumption of the
network to a minimum, comparing random tree and random forest algorithms. Random tree offered
better results, with an accuracy of 89% and a false positive rate of 11%. However, the time complexity is
O(n2) in its classification phase. In Reference [23], authors use real data from a smart city and compare
frequently used anomaly detection techniques. As a result, they conclude that one-class Support Vector
Machines is the most appropriate technique, with a true positive rate at least 56% higher than the rates
achieved with the other compared techniques in a scenario with a maximum false positive rate of 5%
and a 26% higher in a scenario with a false positive rate of 15%.

In the last years, deep learning-based anomaly detection algorithms have become increasingly
popular, as reviewed in Reference [24], but there are concerns about the computational complexity of
these techniques in real application domains.

3. Proposed Solution

As shown in the state of the art, most of the works for anomaly detection apply machine-learning
approaches with considerable time complexity. Some of them require also storage resources that may
be limited in large-scale, heterogeneous environments, which necessarily imply new light-weight
approaches that can involve as less computation and storage resources as possible, identifying
inappropriate data very rapidly.

AmI environments integrate vertical sectors, such as healthcare, cybersecurity, or environmental
data, in order to improve the quality of human life [10], so it is crucial to explore efficient procedures
to detect abnormal data. Therefore, the main goal of our approach is to find an appropriate method to
detect outliers out of stream data sensors or in the joint distribution of sensor readings, in large-scale
AmI platforms, where the resource consumption of the environment must be set to a minimum. The
requirements of the method are the following:

• The method must be suitable for large datasets and must require a small amount of memory.
• The method does not have to require training data or semi-supervised techniques, which

increment the computational time, and should have O(n) complexity.
• The method must provide results with a high value of accuracy.

Before the analysis of any particular model, it is important to define the streaming data source.
Some existing works apply datasets with normal samples, and then add artificial values for abnormal
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data; this procedure, though, may not reflect the distribution of real outliers [9,25]. The specific context
of this research - sensors in real world - requires a benchmark with a reliable, realistic, and sufficiently
large quantity of data. Due to its characteristics, the analysis proposed in this work is executed with
values taken from the ‘’Sofia Air Quality Dataset” [26], a huge data collection with outdoor-sensors
observations located in the city of Sofia, Bulgaria. This dataset represents observations taken every 150
seconds by 168 environmental sensors of pressure, temperature, and humidity during the month of
July 2017. More specifically, the time series selected come from temperature measurements.

The research questions that drive this work are the following:

• Research question 1 (RQ1): Outliers due to missing values can be detected with high accuracy,
low storage, and computational complexity?

• Research question 2 (RQ2): Outliers due to incorrect values can be detected with high accuracy,
low storage, and computational complexity?

After the study of existing previous approaches – Section 2 – and to satisfy the need of a model
of low time complexity, this work analyses three prediction models, ARIMA, GAM, and LOESS to
evaluate the best binary classifier in terms of accuracy, time, and resource consuming.

These algorithms are commonly applied to time series forecasting and require less time and
storage requirements than machine-learning techniques [27]. There are more options for time series
forecasting, such as Spline, Bayesian structural model, linear regression modeling, Holt-Winters
exponential smoothing modeling, dynamic harmonic regression, long short-term memory, Kallman
filters, and so forth. However, we have adopted ARIMA, GAM, and LOESS because of their widespread
use and the relevant results offered in research of time series prediction [28–32].

4. Experimental Analysis

Figure 3 describes the overall process followed in our approach. This methodology (ODS,
Outlier Detection System) addresses the two research questions above—RQ1) if outliers from missing
observations can be detected; and RQ2) if outliers from abnormal observations can be detected. The
solutions of these two inquiries are explored in two experiments respectively, Exp1 and Exp2, and
they must accomplish the resources constraints of large-scale environments. For this commitment, we
work with three prediction models (ARIMA, GAM, and LOESS), fitting a set of main parameters (data
window size and allowed standard error) to find the best combination to maximize the result.

Figure 3. Experimental analysis methodology.



Sensors 2020, 20, 4217 7 of 20

For an accurate and realistic evaluation, we have developed two ground truths from the whole
Sofia Air Quality Dataset in order to compare the results of the classifiers to this real set—a ground
truth for RQ1 with samples including missing values; and a ground truth for RQ2 with samples
including incorrect observations.

The next subsections explained thoroughly all these elements in our analysis.

4.1. RQ1 and RQ2 Datasets

The first dataset used in Exp1 to satisfy RQ1 is composed of a set of 29 samples extracted from the
data source that meets a specific characteristic—there are missing values among the observations. Each
of these samples contains 150 observations taken in chronological order, which results in a benchmark
collection of 4350 observations.

Figure 4. Example of a single sample vector with missing values.

We performed a semi-automatic search among all the sensor observations from the original
data source. As temperature measurement is a type of time series—every observation contains a
time element—it is clear when the sensor has stopped delivering measurements. First, an automatic
selection took out data fragments with missing data. Then, the most representative fragments were
chosen manually; due to the stability of the sensor observations, we were able to find those samples
with the same pattern (illustrated in Figure 4). In every sample vector, the 76th value has a clear time
lapse from the previous 75th value; the rest of the following observations do not have any significant
time difference.

The second dataset, elaborated for Exp2 to analyze RQ2, is formed by every observation of one
specific temperature sensor—sensor 1850—from the original data source. This sensor measured stable
observations every 150 s during a period of a month, July 2017. The number of total observations in
this set is 17,603 values. Figure 5 shows the data stability in these observations.

4.2. RQ1 and RQ2 Ground Truths

In order to rank and evaluate the classifiers, we have created two ground truths for this research.
The first ground truth is originated from the first dataset explained, composed of 29 samples,

each one of 150 observations. Each observation has been semi-automatically classified as normal or
outlier—an outlier here is easily classified because of the time-lapse reflected. This ground truth is
used in Exp1 to evaluate the performance of the classifiers for RQ1.
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Figure 5. Observations taken by Sensor-1850, Sofia Air Quality Dataset [26].

The second ground truth is formed out of the second dataset; it is composed of the complete
manual classification of the 17603 values in that benchmark and it serves to Exp2. The direct validation
has been made by three experts who participated in the experiment.

These three experts were students in their final year of the master’s degree ‘’Master of Science in
Telematic Services and Networking Engineering”, where they attended several subjects on IoT, signals,
and sensoring. Before starting the manual classification, the experts received special training on what
is considered a correct or incorrect value.

In order to carry out this arduous task, we used very simple software to present the data to be
classified by means of samples of 200 observations. Using this software, the experts labeled each value
as either normal or outlier according to the instructions they received in the training phase. As a result,
each value is tagged with three assessments (one per expert), which are finally unified: a particular
observation is considered as an outlier if it was labeled as outlier by two or more experts. Both ground
truths are published together with this article in the journal site (in Supplementary Materials).

4.3. Binary Classifiers and Parameters

In this research work, we compare three binary classifiers based on three statistical inference
techniques—ARIMA , GAM, and LOESS. The three classifiers make use of the ability to predict the
next values of these inference models to classify a single value ahead as an outlier—if it is far from the
predicted value—or normal otherwise.

The ARIMA model uses observations from previous time steps to predict the value for the next
time step, using a particular regression equation [33]. ARIMA (p, d, q) is the standard setting parameters
used [34]: p refers to the number of lag observations included in the model to adjust the line that is
being fitted; d indicates the number of differencing transformations needed by the time series to get
stationary, and q refers to the size of the moving average window.

LOESS is a non-parametric local regression method where a smooth function may be properly
fitted by a low degree polynomial in a particular close subset of any point of a dataset by a moving
window strategy [35]. In the smoothing process, the sample of a timer series is adjusted so that
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individual values that are higher than the immediately adjacent values are moderated, and the same
with lower ones. In the weighted polynomial regression used, more score is given to values near the
target observation, and less score is given to values further away.

GAM is not restricted by the assumption in regression that requires predictor and outcome
variables to move in a straight line; it is based on non-linear smooth functions instead of individual
prediction variables [36]; that is, replaces a linear regressive function by a sum - additive - of smooth
functions.

For the models’ internal settings, the best numbers for ARIMA standard parameters are selected
according to the Akaike Information Criterion (AIC) [37]. In the case of the binary classifiers where the
GAM and LOESS models are used, there is no need to adjust any additional internal parameters.

The black-box diagram in Figure 6 illustrates the binary classifiers proposed in this research and
the two parameters needed to classify the next observation.

Figure 6. Black-box diagram of a binary classifier.

The three binary classifiers are tested with the following parameters and values:

• Data-window size—The classifiers are feed with previous observation values in order to perform
the predictions; this collection of values is named as data window and its size is called data-window
size. Values considered are 10, 20, 30, 50, and 100.

• Standard error—Any prediction model, in addition to the predicted value, provides a standard
error on that prediction, which is the standard deviation of its sampling distribution. The three
binary classifiers use this value to determine whether the next observation analyzed is an outlier.
The classifiers will accept an allowed standard error, above or below the predicted value, to
consider a particular observation as outlier or normal. Values considered range from 1 to 30.

The challenge is finding the appropriate parameters’ combination—data-window size and
standard error—to both accurately identify true outliers—true positives—and avoid the classification
of normal observations as outliers—false positives.

Figure 7 illustrates an example of a prediction made for the 150th observation. The green-colored
area represents the observations that would be considered as normal, while the red area would
correspond to outliers. In the example shown in the figure, an observation is considered as an outlier if
it exceeds twice the standard error of the prediction. If the next value is considered as normal, it will
be added to the data window to make the next predictions; otherwise, it will not be added. This way,
the values considered as outliers do not interfere in future predictions.
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Figure 7. Predictions made for the 150th value. The green and red areas cover the zones where the
next observation would be considered as normal or outlier respectively.

Figure 8 shows three data windows in blue, green, and red boxes. The green window uses 10
observations to predict the next one, the blue window uses 20 values, and the red window uses 30
values. The area bounded by green lines shows the predictions made by a model using a standard error
of 1, and the areas bounded by blue and red lines indicate a standard error of 2 and 3, respectively.
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Figure 8. Example of data-window sizes and the standard errors allowed for classifying the next
observation. Dotted red, blue, and green lines represent a data-window size of 100, 50, and 30 values
respectively. The solid red, blue, and green lines mark 3, 2, and 1 times the standard error respectively.

Figure 9 shows an example of a classification made by the three binary classifiers. All of them
use a data window of 20 observations to make the predictions and a deviation of 2 for the standard
error. The area limited by the dotted lines accommodates normal observations; outside that area,
observations are considered outliers (shown as red dots). Each classifier identifies a different set of
observations as outliers; although there is often consensus, the same assessments are rarely achieved.
It is therefore important to find the perfect combination that better responds to the research questions
proposed in this work.
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Figure 9. Example of classification made by the three proposed binary classifiers.

5. Results and Discussion

The research questions RQ1 and RQ2 guide the experimental analysis accomplished in this
research. The next subsections explain the first experiment, Exp1, conducted to solve RQ1, and the
second experiment, Exp2, to solve RQ2. A discussion of the overall analysis is presented at the end.

The classifiers are tested with 450 combinations. After the testing phase, the resulting
classifications of Exp1 and Exp 2 are compared to RQ1 and RQ2 ground truths respectively, generating
450 confusion matrices. The main performance indices obtained are accuracy, recall, precision,
Fβ − Score, true positives (TP), true negatives (TN), false negatives (FN) and false positives (FP).

The rankings are ordered using the Fβ − Score, which measures the accuracy regarding the
precision and the recall; in fact, it is defined as the harmonic mean of the precision and recall, as shown
in Equation (1).

Fβ − Score =
(

1 + β2
)
· precision · recall
(β2 · precision) + recall,

(1)

where:

• precision = true positives/(true positives + false positives)
• recall = true positives/(true positives + false negatives).

In addition, the Fβ − Score allows to give more weight to recall with respect to accuracy by
customizing the value of β, see Equation (1). This is important for the experiments because normal
observations in the datasets are much more predominant than the outlier values. The dataset for Exp1
contains 29 outliers against 4321 normal values; the dataset for Exp2 contains 534 outliers and 17,069
normal values. In an AmI context, we prefer to give more importance to the detection of outliers (true
positives), even though normal observations could be classified as outliers (false positives).

Equation (2) shows the Fβ − Score expressed in terms of true positives, false negatives and false
positives metrics.

fβ − Score =
(
1 + β2) · true positive

(1 + β2) · true positive + β2 · false negative + false positive.
(2)
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5.1. Results for RQ1

Table 1 shows a summary of the first four positions in the classification ranking. It is ordered by
the F1 − Score, although it does not have much relevance since there are 20 results which compare
equal; they perfectly classify all the observations.

Table 1. Ranking with the first four positions of the results in Exp1, ordered by F1 − Score.

Prediction
Model

Data-Window
Size

Standard
Error Accuracy Recall Specificity F1

Score TP TN FN FP

ARIMA 100 3 1.0 1.0 1.0 1.0 29 4310 0 0
ARIMA 100 4 1.0 1.0 1.0 1.0 29 4310 0 0
ARIMA 20 5 1.0 1.0 1.0 1.0 29 4310 0 0
ARIMA 10 6 1.0 1.0 1.0 1.0 29 4310 0 0

However, there are combinations that launch false predictions, as shown in Table 2.

Table 2. Ranking with the last four positions of the results in Exp1, ordered by F1 − Score.

Prediction
Model

Data-Window
Size

Standard
Error Accuracy Recall Specificity F1

Score TP TN FN FP

GAM 10 14 0.8961 0.0345 0.9019 0.0044 1 3897 28 424
GAM 10 12 0.8961 0.0345 0.9019 0.0044 1 3897 28 424
GAM 10 13 0.8961 0.0345 0.9019 0.0044 1 3897 28 424
GAM 10 11 0.8832 0.0345 0.8889 0.0039 1 3841 28 480

A comparison among the F1 − Score of the classifiers is shown in Figure 10. At first sight, LOESS
predictive model obtains the best results for F1 − score compared to ARIMA and GAM models. Among
ARIMA and GAM models, GAM works well except for the combination that uses 10 observations
for the data-window size, which is clearly the worst. Figure 11 shows an example of a good and bad
classification with the ARIMA and LOESS models respectively.

A data-window size of 100 observations yields the best scores for all classifiers. For the
ARIMA-based classifier, the scores are perfectly ordered by data-window size; the larger the
data-window size, the better the classification. In the case of the classifier using GAM, the data-window
size of 10 observations offers the worst results, but for the other sizes, it does not seem to be a relation.
When using LOESS, chaotic results appear; best results are for a window of 100 observations (the
largest) and 10 observations (the smallest). That is why the use of LOESS is not recommended even if
it gets sometimes the best results.
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Figure 10. Comparison chart among functions, data-window sizes, and standard errors. Exp1.

Figure 11. On the left, an example of a good classification; on the right, an example of a
bad classification.

For the case of ARIMA’s predictive model, the maximum values are obtained when the standard
error ranges from 10 to 15. In the case of GAM, it has a good performance for all combinations where
the standard error is between 13 and 23; however, when using a data-window size of 10 observations, it
gets a very low score. In the LOESS model, the performance gets better with a standard error between
15 and 25; its best data-window size is 100.

The three binary classifiers perform the best when the data-window size is higher, obtaining the
optimum value with a data-windows size of 100 observations. It is not considered to further increase
the window size because this would mean having more data in memory and increase the complexity
of space, an aspect that goes against the research objectives.

Although LOESS apparently achieves better results, its use is discouraged as the results for the
different data-window size values do not seem to make sense and so it is considered unpredictable.
On the contrary, the recommended model is ARIMA, which yields predictable results for different
data-window sizes. As a final conclusion, the best classifier to detect missing values is that using an
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ARIMA prediction model, with a data-window size of 100 observations and a standard error between
10 and 15. The value of the standard error should not be increased too much since missing values will
be left undetected.

5.2. Results for RQ2

To respond to RQ2, Exp2 uses the input data set described in Section 4.1. The labeling of the
classifiers is compared with the ground truth described in Section 4.2 to check their performances.

Table 3 shows a summary of the ranking obtained. The table is ordered by the F3 − Score. This
ranking uses a β = 3 in order to apply more weight to recall; in doing so, outlier detection gives more
importance to identifying outliers than to predict false positives.

Table 3. Ranking with the first 4 positions of the results in Exp2, ordered by F3 − Score.

Prediction
Model

Data-Window
Size

Standard
Error Accuracy F3

Score TP TN FN FP

ARIMA 30 2 0.9431 0.9153 473 16129 61 940
ARIMA 20 2 0.9281 0.8595 420 15917 114 1152
ARIMA 100 1 0.7398 0.854 521 12501 13 4568
ARIMA 50 2 0.9398 0.851 404 16139 130 930

The best score is achieved by the ARIMA-based prediction classifier, with a data-window size
of 30 and a standard error of 2. This combination also gets the first place if the ranking is ordered by
accuracy, recall, or precision. As in Exp1, the ARIMA prediction function can be used effectively to
determine incorrect observations, but it must be applied to a particular combination of parameters;
identifying this type of outliers can be harsher—in terms of settings—than identifying missing values.

Figure 12 shows an example of good and bad classifications made by the ARIMA and LOESS
model respectively.

Figure 12. On the left, an example of good classification; on the right, an example of bad classification.

A comparison of all classifiers is shown in Figure 13 for a standard error from 1 to 7 since from
value 7 the results are very close to 0. The results from 8 to 30 were omitted in the figure, as they do
not provide any improvement in the results. All the functions obtain their maximum value when the
standard error has a value around 2 and from a value of 4, the results start to decay. It is also noticeable
that ARIMA-based classifier gets better results compared to GAM and LOESS-based classifiers. Among
GAM and LOESS predictive models, GAM model gets better scores than LOESS model.
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Figure 13. Comparison chart among functions, data-window sizes and standard errors. Exp2.

There are two concerns to note. First, as function curves get flatter, the standard error has less
impact on the resulting metrics. The ARIMA-based classifier has a more slope curve, a peculiarity that
affects the metrics more than the standard error. Second, the data-windows size seems not to affect
the ARIMA-based classifier; however, this parameter has a great impact in the F3 − Score of GAM and
LOESS-based classifiers.

When using an ARIMA model and a standard error of 2, the best result is obtained for a data
window of 30 observations. For standard errors higher than 2, the function starts to decay drastically
and there is hardly any difference among the data-window sizes.

The classifier that uses GAM as a prediction model, and for a standard error equal to 2, achieves
the maximum values for every data-window sizes; that is, the data-window selected does not affect
the results — the functions are very close together in Figure 13. It is interesting to note that the curves
in the extreme values for the data windows (100 and 10 observations) obtain very low results for
F3 − Score; the best score is obtained with a data-window size of 30, as in the case of ARIMA.

The curves obtained by LOESS model are flatter compared to those of GAM and ARIMA, meaning
that the standard error does not affect the score as much; like the previous ones, the maximum values
are achieved when the standard error has a value between 2 and 3, and again, the data-window sizes
with best results are 20 and 30.

For the three prediction models, the variable that most affects the detection of outliers is the
standard error, while the data-window size does not seem to affect so much. Then, the best combination
to use to answer RQ2 is a data-window size of 30 (or close), a standard error of 2, and, whenever
possible, a predictive model based on ARIMA.

5.2.1. Analysis of False Positive Rate (FPR)

The FPR metric is also known as fall-out or false alarm ratio. In our approach, this rate represents
the normal observations classified as outliers; therefore, the lower, the better. Even though the false
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Table 4. False Positive Rate, False Negative Rate, Specificity, and Recall metrics for Exp 2.

Prediction
Model

Window
Size

Standard
Error FPR FNR Specificity Recall TP TN FN FP

ARIMA 30 2 0.0551 0.1142 0.9449 0.8858 473 16129 61 940
ARIMA 20 2 0.0675 0.2135 0.9325 0.7865 420 15917 114 1152
ARIMA 100 1 0.2676 0.0243 0.7324 0.9757 521 12501 13 4568
ARIMA 50 2 0.0545 0.2434 0.9455 0.7566 404 16139 130 930

positives are higher than the true positives detected by the three classifiers, this ratio is very low; Table 4
shows the best classifier has a FPR under 0.06, which is a very significant result. In our approach,
the best results also yield mislabeling with normal instances; that is, they are classified as outliers.
However, it is preferred that classifiers make these types of errors as long as they are good at classifying
outliers as such; the metric F3 − Score gives more weight to a good classification of outliers. In spite
of this, general results are promising, since the FPRs reflect very low values because there are many
normal observations (17,069) that are classified correctly in this environment.

5.2.2. Analysis of False Negative Rate (FNR)

The FNR metric measures the ratio of observations that are positive—outliers—but were
erroneously classified as negative—normal; as in FPR, the lower this rate, the better. The best classifiers
obtain a rather low FNR, having values below 0.25%, which is significant. The best classifier only
failed 61 times, classifying outliers from a total of 17,603 observations. This is a very good result, and it
confirms that our approach is a suitable solution for outlier detection.

5.2.3. Analysis of True Negative Rate (TNR or Specificity)

The TRN measures the ratio of actual negative observations that are correctly classified as such;
that is, it is the percentage of normal observations identified as normal—that is, not incorrectly
classified as outlier. In this rate, the higher the value, the better. Table 4 shows that the best classifiers
achieve very high rates for Specificity, above 90% in most cases, demonstrating that they are able to
discern whether a value is normal or outlier. These good rates are achieved because, in our context,
there is a very high ratio of normal observations (17,069) compared to outlier observations (534), and
so the classifiers perform well.

5.2.4. Analysis of True Positive Rate (TPR, Recall, or Sensitivity)

The TPR metric is the ratio of detection of true positives. It measures the ratio of actual outliers
that are correctly identified as such; it can be expressed as a percentage of the outliers that were
correctly identified as outliers. It is a very important metric used to measure the performance of
classifiers since it takes into account true positives as well as false negatives. The results for the recall
shown in Table 4 are quite high values for the top-ranked classifiers.

5.3. Discussion

As seen in the previous sections, the approach proposed in this paper, based on the application
of predictive models, is an effective, realistic, and low-cost computational solution to detect outliers
from both missing values (RQ1) and incorrect observations (RQ2). The model that achieves the best
scores for RQ1 and RQ2 in terms of accuracy is ARIMA, but it is very important to note that the model
settings must be different depending on the specific goal—the parameterization for RQ1 is not valid
for RQ2 and vice versa. Thus, for a real-world implementation that wants to address the two research
questions proposed in this paper, and as a suggestion to reduce the computational cost, it is proposed
to use the ARIMA model working in two different sets of instances, each of them with the appropriate
configuration suggested in the previous sections.
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6. Conclusions

Outlier detection has gained importance in the last two decades with the use of real-world
applications. Domains where anomaly detection is crucial include financial fraud detection, computer
network intrusion, data quality control, health supervision, and so forth. There exist a lot of work in the
area of machine-learning models; however, large-scale platforms such as AmI environments or smart
cities require algorithms that meet computational time and memory constraints. AmI platforms can be
augmented constantly with sensor devices with high constraints—computing power, communication,
and storage limitations; thus, we aim to resolve a scalable solution for real-world platforms with such
limited and distributed nature.

This paper studies three statistical prediction models—ARIMA, GAM, and LOESS—for the
identification of outliers, both from missing and incorrect values. The two main advantages of these
classifiers are 1) their low computational complexity, O(n); and 2) the memory consumption needed
for their functioning, which is extremely low in our experiments—the data-window size does not
exceed 100 values.

The use of the classifiers based on the predictive models presented in this research work is a
feasible solution for the detection of missing values and abnormal observations in sensor data streams.
The best classifier analyzed to detect outliers is based on the ARIMA prediction model. However, is
extremely important to establish the correct values for its parameters. To detect missing values, the
ideal settings are a data-window size of 100 observations and a standard error between 4 and 5. To
detect incorrect or abnormal values, the ideal settings are a data-window size of 30 observations and a
standard error of 2. This is the most crucial task in this research: finding the appropriate parameters
for the two types of outliers.

Although temperature sensors were used in the experiment, this approach can be used to detect
outliers in other types of sensors measuring a physical quantity. In the case of trying to classify data
streams from another type of sensor, a previous analysis should be carried out in order to find the ideal
settings that make binary classifiers work optimally.

Our study is significant in providing a) an in-depth understanding of the performance of the
three statistical models analyzed for outlier detection; and b) two datasets as ground truths, whose
observations are manually labeled by experts as either normal or outlier.

The global context of the sensors in a large-scale environment may be used for future research.
The input of the models studied in this work is local, as one sensor data is used at a time to locate
outliers in that particular sensor. Observations in the same time lapse from other different sensors may
improve detection rates in one particular sensor device.

Other statistic and machine-learning algorithms with O(n) complexity may be proved, fitted, and
evaluated to take advantage of their good accuracy rates, but minimizing their storage needs to turn
them into a minimum.

Finally, further analysis may assess to prove if the three classifiers in our approach can be applied
to other kinds of observations (e.g. humidity, precipitation), other nature (e.g. textual data) , or with
different measurement times. We plan to create an outlier detection assistant to, given a measurement
type and the time lapse between the observations, the assistant resolves which model and settings fit
better for the detection task. For this, the elaboration of ground truths from real data is crucial; as it is
a very hard and complex task, it will surely be the subject of future research.

Supplementary Materials: The Ground Truths are available online at http://www.mdpi.com/1424-8220/20/15/
4217/s1
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