
sensors

Article

2D Convolutional Neural Markov Models for
Spatiotemporal Sequence Forecasting

Calvin Janitra Halim 1 and Kazuhiko Kawamoto 2,∗

1 Department of Applied and Cognitive Informatics, Graduate School of Science and Engineering,
Chiba University, Chiba-shi, Chiba 263-8522, Japan; calvinjh@chiba-u.jp

2 Graduate School of Engineering, Chiba University, Chiba-shi, Chiba 263-8522, Japan
* Correspondence: kawa@faculty.chiba-u.jp

Received: 29 June 2020; Accepted: 26 July 2020; Published: 28 July 2020;
����������
�������

Abstract: Recent approaches to time series forecasting, especially forecasting spatiotemporal
sequences, have leveraged the approximation power of deep neural networks to model the
complexity of such sequences, specifically approaches that are based on recurrent neural networks.
Still, as spatiotemporal sequences that arise in the real world are noisy and chaotic, modeling
approaches that utilize probabilistic temporal models, such as deep Markov models (DMMs), are
favorable because of their ability to model uncertainty, increasing their robustness to noise. However,
approaches based on DMMs do not maintain the spatial characteristics of spatiotemporal sequences,
with most of the approaches converting the observed input into 1D data halfway through the model.
To solve this, we propose a model that retains the spatial aspect of the target sequence with a DMM
that consists of 2D convolutional neural networks. We then show the robustness of our method to data
with large variance compared with naive forecast, vanilla DMM, and convolutional long short-term
memory (LSTM) using synthetic data, even outperforming the DNN models over a longer forecast
period. We also point out the limitations of our model when forecasting real-world precipitation data
and the possible future work that can be done to address these limitations, along with additional
future research potential.

Keywords: spatiotemporal forecasting; time series prediction; deep neural networks; deep Markov
model; CNN; LSTM; DMM

1. Introduction

Time series forecasting has long been a challenging problem in computer science. Depending
on the sequence to be modeled, parameters might have either 2D or 3D spatial dependencies, which
often arise in real-world phenomena, e.g., weather, sea movements, and other similarly physically
governed phenomena. Most of these spatiotemporal sequences cannot be easily measured and
predicted accurately because of the inherent noise in the dynamics and measuring equipment. A class
of forecasting methods known as data assimilation was invented specifically to solve this problem,
which models the target sequence using probabilistic models such as Gaussian state-space models.
Using Bayesian inference and measured observations, data assimilation methods forecast how the
sequence evolves with reduced noise. The Kalman filter [1] and its derivatives, such as extended
Kalman filter, unscented Kalman filter [2], and ensemble Kalman filter [3], are some well-known
examples of data assimilation methods.

Data assimilation methods typically require that the sequences being modeled are based on a
known physical equation, as they use numerical methods to model the evolution of the sequence.
This modeling severely limits the application of the methods for sequences with unknown dynamics.
Meanwhile, deep neural networks (DNNs), specifically, recurrent neural networks (RNNs), have

Sensors 2020, 20, 4195; doi:10.3390/s20154195 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8865-1646
https://orcid.org/0000-0003-3701-1961
http://dx.doi.org/10.3390/s20154195
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/15/4195?type=check_update&version=2

Sensors 2020, 20, 4195 2 of 20

also been used for sequence predictions because of their capacity to approximate the underlying
dynamics of a sequence, even without knowing the parameters. Among several types of RNNs, long
short-term memory (LSTM) [4] was conceived to address the shortcoming of vanilla RNN and has
been the backbone of every modern DNN time series prediction method. One particular method to
predict spatiotemporal sequences derived directly from LSTM is convolutional LSTM (ConvLSTM) [5].
By substituting every LSTM matrix operator with a convolutional neural network (CNN), the model
leverages the spatial information encoded on the sequences and reduces the amount of memory
required by the network.

However, DNN-based models are not without limitations when used to forecast spatiotemporal
data. For example, ConvLSTM is ultimately a deterministic model that does not take into account the
stochastic character of inherent system noise and observation noise of the target sequence. This might
result in a higher forecast error rate in data with higher noise variance. Conversely, a combination
of a probabilistic state-space model and DNN-based approach to model time series data, called the
deep Markov model (DMM) [6], is a promising approach to model stochastic dynamics because of its
structural similarity to data assimilation methods. Nonetheless, the original model is restricted to 1D
data, making it challenging to capture the spatial characteristics of spatiotemporal data.

To address these problems, we propose a DMM that forecasts a spatiotemporal sequence, inspired
by the spatial modeling structure of ConvLSTM, replacing every standard fully connected layer in
the model with a 2D CNN layer. By doing so, we aim to leverage the spatial characteristics of a target
sequence while still modeling the dynamics and observation noise of the sequence. To summarize,
we propose a novel methodology for spatiotemporal forecasting with the following contributions:

1. The method introduces a DMM that maintain the spatial structure of the input data by running
them through a full 2D model, which consists of several 2D CNNs and a backward ConvLSTM,
with the intention of capturing the inherent spatial features of the data. Using DMM as a base
model allows the integration of probabilistic modeling to spatiotemporal forecasting problem,
increasing the robustness of the proposed approach.

2. The feasibility of our method is evaluated by conducting two experiments using a synthetic
spatiotemporal data modeled after 2D heat diffusion equation, as well as real-world precipitation
data. We compare the results with other baseline models, namely, naive forecast, DMM,
and ConvLSTM.

3. The combination of 2D CNNs, ConvLSTM, and DMM in the proposed approach opens up the
possibility of combining popular 2D CNN-based methods, further increasing DMM’s modeling
capability to cater to various spatiotemporal forecasting problems. Conversely, the proposed
approach also allows the usage of DMM in other fields, such as video prediction and generation,
due to its autoencoder-like structure.

The rest of the paper is organized as follows. Section 2 presents several related approaches in
spatiotemporal forecasting, focusing on ConvLSTM and DMM-based models, along with their relation
to our method. Section 3 shows the formulation of the spatiotemporal task in general. Section 4
explains the detailed training flow, prediction flow, and the model structure of our method. Section 5
presents the experiment details and results, showing the feasibility and limitations of our method
when compared to other baseline models. Section 6 focuses on the result of the experiments, challenges
that arise from it, together with future research to address the challenges and to improve upon the
current method. Lastly, Section 7 summarizes the content and findings of the paper.

2. Related Work

Research regarding spatiotemporal forecasting using DNN-based methods has advanced very
rapidly in recent years. Le et al. [7] transformed air pollution data into a series of images that were
then fed into ConvLSTM to forecast future data. Elsayed et al. [8] modified the internal gate structure
of ConvLSTM to reduce the parameters required. Even though not strictly a physical spatiotemporal

Sensors 2020, 20, 4195 3 of 20

problem, [9] combined ConvLSTM with seq2seq framework and stochastic RNN to forecast financial
trading data, presenting an alternative application of the model. On the topic of the combined approach
of CNN and LSTM other than ConvLSTM, [10] combines CNN encoder with the autoencoder version
of LSTM to forecast electricity data, managing to achieve best performance when compared to other
DNN methods. The favorable performance of the autoencoder structure in [10] supports the motivation
for autoencoder-like structure in our method. Meanwhile, approaches such as [11] and [12] use a
specific class of model called a graph neural network (GNN) to model traffic data, as traffic data is
more suitable to be modeled using GNN instead of CNN because of its non-Euclidean structure.

The use of a DMM to infer and model 2D input data is not new [13–15]. The general approach
taken by these models is utilizing layers of 2D CNNs and flattening the output of the last layer to
encode 2D data into 1D data that can be processed by DMM. The same approach is taken to reconstruct
the input data, with CNNs converted into deconvolutional neural networks (DCNs). This differs from
our approach, as the 2D structure of the data is lost halfway through the models.

There is one particular model that also combines the convolutional paradigm with a DMM [16],
similar to ours. However, their approach fundamentally differs from ours, as they use a temporal
CNN [17] instead of a spatial CNN, with the goal of modeling speech features for use in recognition
and classification tasks. To our knowledge, our approach is the first that uses a 2D CNN to retain the
2D spatial structure of the input sequence throughout the DMM.

As the task of video prediction in a broad sense can also be thought of as a spatiotemporal
forecasting problem (2D sequence with an additional dimension of color channel), there have also
been advancements in this field of research that we note can also be applied to general spatiotemporal
forecasting tasks. For example, [18] combined a CNN variational autoencoder and adversarial training
regime to produce multiple "realistic" and possible future frames. Another example sees [19] utilizing a
version of CycleGAN [20] with a generator trained to be bidirectionally (past and future) consistent and
two discriminators to identify fake frames and sequences. Nevertheless, we note that most research
in this field is geared toward achieving a qualitatively "realistic" result, which differs from our goal
of accurately modeling the evolution of a sequence. The process of producing diverse predictions in
these models, however, might be able to be adapted to spatiotemporal forecasting research, in general,
to produce several possible outcomes of a sequence, increasing understanding of the target sequence
dynamics. We leave this approach for possible future work.

3. Spatiotemporal Sequence Forecasting Task

The task of spatiotemporal forecasting can be defined as follows. First, we define the 2D
gridded spatial observation of an event with M rows, N columns, and K measurements as a tensor
X ∈ IRK×M×N . Note that even though the acquired observation data is spatially a 2D matrix, there
could be multiple measurements taken within the same space; hence, the 3D tensor definition is
appropriate. A 2D spatial observation can then be observed along the temporal dimension, and we
define observations that are observed within the first and T timesteps (inclusive) as X1:T .

When given an input of past observations X1:T , we can thus define forecasting as the task of
calculating an estimate of an unobserved future sequence from timepoint T + 1 to T + ∆T, written as
X̂T+1:T+∆T , in which the sequence has the highest probability to occur. ∆T here stands for the time
difference between the start and the end of the forecasted sequence. As described by [5], this task can
be defined by the following equation.

X̂T+1:T+∆T = arg max
XT+1:T+∆T

p(XT+1:T+∆T |X1:T) (1)

Depending on the task description, the forecasting task might not be defined as picking the most
plausible sequence but rather generating a set of highly plausible sequences. As our approach is based
on a DMM, which is a stochastic model, our approach will generally produce a sample of the set
of possible predictions, i.e., X̂T+1:T+∆T ∼ p(XT+1:T+∆T |X1:T). However, when trained correctly, we

Sensors 2020, 20, 4195 4 of 20

note that our approach will produce forecast samples with high probability, and in the comparison,
we regard our model as generating predictions with the highest probability.

4. 2D Convolutional Neural Markov Model

4.1. Overview and Structure of the Model

Our approach is mostly based on the DMM, consisting of two separate models, an inference
network, and a Gaussian state-space model-based generative network, trained using the variational
inference method. Utilizing variational inference and state-space model, the model can learn to
approximate the plausible state-space model that governs the sequences, which in effect is similar to
data assimilation. Indeed, [6] and [21] have shown that the DMM can match the estimation capability
of the unscented Kalman filter [2], which supports our motivation to use the DMM as the base of
our method.

We describe the general flow of the model when it is used to forecast an observation sequence.
Given a 2D observation sequence X1:T , we want to first infer the posterior latent Z1:T that gives rise to
the observation. Following the variational inference paradigm of [6], we can use the inference network
to infer an approximation of the true posterior probability p(Z1:T |X1:T), denoted by qφ(Z1:T |X1:T).
φ here denotes the network parameters of the inference network. Afterward, we sample the last
posterior latent of the sequence ẐT from the approximated latents and use it as the initial input for the
generator network. We then propagate through the generator network from the input to produce the
next latent ẐT+1 and then the forecasted observation X̂T+1 of the next time point. These procedures
can be repeated to produce a forecast of the required length.

To accommodate 2D spatiotemporal sequences, instead of reshaping them into 1D sequence data,
we modify both the inference and generator networks to accept 2D data by changing all of the matrix
multiplication operators on the model into 2D CNNs. By changing these operators, we are able to
reduce the size of the operators and the models, compared with fully connected ones, which directly
reduces the redundancy and the tendency of the model to overfit. Furthermore, using CNNs, we can
capture not only the temporal characteristics but also the spatial information encoded on the data in a
hierarchical mean. More importantly, this also opens up the door to apply existing CNN techniques
and research into the DMM, reinforcing the representation capability of the model.

4.2. Inference Network

The inference network we use is the same as the structured inference network derived by [6], in
which the posterior latent sequence is factorized as follows:

p(Z1:T |X1:T) = p(Z1|X1:T)
T

∏
t=2

p(Zt|Zt−1, Xt:T) (2)

along with the similarly structured approximated posterior (approximated using a Gaussian distribution):

qφ(Z1:T |X1:T) = qφ(Z1|X1:T)
T

∏
t=2

qφ(Zt|Zt−1, Xt:T) (3)

where φ denotes the set of inference network model parameters. In [6], the inference network models
the Markovian structure of the approximated posterior with a combination of backward LSTM and
a combiner network. The LSTM will propagate the input sequence in reverse, i.e., from the future
(according to Equation (3)), outputting a series of hidden outputs that will then, along with the
previous latent, be used as inputs for the combiner network. The combiner network will produce the
estimated latent.

However, we note that our input is 2D spatiotemporal data, and we also want to preserve the
spatial structure throughout the model. Thus, we introduce several modifications to the network. First,

Sensors 2020, 20, 4195 5 of 20

we encode the input sequence using layers of the CNN encoder layer, which reduces the spatial size of
the input to reduce the parameter size of the network. The encoded input will be fed into a backward
ConvLSTM, preserving the 2D structure. The hidden tensors from ConvLSTM will be propagated to a
combiner CNN, along with the latent tensor of the previous timestep, to produce the latent tensor of
the current timestep. The combiner CNN follows the structure of the combiner network defined in [6],
while changing the matrix multiplication operators into 2D CNNs.

The flow of this network is graphically shown in Figure 1 and can be described by the following
equations, when given an input sequence X1:T :

X̃1:T = Encoder(X1:T) (4)

Ht, Ct =

{
ConvLSTM(X̃t, Ht+1, Ct+1), t < T

ConvLSTM(X̃t, Hinit, Cinit), t = T
(5)

Ẑt =

{
Combiner(Ẑt−1, Ht), t > 1

Combiner(Ẑ0, Ht), t = 1
(6)

where Encoder is the encoder layer, consisting of 2 layers of a 2D CNN with ReLU activations:

X̃t = Encoder(Xt) = ReLU(CNNX′(ReLU(CNNX(Xt))) (7)

Encoder

Encoder

ConvLSTM Cell

Combiner

softplus

Encoder

ConvLSTM Cell

Combiner

Encoder

ConvLSTM Cell

Combiner

/2 ds.

/2 ds.

ReLUCNN

tanh

Combiner

Figure 1. Inference network. Observation is first encoded using encoder to produce encoded
observation. The encoded observation for a time point and hidden tensors from future timepoints are
then fed into a backward ConvLSTM cell to produce hidden tensors for the current timepoint. When
hidden tensors for a particular sequence are calculated, they are then fed into combiner along with the
previous posterior latent to produce the current latent mean and variance. We then sample the current
latent from the produced mean and variance, which follows a Gaussian distribution. Here, “/2 ds.”
denotes 1/2 reduction in spatial size (downsampling). Dashed lines denote sampling, while dotted
lines denote repetition. The description of the ConvLSTM cell structure can be found in [5].

Sensors 2020, 20, 4195 6 of 20

The CNNs used here reduce the spatial size by half (stride = 2, kernel = (3× 3), padding = 1),
resulting in a total of 1/4th reduction. ConvLSTM is a ConvLSTM cell [5]. Combiner is the combiner
function, defined by:

Hcombined = 0.5(tanh(CNNH(Ẑt−1)) + Ht) (8)

Ẑµ,t = CNNẐµ
(Hcombined) (9)

Ẑσ,t = softplus(CNNẐσ
(Hcombined)) (10)

where CNNH , CNNẐµ
, and CNNẐσ

are 2D CNN layers. Note that the CNN layers used in ConvLSTM
and the combiner function are size-preserving CNNs, i.e., CNNs with stride = 1, kernel = (3× 3),
and padding = 1. Here, we also note that Hinit, Cinit, and Ẑ0 are all trainable parameters (tensors) that
are initialized to zero tensors.

Using Combiner, the posterior latent for the current timepoint t can then be sampled as follows:

Ẑt ∼ N (Ẑµ,t, Ẑσ,t) (11)

The sampled posterior can then be used to calculate the posterior for the next timepoint, and this
process is repeated until the whole posterior sequence is calculated. The posterior mean and variance
calculated here are in the form of 2D matrices with an additional channel dimension, assuming that the
variables are independent of each other. We tried modifying the model to accommodate multivariate
dependence, but because of the enormous weight parameters required for the covariance calculation,
the model quickly becomes intractable. This also applies to the sampling procedures of Z and X
in a generative network. We leave this research regarding an alternative approach to integrating
multivariate dependence for future work.

As mentioned earlier, the inference network we build here uses the temporally backward version
of ConvLSTM, following the derived factorization shown in Equation (3). Even though several other
approaches (mean-field, forward, and bidirectional factorizations) are evaluated in [6], the results
show that backward factorization yields a model with sufficient modeling capability. Therefore, in this
paper, we focus our experiment on models with backward factorization.

4.3. Generative Network

The fundamental structure of the generative network is based on a Gaussian state-space model [6],
consisting of a transitional function to propagate the latent sequence and an emission function to
calculate the corresponding observation of each latent. We directly mimic the structure given by [6],
replacing each neural network operator with 2D CNN layers but maintaining the activation functions.

Concretely, for a transition function, we replace the fully connected networks with a gated
transition function described in [6] with 2D CNNs:

Gt = sigmoid(CNNG′(ReLU(CNNG(Zt−1)))) (12)

Jt = CNNJ′(ReLU(CNNJ(Zt−1))) (13)

Zµ,t = (1− Gt)�CNNZµ(Zt−1) + Gt � Jt (14)

Zσ,t = softplus(CNNZσ (ReLU(Jt))) (15)

Similar to the combiner function in the inference network, the CNNs defined here are all
size-preserving CNNs. Propagation of the latent sequence starts at Z0, which is a learnable parameter
initialized as the zero tensor during training. Sampling of the next latent is done as follows, using the
calculated mean and variance:

Zt ∼ N (Zµ,t, Zσ,t) (16)

Sensors 2020, 20, 4195 7 of 20

This will then be used to propagate the latent matrices to the next timestep, a process that is repeated
until the end of the sequence.

To produce the corresponding reconstructed observations, we adopt a 1-layer size-preserving
CNN and 2-layer DCNs (stride = 2, kernel = (4× 4), padding = 1) with ReLU activation functions,
following the structure of the emitter function described by [6]:

Lt = ReLU(DCNL(ReLU(CNNL(Zt)))) (17)

Xµ,t = tanh(DCNXµ(Lt)) (18)

Xσ,t = softplus(DCNXσ (Lt)) (19)

The use of a DCN instead of CNN is to increase the size back to the original size, which in this
case will increase the size by 4 times (2 times increase with each DCN), matching the reduction of
the encoder layer in the inference network. The observation can then be reconstructed by sampling
Xt ∼ N (Xµ,t, Xσ,t) throughout the sequence. The generative network is graphically described in
Figure 2.

Emitter (Decoder)
ConvGTF

Emitter

ConvGTF

Emitter Emitter

1

ConvGTF

softplus

ReLUCNN

tanh

x2 us.

x2 us.

x2 us.

sigmoid

DCN

Figure 2. Generative network. Propagation on latent tensors is done by inserting the previous latent to
a convolutional gated transition function (ConvGTF) to obtain latent mean and variance, which will
then be used to sample the next latent. Observation is produced by inputting the latent into Emitter
to output the observation mean and variance, which will be used to sample the observation. “x2 us.”
denotes a two-times increase in spatial size (upsampling). Similar to Figure 1, dashed lines denote
sampling, while dotted lines denote repetition.

4.4. Training and Forecasting Flow

4.4.1. Training Procedure

The training flow is shown by Figure 3a. Following [6], during training, n-set of KX ×MX ×NX

(channels× height×width) observation sequences {X1,1:T , X2,1:T , . . . , Xn,1:T} is fed into the inference
network to infer a set of KZ ×MZ ×NZ posterior latents {Ẑ1,1:T , Ẑ2,1:T , . . . , Ẑn,1:T}. The approximated
latents will be used to reconstruct the observation sequences using the generative network and to
estimate the conditional likelihood p(X1:T |Z1:T) along with KL divergence. These will be used to
calculate the factorized evidence lower bound (ELBO) as an objective function for each sequence:

Sensors 2020, 20, 4195 8 of 20

L(X1:T ; (θ, φ)) = E
qφ(Z1:T |X1:T)

[log pθ (X1:T |Z1:T)]

−KL
(
qφ (Z1:T |X1:T) ||pθ (Z1:T |X1:T)

)
(20)

where θ is the parameters of the generative network and φ is the parameters of the inference network.
The model is then backpropagated and updated using gradient descent-based algorithms. Note that
while [6] derived the analytic solution to ELBO, in this paper, the models are trained using Monte
Carlo gradient estimation. In addition, we use the Adam optimizer to train the model.

Inference
network

(Encoder)

Approximated
posterior
latents

Emitter
(Decoder)

ELBO

Maximize

Transition
function

Reconstructed
observations

Generative
network

Prior latents

Observations

(a) Training flow

Inference
network

(Encoder)

Approximated
posterior
latents

Emitter
(Decoder)

Transition
function

Generative
network

Observations

Next latentNext observation
(Forecast)

Last
latent

(b) Forecasting flow

Figure 3. Figure 3a shows the training flow of our approach. The observations are first fed into the
inference network to produce a series of approximated posterior latents. These latents are then inputted
into transition function to produce a shifted series of prior latents. The approximated latents are also
inputted into emitter to produce reconstructed observations. Finally, the original and reconstructed
observations, along with approximated posterior and prior latents are used to calculate the evidence
lower bound (ELBO) as the objective function. Figure 3b shows the one-step forecasting flow of our
method. Similar to training flow, the observations are first inputted into inference network to produce
posterior latents. We then use the last latent data to produce the next latent using transition function
and calculate the next forecast using the emitter. We repeat this flow as new observations are obtained
until the desired forecast length is reached.

4.4.2. Forecasting Flow

The procedure we use to forecast a sequence is described as follows. When we are given a sequence
of observations X1:T , in which we want to forecast X̃T+1:T+∆T , we first feed the past observations
X1:T into the inference network to acquire the posterior latents Ẑ1:T . Afterward, we input ẐT into the
transition function of the generative network to output the predicted latent Z̃T+1. This predicted latent
will then be fed into the generative network’s emission function, outputting the forecasted observation
X̃T+1. At this point, we can then continue our forecast in two different ways:

1. Multi-step method: By repeating these generative steps recursively, we can produce a forecast
sequence with an arbitrary length, i.e., repeat the steps ∆T − 1 times to output X̃T+1:T+∆T . This
method requires a very well-trained generative network to be accurate, as problems such as high
variance or biased calculation produced by suboptimally trained transition and emitter functions
will result in chaotic predictions.

2. One-step method: Instead of forecasting every observation point with only the generative
network, we instead update our observations in real-time when we have new ones, and time-shift
the input to the inference network by 1 (X2:T+1), acquiring new posterior latents Ẑ2:T+1. We
use the newly estimated ẐT+1 to estimate Z̃T+2, and in turn X̃T+2. Finally, we then repeat
this procedure to produce the rest of the forecast. Note the similarities of this method to data

Sensors 2020, 20, 4195 9 of 20

assimilation, in which we keep updating our estimates using newly obtained observations. This
forecasting method is shown in Figure 3b.

In the following experiment, we focus on evaluating our model’s forecasting capability using the
one-step method.

5. Experiments and Results

5.1. 2D Heat Equation

In the experiments, we aim to evaluate the model forecasting capability and its stability with
respect to forecasting noisy data. To do this, we generate a Gaussian state-space model toy problem
from a 2D heat equation, essentially simulating a randomly positioned circle of heat on a 10 m × 10 m
gridded plate that dissipates over time. We define the heat equation as follows:

∂U
∂t

= D
(

∂2U
∂x2 +

∂2U
∂y2

)
, (21)

Transition : Zt ∼ N (FD(Zt−1), 3I), (22)

Emission 1 : Xt ∼ N (Zt, I), (23)

Emission 2 : Xt ∼ N (Zt, 10I) (24)

D here expresses the thermal diffusivity (set as 4.0 m2/s), (x, y) is the location on the grid, U expresses
the temperature, and I is the identity matrix. Note that there is only one parameter (temperature),
making the size of the input channel 1; hence, the matrix form can be used instead of the tensor.
The initial temperature for the circle of heat is randomized between 500 K and 700 K, and the radius of
the circle is randomized between 0.5 m and 5 m, with the central position of the circle randomized
within the range of the plate. Meanwhile, the base temperature is initialized as 0 K.

We then use the finite difference (FD) method to calculate the temperature evolution, with the
addition of Gaussian noise, as shown in Equation (22). We also prepare two emission functions to
produce the observations, which are both Gaussian noise with a ten times increase in variance in
the second one, to depict an increase in noisiness. The spatial differences dx and dy used in the FD
method are set to 0.1 m (producing a sequence of heatmap data with the size of 100× 100 pixels),
and the timestep difference is set at 0.000625 s. We generate 3000 simulations for training data by first
generating 100 simulations and taking 30 sequential samples randomly from the simulations with a
length of 30 timesteps and time difference three times of 0.000625 s. This is done to mimic how data
is measured in the real world, evaluating robustness to noisiness and chaos. We also generate 750
simulations as validation data with the same method. We summarize the details in Table 1.

Table 1. Generation details of the 2D heat equation data. The random(min, max) here means that the
parameter is sampled from a uniform distribution with specified minimum (min) and maximum (max) values.

Attributes Value

(Minimum, maximum) values (0, 1000) K
Plate size (width× length) 10× 10 m

Thermal diffusivity 4.0 m2/s
Base temperature 0 K

Initial temperature of circle of heat random(500, 700) K
Radius of circle of heat random(0.5, 5) m

Central position of circle of heat ((x, y)) (random(10, 10), random(10, 10)) m
Differentiation method Finite difference

Spatial differences ((dx, dy)) (0.1, 0.1) m
Timestep difference 0.000625 (×3 from sampling) s

Sequence length 30 timesteps
(Training, validation) data size (3000, 750)

Sensors 2020, 20, 4195 10 of 20

5.2. CPC Merged Analysis of Precipitation

For evaluation of real-world data, we opt to utilize the CPC Merged Analysis of Precipitation
(CMAP) data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their website
at https://psl.noaa.gov/ [22]. These data show the global gridded precipitation rate measured from
rain gauges, combined with estimates from satellite-based numerical algorithms. The detail of the
merging is described in [22]. There are two versions of the data available: the first one is data with
monthly values from 1979-01 to 2020-05, while the second one is pentad-valued data from 1979-01 to
2017-01 (as of 2020-06-28). In this paper, we choose the pentad-valued data for our evaluation, as there
is a smaller time difference between the data and a larger dataset (497 timesteps for monthly data,
compared to 2774 timesteps for pentad data). We use the enhanced version of the data, which combines
the satellite and rain gauge estimation with blended NCEP/NCAR Reanalysis Precipitation values to
fill out missing estimations and measurements. The blended precipitation values are forecasted values
whose method is described in [23].

The data consist of a 2D gridded sequence, totaling 2774 timesteps. We divided the sequence
into an overlapping sequence of 30 timesteps, with a ratio of roughly 7:3 for training and validation
data, yielding 1901 sequences for training data and 815 for validation data. Note that we divide the
data so that no overlap occurs between the training data and validation data. As the spatial size of
the data is not a square (72× 144 pixels), we crop the center of the data into square data with a size of
72× 72 pixels for ease of evaluation. Like the 2D heat equation data, there is only one parameter being
measured, resulting in an input channel of 1. The details of the data’s attributes are summarized by
Table 2.

Table 2. Details of CPC Merged Analysis of Precipitation (CMAP) data.

Attributes Value

(Minimum, maximum) values (0, 80) mm/day
Spatial size (width× length) 72× 72 pixels

Sequence length 30 timesteps
(Training, validation) data size (1901, 815)

5.3. Model Specification and Experiment Details

For the experiment, our model’s specification follows the details described in Section 4. However,
we vary the channel sizes of CNNs and DCNs in our model for each experiment, as shown in Table 3.

Table 3. Our model’s CNN and DCN channel specifications. () denotes multiple layers, while one value
means the channel size is the same among all CNN inside the corresponding section. Heat denotes
specifications during the 2D heat equation experiment and CMAP denotes specifications during the
CMAP experiment.

Exp. Inference Generator

Encoder ConvLSTM Comb. Trans. Decoder *

Heat (32, 64) 64 64 64 (32, 16)
CMAP (32, 64) 16 16 16 (16, 8)

* Emitter.

For the comparison baselines, we use a naive forecast method that regards the observation of the
previous timestep as current forecast, a 1-layer ConvLSTM [5] and a vanilla DMM [6]. For ConvLSTM,
the hidden channel is 64 and the kernel size is 3× 3; forecasting is performed using the previous
10 hidden matrices, concatenating them on the channel dimension, and applying a 1× 1 convolution
layer, then retrieving the prediction for the next timestep. We do not vary the parameter for ConvLSTM
between experiments.

https://psl.noaa.gov/

Sensors 2020, 20, 4195 11 of 20

Regarding the vanilla DMM, to accommodate the 2D spatial data, we add a 2-layer CNN encoder
layer before the LSTM layer, just like our model, with a channel size of (32, 64), and then add a
fully connected network, producing a 256-parameter 1D sequence. This sequence is run through a
128-parameter backward LSTM layer, which will, in turn, be fed into a combiner layer that produces a
50-parameter latent variable. The generative network consists of a 64-parameter gated transitional
function and a 2-layer DCN emitter, which is also similar to our model, with the same channel size
(64, 32). The kernel size, stride, and padding used here are the same as in our model when applicable
(including the downsampling and upsampling process in the encoder and decoder respectively),
and they do not vary between experiments.

To prevent the KL divergence term from overpowering the objective loss during initial training
epochs for our model and the DMM, we employ an annealing factor during training with a minimum
value of 0.2 and increase it linearly for each epoch. We utilize the Adam optimizer to train all models
with the parameters shown in Table 4. Normalization of data values by scaling them into values within
the range of −1 and 1 is performed before inputting the data into the model, by setting a data range of
0 to 1000 K for 2D heat diffusion data and a data range of 0 to 80 mm/day for CMAP data. Here and
in the experimental results, our model is shown as the convolutional neural Markov model (CNMM).
All of the models are implemented in PyTorch and Pyro [24]. The codes for the experiment can be
found at GitHub.

Table 4. Training specifications. (a, b) denotes the parameters used in both experiments: a shows the
parameter in the heat experiment, b shows the parameter in the CMAP experiment. One value for the
parameter means the value is the same across experiments.

Parameters ConvLSTM DMM CNMM

Learning rate (LR) 0.001 0.0001 (0.00005, 0.0001)
β1 0.9 0.9 0.9
β2 0.999 0.999 0.999

Grad. clipping - 10.0 10.0
LR decay - 1.0 1.0

Epoch (100, 150) 150 (300, 150)
Batch size 16 16 16

For both experiments, observation mean squared error (MSE) with respect to ground truth is used
as the evaluation metric. Instead of calculating the error of the sampled observation, we calculate the
mean produced by the Emitter (for ConvLSTM, we use the forecasted observation directly, and in
the case of the naive forecast, we took the MSE of the ground truth with the 1-timestep shifted
version of it). Here, we evaluate our approach (CNMM), ConvLSTM, vanilla DMM and naive forecast
method on the first and second conditions of the heat experiment (Emission 1 and 2, as shown in
Equations (23) and (24)) and CMAP data with varying forecasting length (5, 10, 15, and 20 timesteps).
When evaluating with the Emission 2 condition, we utilize the models trained on the first emission.
This is to evaluate the robustness of the models with respect to noise. To ensure fairness, forecasting
for every model uses the one-step forecast method. Furthermore, we run the training procedure five
times (except naive forecast, as there are no training required) and present the averaged MSE from
every last epoch of the run as the final result. We present the resulting forecast MSE in both table and
bar chart forms. The forecast MSE for 2D heat equation data is shown by Table 5 and Figure 4, while
the CMAP data is shown by Table 6 and Figure 5. Note that the MSE is calculated on normalized data
instead of unnormalized data.

Other than the MSE of the forecasts, we also plot the spatially averaged squared error of nine
random samples taken from the validation data, which can be seen in Figures 6 and 7 for 2D
heat equation data and CMAP data respectively, to aid understanding of the experimental results.
Additionally, we show the squared error heatmap between the ground truth and forecasted values,
also for both 2D heat equation and CMAP data in Figures 8 and 9. Specifically, we plot the squared

https://github.com/CJHJ/convolutional-neural-markov-model

Sensors 2020, 20, 4195 12 of 20

difference of the forecasts from the first sample (sample used by the upper left plot) shown in
Figures 6 and 7. Finally, we present the heatmap visualization of forecast results on the same validation
sample, shown by Figures 10 and 11. We only show the graphs from Emission 1 samples to represent
2D heat equation forecast result, instead of showing both Emission 1 and 2 samples as Emission 2’s
forecast result shows a similar trend. In addition, the forecast result given by naive forecast is not
directly shown in the heatmap visualization as it can easily be inferred by shifting the ground truth
heatmap forward by one timestep.

Table 5. Forecast mean squared error (MSE) of the 2D heat equation data experiment on each model,
with Emission 1 and Emission 2 denoting each emission condition of the data. The length here shows
in how many timesteps the forecast is done on each model. The bold numbers indicate the lowest error
achieved on each forecast length.

(a) Forecast MSE on Emission 1

Length Heat equation - Emission 1 (MSE ×104)

Naive Forecast ConvLSTM DMM CNMM (Ours)

5 1.8890 0.7508 8.9915 6.0846
10 1.8891 0.7546 9.5014 6.1196
15 1.8882 0.8512 10.0842 6.1591
20 1.8876 7.7907 10.8438 6.2114

(b) Forecast MSE on Emission 2

Length Heat equation - Emission 2 (MSE ×104)

Naive Forecast ConvLSTM DMM CNMM (Ours)

5 8.4880 4.1452 13.5044 9.4584
10 8.4820 4.1485 14.1001 9.5014
15 8.4751 4.2451 14.7963 9.5528
20 8.4692 11.3309 15.6192 9.6146

Table 6. Forecast MSE of the CMAP data experiment on each model. The length here shows in how
many timesteps the forecast is done on each model. The bold numbers indicate the lowest error
achieved on each forecast length.

Length CMAP (MSE×103)

Naive Forecast ConvLSTM DMM CNMM (Ours)

5 9.8527 6.5047 6.6175 7.5480
10 9.8489 6.5003 6.6126 7.5447
15 9.8533 6.5181 6.6143 7.5501
20 9.8574 6.5500 6.6155 7.5529

Sensors 2020, 20, 4195 13 of 20

0

2.0×10-4

4.0×10-4

6.0×10-4

8.0×10-4

1.0×10-3

1.2×10-3

5 10 15 20

M
ea

n
sq

ua
re

d
er

ro
r

Forecast length

Naive forecast ConvLSTM DMM CNMM (Ours)

(a) Forecast MSE on Emission 1

0

2.0×10-4

4.0×10-4

6.0×10-4

8.0×10-4

1.0×10-3

1.2×10-3

1.4×10-3

1.6×10-3

1.8×10-3

5 10 15 20

M
ea

n
sq

ua
re

d
er

ro
r

Forecast length

Naive forecast ConvLSTM DMM CNMM (Ours)

(b) Forecast MSE on Emission 2
Figure 4. Forecast MSE on the 2D heat equation data when plotted as bar graphs. The y-axis represents
the MSE. The x-axis represents the forecast length and the model with which the forecast is produced.

0

2.0×10-3

4.0×10-3

6.0×10-3

8.0×10-3

1.0×10-2

1.2×10-2

5 10 15 20

M
ea

n
sq

ua
re

d
er

ro
r

Forecast length

Naive forecast ConvLSTM DMM CNMM (Ours)

Figure 5. Forecast MSE on the CMAP data when plotted as bar graphs. The y-axis represents the MSE.
The x-axis represents the forecast length and the model with which the forecast is produced.

Sensors 2020, 20, 4195 14 of 20

0 5 10 15
Timestep

10 4

10 3

10 2

Sp
at

ia
l m

ea
n

sq
ua

re
d

er
ro

r

Naive
ConvLSTM
DMM
CNMM (Ours)

0 5 10 15
Timestep

10 4

2 × 10 4

3 × 10 4

Sp
at

ia
l m

ea
n

sq
ua

re
d

er
ro

r

Naive
ConvLSTM
DMM
CNMM (Ours)

0 5 10 15
Timestep

10 4

10 3

10 2

Sp
at

ia
l m

ea
n

sq
ua

re
d

er
ro

r

Naive
ConvLSTM
DMM
CNMM (Ours)

0 5 10 15
Timestep

10 4

10 3

Sp
at

ia
l m

ea
n

sq
ua

re
d

er
ro

r

Naive
ConvLSTM
DMM
CNMM (Ours)

0 5 10 15
Timestep

10 4

2 × 10 4

3 × 10 4

4 × 10 4

Sp
at

ia
l m

ea
n

sq
ua

re
d

er
ro

r
Naive
ConvLSTM
DMM
CNMM (Ours)

0 5 10 15
Timestep

10 4

Sp
at

ia
l m

ea
n

sq
ua

re
d

er
ro

r

Naive
ConvLSTM
DMM
CNMM (Ours)

0 5 10 15
Timestep

10 4

10 3

Sp
at

ia
l m

ea
n

sq
ua

re
d

er
ro

r

Naive
ConvLSTM
DMM
CNMM (Ours)

0 5 10 15
Timestep

10 4

10 3

Sp
at

ia
l m

ea
n

sq
ua

re
d

er
ro

r

Naive
ConvLSTM
DMM
CNMM (Ours)

0 5 10 15
Timestep

10 4

6 × 10 5

2 × 10 4
Sp

at
ia

l m
ea

n
sq

ua
re

d
er

ro
r

Naive
ConvLSTM
DMM
CNMM (Ours)

Figure 6. Spatially averaged (spatial mean) squared forecast error of baseline and our models on
nine randomly selected 2D heat equation validation data. The data used here is from the Emission 1
condition, and the length of the forecast is 20. The y-axis shows the error value, and the x-axis shows
the timestep of the forecast. It is clear that ConvLSTM’s forecasts underperformed on the first initial
steps, while other models are more stable at forecasting the dynamics of the data.

Sensors 2020, 20, 4195 15 of 20

0 5 10 15
Timestep

10 2

6 × 10 3

Sp
at

ia
l m

ea
n

sq
ua

re
d

er
ro

r

Naive
ConvLSTM
DMM
CNMM (Ours)

0 5 10 15
Timestep

10 2

4 × 10 3

6 × 10 3

Sp
at

ia
l m

ea
n

sq
ua

re
d

er
ro

r

Naive
ConvLSTM
DMM
CNMM (Ours)

0 5 10 15
Timestep

10 2

6 × 10 3

Sp
at

ia
l m

ea
n

sq
ua

re
d

er
ro

r

Naive
ConvLSTM
DMM
CNMM (Ours)

0 5 10 15
Timestep

10 2

4 × 10 3

6 × 10 3

Sp
at

ia
l m

ea
n

sq
ua

re
d

er
ro

r

Naive
ConvLSTM
DMM
CNMM (Ours)

0 5 10 15
Timestep

10 2

6 × 10 3

Sp
at

ia
l m

ea
n

sq
ua

re
d

er
ro

r
Naive
ConvLSTM
DMM
CNMM (Ours)

0 5 10 15
Timestep

10 2

6 × 10 3

Sp
at

ia
l m

ea
n

sq
ua

re
d

er
ro

r

Naive
ConvLSTM
DMM
CNMM (Ours)

0 5 10 15
Timestep

10 2

6 × 10 3

Sp
at

ia
l m

ea
n

sq
ua

re
d

er
ro

r

Naive
ConvLSTM
DMM
CNMM (Ours)

0 5 10 15
Timestep

10 2

6 × 10 3

Sp
at

ia
l m

ea
n

sq
ua

re
d

er
ro

r

Naive
ConvLSTM
DMM
CNMM (Ours)

0 5 10 15
Timestep

10 2

6 × 10 3

Sp
at

ia
l m

ea
n

sq
ua

re
d

er
ro

r

Naive
ConvLSTM
DMM
CNMM (Ours)

Figure 7. Spatially averaged (spatial mean) squared forecast error of baseline and our models on nine
randomly selected CMAP validation data. The length of the forecast is set as 20 timesteps. The y-axis
shows the error value, and the x-axis shows the timestep of the forecast. Compared to 2D heat equation
data, every DNN model outperformed the naive forecast as expected, due to the higher variance and
chaos introduced in the real-world data that are better modeled by DNN models.

Naive

ConvLSTM

DMM

CNMM (Ours)

11 12 13 14 15 16 17 18 19 20
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Figure 8. Squared error heatmap between ground truth and predicted forecast of the upper-left data
used in the plot shown in Figure 6 (2D heat equation data). Higher errors are shown by the bright
regions. Here, we can see the initial high prediction error in the area of heat on ConvLSTM’s forecasts,
correlating with the high prediction error shown by Figure 6.

Sensors 2020, 20, 4195 16 of 20

Naive

ConvLSTM

DMM

CNMM (Ours)

11 12 13 14 15 16 17 18 19 20
0.00

0.02

0.04

0.06

0.08

0.10

Figure 9. Squared error heatmap between ground truth and predicted forecast of the upper-left data
used in the plot shown in Figure 7 (CMAP data). A brighter color means higher error.

Ground truth

ConvLSTM

DMM

CNMM (Ours)

1 2 3 4 5 6 7 8 9 10 11
Prediction

12 13 14 15 16 17 18 19 20

Figure 10. 2D heatmap visualization of the forecast result of the same data used in Figure 8 (2D
heat equation data). Prediction starts from the 11th timestep onward. Brighter region means higher
temperature.

Ground truth

ConvLSTM

DMM

CNMM (Ours)

1 2 3 4 5 6 7 8 9 10 11
Prediction

12 13 14 15 16 17 18 19 20

Figure 11. 2D heatmap visualization of the forecast result of the same data used by Figure 9. As with
Figure 10, prediction starts from 11th timestep and brighter region means higher precipitation level.

5.4. Experimental Results

5.4.1. 2D Heat Equation

As shown in Table 5 and Figure 4, we first notice that results given by naive forecast surpasses
every result produced by DMM-based models. Examining Figures 6 and 8 reveals that the naive
forecast error is mostly either comparable or lower than DMM-based models, hence the superior results.
We deduce that this shows that the dynamics generated by the heat equation and emission conditions
are low enough to be modeled by the naive forecast. This also shows that DMM-based models are
inferior when used to model dynamics with comparatively low variance. Nevertheless, we conducted
further experiments with noisier emission conditions, and the results show that DMM-based models,
including ours, can achieve lower forecast errors compared to naive forecasts. This is also confirmed
by the lower errors seen in the CMAP data, which will be investigated further in the next section.

Sensors 2020, 20, 4195 17 of 20

Focusing solely on the deep learning-based models, Table 5 and Figure 4 show that our approach
managed to surpass the accuracy of ConvLSTM on longer prediction length and surpass the modeling
capability of vanilla DMM in both emission conditions. We do note that even though Figure 6 shows
that there are some samples where vanilla DMM yields comparable forecast error compared to our
model, our model yields a less noisier forecast error, which explains the robustness of our model
compared to vanilla DMM. We can also see that the error increase in our model is relatively small
compared with that in DMM when the forecast length is increased (20 timesteps). This shows the
stability of our forecasting method over more extended periods, even when presented with noisy data.
On the other side, Figures 6 and 8 shows that ConvLSTM suffers from a comparatively huge error in
the first 2 timesteps of every sample given, explaining the lower error forecast compared to DMM and
our model. We believe that this is due to the combination of the usage of the initial hidden unit, which
is set to zero (as it does not have the proper hidden unit before initial forecast), and the steep initial
descent of temperature as exhibited by some of the data. This might also show that our model is more
robust to sudden changes in the data compared to ConvLSTM. We plan to investigate more regarding
this behavior in the future.

Ultimately, however, for shorter prediction lengths, ConvLSTM yields better predictions. Looking
at the result shown by Figure 6, it is indicated that ConvLSTM yields a very low error of prediction after
a few timesteps, compared to DMM, our model, and even naive forecast. This shows that ConvLSTM,
in general, has a superior modeling ability compared to variational and naive methods. Even though
the ConvLSTM initially outputted huge error, it quickly returns to a more stable forecasting error along
with time. The reason this can happen is that the ConvLSTM prediction result is smoother than that of
ours and the DMM because of its nonstochastic nature, as can be seen in the heatmap visualization
given by Figure 10.

Still, we note that our model outperforms the forecasting capability of the DMM in both conditions.
This shows that our model, which incorporates a 2D spatial structure throughout the model, manages
to take advantage of the structure to infer the underlying dynamics of the data more accurately than
that using the 1D structure of the DMM. We also conducted a short experiment using the multi-step
method to forecast the heat equation on Emission 1. However, our model performs poorly compared
with ConvLSTM, falling into a chaotic state even after three steps of prediction. We deduce that this
is due to the variational structure of the model, in which the trained generative model could have
learned a comparatively huge variance, leading to an exploding error when propagated.

5.4.2. CMAP

Table 6 and Figure 5 shows that when evaluated using CMAP data, our model underperformed for
all forecasting lengths when compared with both the DMM and ConvLSTM, with ConvLSTM yielding
a slightly better result compared with the DMM. This is supported by further examination on Figure 7,
suggesting that our model produced a slightly higher error compared to DMM and ConvLSTM. We
hypothesize that our model suffers from suboptimal training because it has comparatively many layers
of CNN, making it prone to problems such as vanishing gradient and overfitting. In fact, when we
first use the parameters we set to train 2D heat equation data (larger channel sizes) on CMAP, we
found out that the model overfits after approximately 10-15 epochs of training and yields a worse
result compared with the case when we decrease the parameters to those presented in Table 6.

We also note that the CMAP data basically has less training data compared with our synthetically
generated heat equation data, as there are many overlaps of the data in each training sequence,
compared with the nonoverlapping sequences in our data (as we can generate new data easily with
the underlying dynamics). A lower number of data points results in a biased and overfitted model,
which our model is especially prone to because of the large number of parameters.

Moreover, as can be seen by the results, the variational inference-based models (DMM and ours)
yield worse results compared with ConvLSTM. This might also be caused by the difficulty in training
the variational model, primarily because we used Monte Carlo estimation to calculate the gradients.

Sensors 2020, 20, 4195 18 of 20

The stochasticity of the variational models might also have played a part, as we employ the Gaussian
state-space model to model the dynamics of the data, the effectiveness of which should increase with a
more extensive training dataset.

Even with all of the problems and limitations presented above, we confirm that our model, along
with vanilla DMM and ConvLSTM, are able to surpass the naive forecast method. This proves that the
model is still usable as a better forecasting method than naive forecast when the target dynamics of the
data are chaotic enough.

6. Discussions

Our evaluation of the synthetic heat equation data proves that there is an advantage to
incorporating 2D CNNs inside the DMM, with our model outperforming the DMM for all forecast
lengths and conditions, and also outperforming ConvLSTM when the forecast length is increased and
when there is a steep change of values in the data. However, the evaluation using the real-world data
shows the limitation of our model compared with the baseline models, with weaker accuracy and the
tendency to overfit when given a smaller training dataset. Nevertheless, our model still yields better
forecasts than that of naive forecast in a chaotic real-world setting, demonstrating that our model could
be considered as one of the alternative approaches to model real-world data.

Elaborating on the training of our model, we hypothesize that a different structure or configuration
of our model might yield a better prediction compared to baseline models even in a less noisy
environment. As an example, before changing our model into a bottleneck configuration on the
encoder-decoder CNNs (downsampling and upsampling structure), we also tried training our
model with strictly size-preserving CNNs. The results show that although training (convergence) is
much faster, the forecast accuracy presented was ultimately suboptimal compared with our model’s
bottlenecked version. We then tried various hyperparameters and channel sizes to increase the training
and modeling capability of our model, and we managed to gain a slight increase in the accuracy,
even though still not enough to surpass the baseline models. We think that a more rigorous evaluation
of the effect of hyperparameters is required, which we are presently researching.

Another configuration that we tried was applying batch normalization in specific layers of the
CNN (encoder, decoder, and combiner functions) to help regularize the layers. Applying batch
normalization makes the training harder, as expected, but it did not increase the accuracy of our model,
even though it is plausible that another configuration might yield a better result. Indeed, this shows
that different configurations of the model will yield a different result, demonstrating the diversity of
our model.

Furthermore, we also have to note that during the training of our model, there is a chance that the
model will train suboptimally compared to other trial runs, yielding a worse performance. We regard
these runs as outliers in the experiments. As mentioned above, we believe this is due to the high
number of parameters combined with the probabilistic aspect of the model. Preliminary experiments
show that given the right hyperparameters (a bigger batch number paired with a bigger channel
size), a more stable model can indeed be acquired, albeit with a precondition of more extensive and
comparatively unbiased data.

Even with its limitations, our approach paves the way for assimilating the diverse research
concerning CNNs into the DMM, with models such as residual networks (ResNets) [25] as a possible
solution to the difficulty in training (by solving the vanishing gradient problem). Our work also shows
that given sufficient compatibility, modifying the DMM with other related DNN models is also a
promising area of research. One other alternative that can be explored is incorporating graph-based
DNNs into the DMM. Because of its 2D spatial characteristics and unsupervised nature, as mentioned
in Section 2, application of our model to video prediction and data generation is another possibility
that can be studied in the future.

Sensors 2020, 20, 4195 19 of 20

7. Conclusions

We proposed a model that combines the spatial structure of ConvLSTM and the variational
technique of the DMM as an alternative method of spatiotemporal forecasting. Our evaluation shows
that while there are some limitations and difficulty in forecasting data with a limited number of
training data points and smaller variance, our model either matches or outperforms (in the longer
forecasting period) other baseline models when utilized to forecast a stochastic system. In the future,
we plan to perform more rigorous experiments with model configurations and research methods to
improve our model’s forecasting capability.

Author Contributions: Conceptualization, C.J.H. and K.K.; investigation, C.J.H.; software, C.J.H.; writing–original
draft preparation, C.J.H.; writing–review and editing, K.K.; visualization, C.J.H.; supervision, K.K.; funding
acquisition, K.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by JSPS KAKENHI Grant Number JP19K12039.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng. 1960, 82, 35–45.
[CrossRef]

2. Julier, S.J.; Uhlmann, J.K. A New Extension of the Kalman Filter to Nonlinear Systems. In Proceedings of the
AeroSense: The 11th International Symposium on Aerospace/Defense Sensing, Simulations and Controls,
Orlando, FL, USA, 20–25 April 1997; pp. 182–193.

3. Evensen, G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo
methods to forecast error statistics. J. Geophys. Res. Oceans 1994, 99, 10143–10162. [CrossRef]

4. Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
[PubMed]

5. Shi, X.; Chen, Z.; Wang, H.; Yeung, D.; Wong, W.; Woo, W. Convolutional LSTM Network: A Machine
Learning Approach for Precipitation Nowcasting. In Proceedings of the NeurIPS, Montréal, PQ, Canada,
7–12 December 2015; pp. 802–810.

6. Krishnan, R.G.;Shalit, U.; Sontag, D. Structured Inference Networks for Nonlinear State Space Models.
In Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Fransisco, CA, USA, 4–9 February
2017; pp. 2101–2109.

7. Le, V.D.; Bui, C.; Cha, S.K. Spatiotemporal Deep Learning Model for Citywide Air Pollution Interpolation
and Prediction. In Proceedings of the 2020 IEEE International Conference on Big Data and Smart Computing
(BigComp), Busan, Korea, 19–22 February 2020; pp. 55–62.

8. Elsayed, N.; Maida, A.S.; Bayoumi, M. Reduced-Gate Convolutional LSTM Architecture for Next-Frame
Video Prediction Using Predictive Coding. In Proceedings of the 2019 International Joint Conference on
Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–9.

9. Wang, J.; Sun, T.; Liu, B.; Cao, Y.; Zhu, H. CLVSA: A Convolutional LSTM Based Variational
Sequence-to-Sequence Model with Attention for Predicting Trends of Financial Markets. In Proceedings of
the 28th International Joint Conference on Artificial Intelligence (IJCAI), Macao, China, 10–16 August 2019;
pp. 3705–3711.

10. Khan, Z.A.; Hussain, T.; Ullah, A.; Rho, S.; Lee, M.; Baik, S.W. Towards Efficient Electricity Forecasting in
Residential and Commercial Buildings: A Novel Hybrid CNN with a LSTM-AE based Framework. Sensors
2020, 20, 1399. [CrossRef] [PubMed]

11. Yu, B.; Yin, H.; Zhu, Z. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework
for Traffic Forecasting. In Proceedings of the 27th International Joint Conference on Artificial Intelligence
(IJCAI), Stockholm, Sweden, 13–19 July 2018.

12. Zheng, C.; Fan, X.; Wang, C.; Qi, J. GMAN: A Graph Multi-Attention Network for Traffic Prediction.
In Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 Februrary
2020; pp. 1234–1241.

http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1029/94JC00572
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.3390/s20051399
http://www.ncbi.nlm.nih.gov/pubmed/32143371

Sensors 2020, 20, 4195 20 of 20

13. Toyer, S.; Cherian, A.; Han, T.; Gould, S. Human Pose Forecasting via Deep Markov Models. In Proceedings of
the Digital Image Computing: Techniques and Applications (DICTA), Canberra, Australia, 10–13 December
2017; pp. 1–8.

14. Farnoosh, A.; Rezaei, B.; Sennesh, E.; Khan, Z.; Dy, J.G.; Satpute, A.B.; Hutchinson, J.B.; van de Meent, J.W.;
Ostadabbas, S. Deep Markov Spatio-Temporal Factorization. arXiv 2020, arXiv:2003.09779.

15. Tan, Z.X.; Soh, H.; Ong, D.C. Factorized Inference in Deep Markov Models for Incomplete Multimodal
Time Series. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, NY, USA,
7–12 Februrary 2020; pp. 10334–10341.

16. Khurana, S.; Laurent, A.; Hsu, W.N.; Chorowski, J.; Lancucki, A.; Marxer, R.; Glass, J. A Convolutional Deep
Markov Model for Unsupervised Speech Representation Learning. arXiv 2020, arXiv:2006.02547.

17. Van den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.W.;
Kavukcuoglu, K. WaveNet: A Generative Model for Raw Audio. arXiv 2016, arXiv:1609.03499.

18. Lee, A.X.; Zhang, R.; Ebert, F.; Abbeel, P.; Finn, C.; Levine, S. Stochastic Adversarial Video Prediction. arXiv
2018, arXiv:1804.01523.

19. Kwon, Y.; Park, M. Predicting Future Frames Using Retrospective Cycle GAN. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019;
pp. 1811–1820.

20. Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent
Adversarial Networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),
Venice, Italy, 22–29 October 2017; pp. 2242–2251.

21. Halim, C.J.; Kawamoto, K. Deep Markov Models for Data Assimilation in Chaotic Dynamical Systems.
Advances in Artificial Intelligence, Springer Nature Switzerland AG: Cham, Switzerland, 2020; pp. 37–44.

22. Xie, P.; Arkin, P.A. Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite
Estimates, and Numerical Model Outputs. Bull. Am. Meteorol. Soc. 1997, 78, 2539–2558. [CrossRef]

23. Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; LS, G.; Iredell, M.; Saha, S.; White, G.; Woollen,
J.; et al. The NMC/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [CrossRef]

24. Bingham, E.; Chen, J.P.; Jankowiak, M.; Obermeyer, F.; Pradhan, N.; Karaletsos, T.; Singh, R.; Szerlip, P.;
Horsfall, P.; Goodman, N.D. Pyro: Deep Universal Probabilistic Programming. J. Mach. Learn. Res. 2019,
20, 973–978.

25. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016;
pp. 770–778.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Spatiotemporal Sequence Forecasting Task
	2D Convolutional Neural Markov Model
	Overview and Structure of the Model
	Inference Network
	Generative Network
	Training and Forecasting Flow
	Training Procedure
	Forecasting Flow

	Experiments and Results
	2D Heat Equation
	CPC Merged Analysis of Precipitation
	Model Specification and Experiment Details
	Experimental Results
	2D Heat Equation
	CMAP

	Discussions
	Conclusions
	References

