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Abstract: Children from out-of-home care are a vulnerable population that faces high stress and anxiety
levels due to stressful experiences, such as being abused, being raped, and violence. This problem
could have negative effects on their bio-psycho-social well-being if they are not provided with
comprehensive psychological treatment. Numerous methods have been developed to help them
relax, but there are no current approaches for assessing the relaxation level they reach. Based on this,
a novel smart sensor that can evaluate the level of relaxation a child experiences is developed in this
paper. It evaluates changes in thermal biomarkers (forehead, right and left cheek, chin, and maxillary)
and heart rate (HR). Then, through a k-nearest neighbors (K-NN) intelligent classifier, four possible
levels of relaxation can be obtained: no-relax, low-relax, relax, and very-relax. Additionally,
an application (called i-CARE) for anxiety management, which is based on biofeedback diaphragmatic
breathing, guided imagery, and video games, is evaluated. After testing the developed smart sensor,
an 89.7% accuracy is obtained. The smart sensor used provides a reliable measurement of relaxation
levels and the i-CARE application is effective for anxiety management, both of which are focused on
children exposed to out-of-home care conditions.
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1. Introduction

Children in out-of-home care are a vulnerable group whose members have frequently been abused
or raped or have not been provided with the basic needs by their family. Therefore, they are often
assigned to a place that aims to improve their wellness [1,2]. Such mistreatment or deficiencies can have
negative effects on their bio-psycho-social well-being [3]. Emotions such as anxiety, fear, and sadness
that children in out-of-home care feel arise when a child is involved a situation and appraises it
as being immediately relevant to a child’s active goals [4]. Anxiety is a diffuse and unpleasant feeling
characterized by hyper-reactivity of the sympathetic system, manifested in physiological parameters
and facial expressions. In addition, anxiety has been related to mental health [5]. Therefore, a variety
of interventions have been carried out to address this problem, focused on physical activity [1,6],
psychosocial attributes [7], and mental health [8], among others. Regarding mental health, it has
been documented that emotional states can be inferred through facial expressions, which in turn
can reflect the mental state of an individual [9]. In order to know the emotional state of subjects,
work has been carried out to detect the following emotions: a neutral state, joy, anger, surprise, fear,
sadness, and disgust, among others. These investigations have used physiological signals measured
with contact sensors [10–15]. Additional studies have been carried out to detect emotions using
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infrared thermography [16–19]. These studies have generated great interest due to the fact that this
technology is non-invasive, cost effective, and insensitive to lighting [20]. Negative emotions are useful
to the body; however, they cause damage when they are experienced repeatedly and for prolonged
periods of time [21]. The emotional regulation of these negative emotions is a process that includes
increasing or decreasing the intensity of emotion experience, expression, or physiological parameters.
The emotional regulation can be intrinsic (self-regulation) or extrinsic (interpersonal-regulation).
Indeed, problematic emotions appear with hyper-reactivity, which is conceptualized as an overreaction
to a situation [4]. Relaxation is used to deal with stress and anxiety, and involves physiological effects
that are the opposite to effects caused by psychological stress. In particular, guided imagery [22]
and diaphragmatic breathing [23] decrease the Sympathetic Nervous System (SNS) activity, as well
as increase parasympathetic nervous system activity. Biofeedback has emerged as a technique
which teaches individuals to recognize and modify their body’s physiological signals to help improve
their health [24]. Child monitoring of physiological parameters, whilst based on audio-visual signals,
has been conducted in order to help children increase, maintain, cope with, or even recover from
an emotional state [25]. Among the physiological parameters that can be measured for this technique
to work are the heart rate (HR) variability [22–25], electromyography (EMG) [26], electrocardiogram
(ECG) [27], HR [28,29], temperature [26], ultrasound [30], and electroencephalogram (EEG) [31],
among others. The main uses of biofeedback are to decrease anxiety and pain sensations [32], induce
relaxation [33], reduce chronic fatigue [34], ameliorate stress [35], manage post-traumatic stress
disorder [36], and, in general, improve the quality of life [37,38]. Moreover, biofeedback has been
used in video games to reduce anxiety and improve skills in children [39]. Indeed, video games
that integrate engaging cognitive training with real-time bio-sensing and neuro-stimulation have
the potential to optimize cognitive performances in health and disease [40]. Clearly, tools have been
developed to identify emotions through innovative and robust methods. However, the actual level
of emotion experienced, needed to emotional regulation, has not been quantified. Published studies
only indicate the presence or absence of emotions, without assessing the level of intensity required.
Furthermore, there are no reports of studies carried out on vulnerable populations. This is rather
unfortunate because these populations are those that need these technologies the most. For this reason,
it would be highly desirable to have a method to induce relaxation in vulnerable children, as well
as a non-invasive smart sensor that provides knowledge of the degree of relaxation that the subject
is experiencing.

The current work presents the development of a smart sensor based on thermography and HR
measurement to assess relaxation in out-of-home care children. As an incentive, an application called
i-CARE is used, which trains the children with biofeedback and recreates a virtual interactive space
that helps reduce anxiety, creating a relaxation feeling in a harmless way. The sensor measures changes
in six thermal biomarkers (forehead, left and right cheek, nose, chin, and maxilla) and heart rate.
To determine the relaxation level, a k-nearest neighbors (K-NN) classifier is used.

2. Materials and Methods

The methodology followed for the development of this system consists of two main stages:
(1) the protocol application to induce relaxation; (2) the smart sensor design to assess child relaxation
level. The diagram of Figure 1 shows the general methodology followed for the development of
this investigation.

2.1. Technological Equipment

For the infrared thermogram, an FLIR A310 camera was used, which has a thermal sensitivity of
0.05 at 30 ◦C, an infrared resolution of 320 × 240 pixels, and a spectral range between 7.5 and 13 µm.
This camera was installed on a tripod at a height of 1.2 m and at a distance of 1.2 m from the subject
under study. To measure the ambient conditions, a fluke 975 device was used to measure the air quality.
Additionally, a fluke 61 laser thermometer was used to measure the reflected temperature.
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The HR was measured using a pulse-oximeter designed by Jaramillo-Quintanar [41] that provides
measurements of HR and the percentage of oxygenation in the blood every 3 s, which was calibrated
with respect to a pulse-oximeter of commercial use endorsed by the Food and Drug Administration
(FDA) with an average error of less than 5% [42]. This system was designed for use in pediatric instances,
aimed at the acquisition of physiological signals (HR and oxygen saturation) in a child-friendly way.Sensors 2020, 20, x FOR PEER REVIEW 3 of 20 

 

 

Figure 1. General methodology. 

2.1. Technological Equipment 

For the infrared thermogram, an FLIR A310 camera was used, which has a thermal sensitivity 

of 0.05 at 30 °C, an infrared resolution of 320 × 240 pixels, and a spectral range between 7.5 and 13 

µm. This camera was installed on a tripod at a height of 1.2 m and at a distance of 1.2 m from the 

subject under study. To measure the ambient conditions, a fluke 975 device was used to measure the 

air quality. Additionally, a fluke 61 laser thermometer was used to measure the reflected temperature. 

The HR was measured using a pulse-oximeter designed by Jaramillo-Quintanar [41] that provides 

measurements of HR and the percentage of oxygenation in the blood every 3 s, which was calibrated 

with respect to a pulse-oximeter of commercial use endorsed by the Food and Drug Administration 

(FDA) with an average error of less than 5% [42]. This system was designed for use in pediatric 

instances, aimed at the acquisition of physiological signals (HR and oxygen saturation) in a child-

friendly way. 

2.2. Conditioned Space 

To carry out the study, a controlled environment was created (Figure 2) inside a room (2.5 m 

long, 3 m wide, and 2.5 m high) with constant temperature (20 ± 2 °C), lighting, and relative humidity 

(45–60%). To achieve this goal, an air conditioning system was used. 
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2.2. Conditioned Space

To carry out the study, a controlled environment was created (Figure 2) inside a room (2.5 m long,
3 m wide, and 2.5 m high) with constant temperature (20 ± 2 ◦C), lighting, and relative humidity
(45–60%). To achieve this goal, an air conditioning system was used.
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2.3. Children

The tests were performed on a group of 29 children from an out-of-home care institution,
with an average age of 8.7 years and a standard deviation of 1.8. All of the participants had high
stress levels due to the following experiences: family problems; economic troubles; institutionalization;
diffuse attachments and violence by action; or omission of care. Exclusion criteria consisted of
the following: not wearing glasses or accessories in the facial area during infrared thermographic
images; being free of any disease that may cause changes in the body temperature; avoiding the use
of lotions, creams, cosmetics, and deodorants; not having taken energy drinks; not having exercised
an hour before; and finally, their face had to be cleared of hair.

To cover the bioethics criteria, the guidelines of the General Health Law were followed and,
in accordance with the Helsinki declaration, the research project was submitted to the Applied Bioethics
Committee for Research of the Faculty of Engineering of the Autonomous University of Querétaro
(registration key CEAIFI-032-2017-TI). In addition, authorization from the management of the institution
and legal guardian of the participants was obtained. The procedures were applied whilst respecting
the dignity and privacy of the participants, using informed consent, only applying non-invasive
methods, and providing the freedom to participate and leave the intervention when desired.

2.4. i-CARE

The i-CARE application was used for training [43]. i-CARE is an application employed for
the remote monitoring of physiological variables of anxiety based on the Body Area Network (BAN)
paradigm [44] (designed with funding from the 2014–2016 CONACYT National Postdoctoral Stays
Program at UNAM). i-CARE © is a technological training program employed for the management of
anxiety; in fact, it involves psychological techniques such as biofeedback, diaphragmatic breathing,
guided imagery, and video games. Additionally, i-CARE graphs in real time the data obtained
from biosensors for oxygen saturation and HR (sympathetic symptoms of anxiety) and includes
a measurement of the subjective parameter of anxiety through the Visual Analog Scale (VAS), as well
as a virtual recreational space to create a relaxation effect through video games. Importantly, the system
provides biofeedback training for enabling children to learn to regulate the physiological variables of
anxiety. This technology allows the acquisition of pertinent physiological data, real-time recording,
and averaging of the data for each subject.

i-CARE Functions

The i-CARE application has the following functions.
First, the physiological parameters, such as the HR and oxygen saturation, were detected by

the sensor on the child’s finger. Then, the signal was displayed on i-CARE’s screen. Finally, every
second, the application showed in real time the physiological parameters for the duration of each phase
and could be modified by children viewing the animated images (Figure 3). Psychological training by
i-CARE is a new way to manage breathing and emotional regulation.

i-CARE involves visual and auditory feedback for the subject regarding the increase or decrease
of the measured variable. Each of the colors, shapes, and waves were previously tested through
usability studies of the application. Regarding the sounds and melodies incorporated in the application,
pleasant, calming music was used [45]. The operation of i-CARE is as follows:

Registration or research of the subject in an electronic file (sociodemographic data).
Phases of application:

• Phase 1. Baseline (3 min). In this phase, the child remained seated in silence, while their
physiological parameters were evaluated by the smart sensor. The instructor (Psychologist) was
only an observer;
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Training

• Phase 2. Training based on biofeedback (10 min). The instructor trained the child in diaphragmatic
breathing and used the physiological parameters for biofeedback (visual signal on i-CARE’s screen
in real time);

• Phase 3. Training in relaxation through guided imagery (10 min). On this screen, there was
an ocean picture and relaxing music was played ex professo on i-CARE. The instructor trained
the child on relaxation through guided imagery (therapeutic narrative), while his physiological
parameters were evaluated by the smart sensor and were displayed on i-CARE’s screen;

• Phase 4. Video game (5 min). In this phase, two screens appeared with images of a female
doctor, a male doctor, and different clothes, the child could choose the character to play with,
and the instructor explained the activity. This phase created a virtual recreational space for the child
to relax in and promoted attention, classification, and self-efficacy skills in the child. Physiological
parameters were evaluated, but did not appear on the screen for a better visualization of the game.

In every phase, there was the option to skip or save the activity. At the end of i-CARE, averages of
the physiological parameters of the four phases appeared on the screen.
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2.5. Protocol Application

In each test, the protocol shown in Figure 4 was followed, with the support of a psychologist
specialized in the pediatric field, who had uninterruptedly treated these children for a period
of more than 1 year, as well as with the collaboration of a specialist in infrared thermography
and HR measurements.

This protocol was strictly followed throughout the study, starting with the admission of the child,
who was individually admitted to the previously conditioned room detailed in Section 2.2, in which only
the current participant in the research and the researchers were present. Prior to admission to
the conditioned room, the children were told what the study consists of, and they were made aware of
their rights as participants, in addition to signing an informed consent. In addition, an assessment was
made to ascertain that no violation of any of the exclusion criteria (addressed in Section 2.3) was made.
Once inside the conditioned room, the first stage of the procedure consisted of a brief series of questions
for registering the subject’s data in i-CARE (sociodemographic data). This lasted for approximately
2 min. Subsequently, the second (acclimatization/body conditioning) stage took place. It consisted of
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having the subject sit in a comfortable position of his/her choice without speaking or moving for about
3 min, in order to allow them to adapt to the temperature inside the room and to regulate the subject’s
vital signs at a basal level. At the end of the acclimatization/body conditioning stage, the smart
sensor was placed on the child’s finger and the first thermographic image was taken and implemented
as the baseline (phase 1 in i-CARE), according to the scheme shown in Figure 2. Stage three consisted of
instructing the child on training with biofeedback and diaphragmatic breathing through the interactive
visualization of their vital signs (HR and oxygenation in the blood percentage) on the i-CARE screen
for a period of 10 min. Once stage three was completed, the fourth stage called imagery (training in
relaxation through guided imagery) began. It consisted of guiding the subjects through imagination to
calm places. This was attained using appropriate sounds and images. Subsequently, diaphragmatic
breathing was performed for 10 min. The fifth and final stage consisted of a biofeedback activity
that helped children relax through an interactive video game for a period of 5 min. At the end of
the interaction with i-CARE, the last thermographic image was taken. It should be noted that the HR
signal was acquired every 3 s throughout this protocol using the pulse-oximeter described in Section 2.1
and that the averages of the baseline and game stages were used for the study, since these were paired
with the thermographic images, which, having been obtained at the beginning and end of the protocol,
were called start and end, respectively.
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2.6. Smart Sensor

Once the pertinent data had been acquired, the appropriate smart sensor was designed to be able
to deliver an evaluation of the relaxation level achieved by the participant throughout the application
of the protocol. Figure 5 shows a general diagram of the smart sensor.
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2.6.1. Thermal Image Acquisition and Processing

The acquisition of thermal biomarkers followed the methodology shown in Figure 6.
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The acquisition of the thermogram was carried out using the equipment described in Section 2.1
within the conditioned space mentioned in Section 2.2 and following the protocol described in
Section 2.5.

To obtain the thermal matrix, Equation (1) proposed by Jadin et al. [46] was used:

Tr = Tmin +

(
Tgray

Tmgv
(Tmax − Tmin)

)
(1)

where Tr is the thermal value of the pixel of the thermogram in question; Tmin and Tmax are the values
of the minimum and maximum temperature in ◦C, respectively; Tgray represents the gray scale value
of the pixel; Tmgv is the largest gray scale value within the thermogram.

Using the thermal matrix, the areas of interest within the thermal image can be selected. For this
study, these areas were as follows: (1) nose; (2) right cheek; (3) left cheek; (4) chin; (5) nose; (6) maxillary.
These facial areas were associated with emotions and parasympathetic activity [16], as shown in
Figure 7. The temperature of each point within these areas was calculated through the thermal matrix
and an average was subsequently obtained in each section. The values obtained in this process were
identified as thermal biomarkers.

There are outstanding methods that can be employed to improve the quality of thermographic
images and reduce noise caused by various external sources, such as light incidents, image movement,
or thermal fluctuations. One of them is the use of Principal Component Thermography (PCT) [47] or
improved versions such as Candid Covariance-Free Incremental Principal Component Thermography
(CCIPCT) [48,49], which allow noise to be considerably eliminated. However, for this work, it was not
used because the workspace was previously conditioned to avoid any type of noise, in addition to
statically taking the images.
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2.6.2. Acquisition and Processing of HR (Pulse)

The acquisition of HR (pulse), was performed using the pulse-oximeter described in Section 2.1.
Data were saved throughout the application of the protocol shown in Figure 4. These data were

averaged and paired with the thermographic images for the study, as shown in Section 2.5.
It is important to mention that an evaluation of HR is subject to numerous factors, including

the following: the presence of pain and stress; age (HR changes with age); gender (in general, HR is
higher in females); the position of the body (HR is lower in the supine position); the time of day (HR is
higher in the early hours of the morning). In addition, the environmental temperature and medications
(such as atropine, beta blockers, and phenylephrine) can also alter HR [50,51]. Table 1 shows the values
for HR in the pediatric population; in children from 6 to 8 years old, it is equivalent to 70–135 beats per
minute, whilst in children between 10 and 12 years old, it is equal to 60–120 beats per minute.

Table 1. Normative ranges of the heart rate in the pediatric population.

Age Weight (kg) Heart Rate (BPM) 1

6 years 20 70–135
8 years 25 70–135
10 years 30 60–120
12 years 40 60–120

1 Where BPM means beats per minute (adapted from [52]).

2.6.3. Use of the K-NN Classifier

Once the basal and post i-CARE treatment values of each of the signals of interest (i.e., the six
thermal biomarkers and HR) were obtained, their difference was calculated using Equation (2):

∆v = V f −Vi (2)

where ∆v is the value change; V f is the final value, when the protocol is already finished; Vi is the basal
value. Obtaining the change in values for both the thermal biomarkers and the pulse was of vital
importance for the study, since it is the change that occurs with respect to what the values were before
starting the protocol.
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Once the final start variation of each value had been obtained, the data was normalized using
Equation (3):

Vn =
Vr −Vmin

Vmax −Vmin
(3)

where Vn is the normalized value (form 0 to 1); Vmin and Vmax represent the minimum and maximum
value of the data, respectively; Vr is the value to normalize. Normalization is really important due to
the fact that the inputs for the classification have different units and homogenization is necessary for
its use.

A K nearest neighbors classifier is proposed (Fine K-NN) [53], with the EUCLIDEAN distance
and a number of neighbors = 1. The normalized values of the indicators (thermal biomarkers and HR
variation) are used as inputs or predictors and the outputs are four possible classes, which represent
the relaxation level achieved (Figure 8).
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The inputs are the six thermal biomarkers and HR normalized variations that enter the classification
to obtain four possible outputs or classifications, and this option obtaining process is described in
Table 2.

Table 2. Proposed classification.

Number Name Percentage 1

1 No-relax 0% ≤ NR ≤ 25%
2 Low-relax 25% < LR ≤ 50%
3 Relax 50% < R ≤ 75%
4 Very-relax 75% < NR ≤ 100%

1 Where the values of the percentage were obtained from the normalized values: 0–1 to 0–100%.

The proposed classifications were obtained a priori when evaluating the relaxation of the subjects.
This relaxation had already been obtained qualitatively with respect to the experience and knowledge
of the expert in psychology and by an independent evaluation of the results of each of the participants,
taking into account that when trying to decrease the anxiety and stress to induce a state of relaxation, it
needs to go from being in the sympathetic to the parasympathetic system, so that the thermal biomarker
temperature should gradually increase and the HR should decrease, in addition to taking into account
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direct observations on the change of behavior of the child when using the application. Names were
assigned to the relaxation ranges according to the percentage they presented by dividing the total
of 100% into four equal parts. Four possible classifications were obtained, as shown in Table 2 in
the third column, where NR denotes no-relax or without relaxation, LR is low-relax or with a low level
of relaxation, R is relax or with a good level of relaxation, and VR is very-relax or with a very good
level of relaxation.

3. Results

The indicators were analyzed to determine if they were statistically significant for later use within
the classifier, and this section presents the results obtained.

3.1. Temperatures

Thermal biomarkers were acquired according to the protocol described in Section 2.6.1. The results
obtained after the analysis are shown in Table 3, where the percentage of temperature variation in
the entire sample is presented.

Paired Two Sample for Means

To find out if the data obtained were statistically significant, they were processed using the statistical
t-test, taking into account the start and end of each of the six thermal indicators. Table 3 displays
the data obtained.

Table 3. t-test: paired two sample for means (thermography).

Thermal Biomarker Ms
1 Me

2 P3 ∆T 4

Forehead 35.05 35.17 0.003 0.12
Left cheek 33.69 33.86 0.000 0.17

Right cheek 33.69 33.90 0.000 0.21
Chin 33.89 34.23 0.000 0.34
Nose 34.69 34.62 0.227 −0.07

Maxillary 34.60 34.85 0.003 0.25
1 Where Ms is the initial mean, 2 Me is the final mean, 3 P is the significance, and 4 ∆T is the temperature increase
between the final mean and the initial mean.

The graph in Figure 9 depicts a clearer appreciation of the behavior of the p value in the tests
carried out, and the average variation in each of the indicators is plotted, highlighting the p value.

Only in the case of the nose was the p value higher than 0.05, so this indicator was discarded for
the study; the rest of the values were less than 0.05, making them useful and reliable.

It can be seen from Figure 9 and Table 2 that the average temperature in thermal biomarkers
varied similarly in each of the cases, with the exception of the nose, which is also the one that presented
a lower p value, being the only one to not present statistical significance. Figure 10 shows a clearer
representation of the temperature changes that occurred in each of the areas of interest.

A clear trend towards an increasing temperature can be observed in the thermal biomarkers, with
the chin showing the greatest average change, followed by the maxillary muscle and the two cheeks,
and then the forehead with the lowest increase. The nose, as previously mentioned, was discarded due
to a lack of statistical significance.
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Figure 10. Thermal variation in the six thermal biomarkers.

3.2. Pulse

The HR was acquired throughout the study, but as mentioned in Section 2.6, only the values of
the first and last sections were used because these values were paired with the temperature values.
The variation column in Table 4 shows the average variation in these two indicators.

Table 4. t-test: paired two sample for means (pulse).

Indicator Ms
1 Me

2 P3 ∆I 4

Pulse 92.08 89.31 0.002 −3.49
1 Where Ms is the initial mean, 2 Me is the final mean, 3 p is the significance, and 4 ∆I is the increment of the indicator
between the final mean and the initial mean.

Paired Two Sample for Means

As in the case of temperature, the data were processed using the t-test to find statistical significance.
Table 4 shows the results obtained.
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It can be seen that, on average, the pulse decreased considerably. The graph in Figure 11 illustrates
a better appreciation of the behavior of the p value in the tests carried out, and the average variation in
each of the indicators is plotted, highlighting the p value.
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The p value obtained for HR (pulse) is less than 0.05, so it is useful for this study and was used
as an input or indicator for the classifier.

3.3. K-NN Classification

This section presents the performance of the proposed K-NN classifier, validated by the K-fold
cross validation method. For the implementation and validation of the classifier, the MATLAB software
was used [53].

K-Fold Cross Validation

To validate this study, K-fold cross validation was used with a K = 5 due to the number of samples
available. Figure 12 shows the confusion matrix obtained.

The percentage of accuracy obtained was 89.7%, with prediction failures mainly occurring in
the most remote areas, which are no-relax and very-relax. The best results were found in the case of
the relax and low-relax classifier, because in these two areas, there were many more tests for training.
It can be seen that the true positive rates are very high in the center of the classifier, but they fall on
the outskirts. This can be seen in the same way for the percentage of values correctly and incorrectly
predicted. The values of the true positive rate or specificity are high in the case of the relax and low-relax
classes, with values of 100% and 94%, respectively, providing good pressure to the classifier, since these
are the classes where most of the results were found. On the other hand, the no-relax and very-relax
classifiers had high values of the false discovery rate or specificity, of 50% and 100%, respectively. Lastly,
the positive predicted value was acceptable, being greater than or equal to 80%, with the exception of
the very-relax classifier, in which there was no prediction. Boy and girl participants were evaluated
independently to find out if there was any difference between them. Figure 13 shows the confusion
matrix obtained for the case of boys.

As can be seen in Figure 13, the precision obtained for male only is less than when boys and girls
are considered together (Figure 12), but still maintains a good accuracy of 87.5%. The sensitivity,
specificity, positive predicted value, and false discovery rate remained similar to when the two genders
were grouped together. Figure 14 shows the confusion matrix for when only the girls were measured.
In this case, the precision is reduced to 76.9%. As shown in the figure, numeric values were only found
in the sections at the center of the matrix (i.e., low-relax and relax). This is due to the fact that no values
were registered for girls with the ratings of no-relax or very-relax.
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To achieve a better understanding of the behavior of the proposed classifiers, receiver operating
characteristic (ROC) curves were constructed. These are shown in Figure 15. The results displayed
in these figures corroborate the findings attained by the confusion matrix analysis (Figures 12–14).
The data point shown in each of the graphs represents the location of the current classifier value for each
level of relaxation achieved. It can be seen that, in the very-relax case, the classification value is very
low. This results from the fact that it was decided that the probability of obtaining this classification was
very low due to the small number of samples which fell within this condition. In addition, priority was
given to testing the hypothesis that exposure to i-CARE treatment induced relaxation in the children.
The results clearly show that the low-relax and relax options had the largest areas under the curve
(AUC), with values over 0.9 in both cases and equal to 0.75 in the case of no-relax. This is consistent
with the hypothesis that exposure to i-CARE induces significant relaxation in the children treated.

After analyzing the results obtained, it became evident that at the end of the process,
the temperature values increased and the HR values decreased, and the classifier showed a good
accuracy = 89.7%, with a difference between the evaluation of boys and girls.
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4. Discussion

In this work, two main objectives were sought: (1) to assess the effectiveness of the i-CARE
application to induce relaxation in vulnerable children, and (2) to validate the use of a novel non-invasive
smart sensor technique to evaluate relaxation levels in children. The smart sensor system was based
on biofeedback and thermal and HR measurements. To obtain the degree of relaxation, a K-NN
classifier was used. This was accomplished by processing the input of the thermal biomarkers and HR
measurements. This information was processed to yield four possible levels of relaxation: no-relax,
low-relax, relax, and very-relax. The evaluation of the smart sensor yielded a very high accuracy of
89.7%. This value is at least as high as that reported by other investigators (i.e., 85.17% [54–56]). In our
study, the classifiers which provided the best resolution (signal/noise) were the relax and low-relax
states. This is significant because these were the main levels reached by the majority of children after
exposure to the i-CARE treatment.

In an attempt to assess the effect of experimental manipulation (i-CARE administration) on stress
and anxiety levels in children from out-of-home care, we measured two physiological parameters
before and after exposure to the i-CARE protocol. These parameters were the (i) temperature of
the facial skin in six different locations (thermal biomarker) and (ii) HR (physiological marker) [57].
Our results show that the administration of the i-CARE protocol produced (1) significant increases in
thermal measurements at five of the six face locations. This result is easily interpreted by suggesting
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that the protocol induced a significant increase in parasympathetic activity [16]. Additionally, there
was (2) a clear tendency to reduce HR. The trend was consistent with increasing relaxation [57].

There are a number of applications or technology-assisted approaches that can be employed to
reduce anxiety and stress or induce relaxation in children and young people which use biofeedback
techniques [58,59], yet there is no reliable way to evaluate the functioning of these approaches, since
there is no method or layered software available to evaluate them. This work offers the possibility of
implementing both the relaxation process by means of i-CARE and the acquisition of physiological
variables of anxiety based on the BAN paradigm, in order to evaluate the level of relaxation achieved
by children.

Numerous published studies have presented the classification of emotions, including the separation
of positive and negative emotions [60,61], but to the best of our knowledge, there are no classifiers
that provide a gradual classification of the level of relaxation, especially in a specific population such
as a group of children in out-of-home care.

The tests carried out for the training of this smart sensor were carried out in the field, without
removing the study subjects from their comfort area, although all of the tests were carried out in
a controlled space to improve the quality of the thermographic images. This area was a space adapted
and equipped within the same care home facility where the children were housed. This arrangement
allowed the participants not to be disturbed by external factors.

A large part of the equipment that has been used for data acquisition in previous studies has been
invasive, since the signals used for the evaluation have been EEG, ECG, or EMG [54,60,62]. The nature
of these invasive procedures may disturb the very parameter to be measured. In the case of the system
described in this paper, all of the equipment used is non-invasive, portable, and readily available.

In order to improve the accuracy of this sensor, additional studies should be carried out to assess
the efficacy of novel and old classifiers. In addition, further research should aim to understand why
the precision is higher in boys than girls and explore the possibility of adding new indicators from
the sensing of vital signs, such as oxygen saturation in the blood and the blood pressure.

5. Conclusions

The present work had two main goals: (1) to validate the use of a novel non-invasive smart
sensor based on infrared measurements of facial temperature and HR to evaluate the relaxation level
in children, and (2) to assess the hypothesis that an innovative application called i-CARE, based on
relaxation and biofeedback techniques, could be used to induce relaxation in vulnerable, out-of-home
children. A study was carried out to obtain the significant biomarkers that indicate the presence of
relaxation, which are the infrared temperature measurements made at the forehead, right and left
cheek, chin, and maxilla; the HR was measured with a custom-made finger sensor. Quantification
of the relaxation level was accomplished using a K-NN classifier, which provided four possible
classifications at the end of this process: no-relax, low-relax, relax, and very-relax. The accuracy of
the smart sensor was 89.7%. The results demonstrate that the i-CARE method is effective in inducing
relaxation in out-of-home children, and that the smart sensor used provides reliable measurements of
relaxation levels in children exposed to out-of-home care conditions, with better results in boys than
girls. Access to the population addressed in this work is very complicated due to various political,
economic, and social factors, but it is these vulnerable populations that most need to be taken into
account for future research since they are the people who most require our help.
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