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Abstract: Image-to-image conversion based on deep learning techniques is a topic of interest in the
fields of robotics and computer vision. A series of typical tasks, such as applying semantic labels to
building photos, edges to photos, and raining to de-raining, can be seen as paired image-to-image
conversion problems. In such problems, the image generation network learns from the information
in the form of input images. The input images and the corresponding targeted images must share
the same basic structure to perfectly generate target-oriented output images. However, the shared
basic structure between paired images is not as ideal as assumed, which can significantly affect the
output of the generating model. Therefore, we propose a novel Input-Perceptual and Reconstruction
Adversarial Network (IP-RAN) as an all-purpose framework for imperfect paired image-to-image
conversion problems. We demonstrate, through the experimental results, that our IP-RAN method
significantly outperforms the current state-of-the-art techniques.

Keywords: image-to-image conversion; image de-raining; label to photos; edges to photos; generative
adversarial network (GAN)

1. Introduction

The main objectives of image-to-image conversion tasks are the discovery of suitable latent
space and understanding of features maps from source to target images. These tasks have multiple
applications in computer graphics, image processing, and computer vision. Image processing
applications include: (i) image in-painting, where damaged parts of an image are restored [1,2], (ii) image
de-raining where rain-streaks are removed from an input image to get rain-free image [3,4], (iii) image
super-resolution where high-quality images are generated from similar degraded images [5–10].
Additional applications exist, however they are not constrained to image denoising [11–13], style
transfer [14], image segmentation [15] and image colorization [16,17].

Recently, researchers have developed convolutional neural networks (CNNs) for multiple
image-to-image conversion problems. These models mostly come in the form of an encoder-decoder
structure where the encoder encodes an input image to some latent space, the decoder decodes
from the latent space to the required output image and then they punish the network with a loss
function to pick up the mapping between two image domains. Many different loss functions and
distinct motivations [5,18] established these models. CNNs utilize reconstruction or pixel-wise
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losses [5,17,19,20] to generate output images, which are the most upfront techniques. For example,
in pixel space, the least absolute or the least-squares losses used to estimate the difference between the
ground-truth and generated images. Pixel-wise computation can construct sensible photos. However,
in many cases, these losses just capture low-frequency instead of high-frequency components of images,
leading to some critical flaws concerning the outputs, e.g., image blurring and image artifacts [7].

Recent years have witnessed that the procedures using the concept of generative adversarial
networks (GANs) [21] have accomplished remarkable results in image-to-image conversion tasks.
GANs, introduced by Goodfellow et al., is made up of a generator network G and a discriminator
network D, targeting to model the real images distribution by synthesizing generated samples, which
are very similar to real images. GAN-based models need more memory and computational time
in the training process than simple CNN based models as they need to train two networks, i.e.,
the Discriminator network and the Generator network [22]. Whereas in the testing process, there is
only one network, i.e., the generator network. Therefore, the memory and the computational time of
GAN based models in the testing process are nearly similar to CNN based models. The significant
advantage of using GAN based model is that it generates sharper and more realistic images than CNN
based models [23–25]. Hence, the algorithms using the concepts of GANs and conditional GANs
(cGANs) [26] have turned out to be a common approach for numerous image-to-image conversion
tasks [8,23]. Based on cGAN, pix2pix-cGAN [23] became a representative method aimed at solving
the paired image-to-image conversion problems, the objective of which is to map the conditional
distribution of the real images conditioned on the given input images [25,27–29].

The critical part of image-to-image conversion tasks is that they have to map high-resolution input
grids into high-resolution output grids. Additionally, the issue we consider is that the input and the
output have dissimilar surface nature, but both must render the same basic structure to ensure perfect
outcomes. There are two popular methods to find out the basic structure of an image, i.e., perceptual
features based method [6] and moments based method [30]. The key challenges with methods of
moments (MoM) [31] for training deep generative networks are in describing millions of sufficient
distinct moments and identiflying an objective function for learning the desirable moments [31,32].
On the other hand, the use of features from deep neural networks (VGG-16) pre-trained on ImageNet
dataset [33,34] has led to important advancements in computer vision. Perceptual features have
been widely used in piece of works such as super-resolution [6], style transfer [14], and transfer
learning [35]. The image generation model is considered to learn from the information in the form of
input images, which plays a significant part in the image-to-image conversion task to achieve desire
targeted outputs. In paired image datasets, the input structure is roughly matched with the output
structure and can significantly affect the production of the image generation models. For example,
Figure 1 shows that the window frames are not accurately labeled in the corresponding input images.
Hence, the image generation model requires further information to capture targeted high-resolution
output grids against each given missing high-resolution input grids. Despite considerable progress,
we note that the previous approaches have not examined optimized additional input information for
imperfect paired datasets.

To overcome the problem of imperfect paired datasets and to attain desired results, we opted to
feed this extra information in the form of input-perceptual loss (i.e., calculated between imperfect
paired images) into the objective function of the proposed model. It is an essential issue, as the
perfect paired dataset is expensive and hard to collect. This work introduces a trade-off between
collecting large-amount of the perfect paired dataset and an optimized training for the image-to-image
conversion network.

The remainder of the study is as follows: We discuss the previous research of the image-to-image
conversion with details in Section 2. The IP-RAN methodology, objective, and network architecture are
explained in Section 3. In Section 4, we present the experiments, results, and analysis of different loss
functions and generator configurations. Section 5 presents the conclusions and future work.
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Figure 1. Example of the label to architectural photos. (a) shows an input labeled image. (b) shows
marked objects in a ground-truth image.

2. Related Work

In previous years, the training of deep convolutional neural networks using back-propagation
algorithms with per-pixel loss functions has solved a broad range of feed-forward image-to-image
conversion tasks [18,36]. Various techniques of image-to-image conversion employ only pixel-level
losses or pixel-level losses preceded by several additional losses [6,23]. Image segmentation techniques
generate dense scene labels by operating networks in a fully convolutional way over a single input
image [20,37–40]. Image de-raining techniques try to eliminate rain strikes in uncontrolled weather
images [41,42]. Image super-resolution techniques generate a high-resolution image for a given its
low-resolution matching part [5,6]. Image in-painting is designed to retrieve the missing portion of the
given damaged image [1,43,44]. Other examples of image-to-image conversion techniques modeled on
feed-forward CNNs exist, however, they are not constrained to depth estimations [37,45,46] and image
colorization [19], etc.

A series of GAN-family [16,26,47,48] networks was introduced in a short time for an enormous
variety of problems since Goodfellow introduced the influential concept of Generative Adversarial
Nets (GAN) [21] in 2014. GANs also showed promising results in numerous applications for computer
vision, for example, image generation, representation learning [48], image editing [49], etc. Specifically,
various extended GANs accomplished good results at several image generation applications such as
style transfer [24], super-resolution [7], image inpainting [1], text2image [50], and like many other
domains including videos [51] and 3D data [52]. These studies also consist of but are not constrained
to the PGN introduced for video prediction [53], the iGAN introduced for interactive application [54],
the SRGAN added for super-resolution [7], and the ID-CGAN presented for image de-raining [3].

Moreover, some of these works based on GANs are dedicated to developing an improved
generative model, for example, WGAN(-GP) [55,56], Energy-based GAN [57], Progressive GAN [58],
SN-GAN [59] and E-GAN [60]. A conditional image generation based on GANs has also been actively
studied recently. Some advanced GAN models continuously improved the quality of particular tasks,
e.g., InfoGAN [16], cGANs [26], and LAPGAN [61] have been introduced to image translation recently
for their easy execution and outstanding results. The cGANs [26] hold category labels as conditional
data for the generation of particular images. Some of the works have included GANs into their designs
to enhance the efficiency of conventional tasks, e.g., for small entity (or object) detection, the PGAN [62]
was adopted. Specifically, Li et al. [62] developed an innovative perceptual-discriminator network,
which includes a perception block and an adversarial block. Wang et al. [25] used different layers of
discriminator network to measures perceptual losses. Sung et al. [63] introduced new paired input
conditions for the replacement of conditional adversarial networks to improve the image-to-image
translation tasks.
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Additionally, some modifications of the GANs [29,64–66] examined cross-domain image
conversions over discovering the linear mapping relationship among various image domains.
In particular, primal GAN intentions to investigate the mapping relationships between input images
and target images, although a double (or opposite) GAN does the opposite task. Such GANs shape a
closed-loop and enable the translation and reconstruction of images from either domain. These designs
can also be used to execute image conversion operations in the lack of paired examples by merging cycle
consistency loss and GAN loss. However, paired data is available for training in specific applications,
Ge et al. [29], Zhu et al. [64], Yi et al. [65], and Kim et al. [66] ignore that paired data often achieves
less than paired methods [23]. It is therefore still essential at this point to study paired data training,
particularly for performance motivated circumstances and implementations like the photo-realistic
picture synthesis [7], high-resolution image synthesis [8], real-world image painting [67], etc.

In GANs based works, generator networks are the same as the aforementioned encoder-decoder
structure in CNNs. As the training of deep CNNs suffer from vanishing gradient problem. Therefore,
many previous works [3,4,25] used skip-connections in the generator to pass the gradient easily to
prior layers of the encoder. Unfortunately, these skip-connections directly carry unwanted information
from the inputs to the resultant images, hence affecting the visual quality of the constructing images.
In the demand to develop a visually appealing image-to-image conversion model, we have to consider
the following facts into the optimization method:

• The principle, to perfectly map targeted output images must not be affected by the texture of the
given input images, which should be the essential pillar in the formation of a generator structure.

• The visual quality of constructed images should also be considered in the optimization method
rather than just relying on qualitative performance metric values. This principle can guarantee
that the generated images look visually appealing and realistic.

Under the above criteria, we present the Input-Perceptual and Reconstruction Adversarial
Networks (IP-RAN) for image-to-image conversion tasks. The IP-RAN consists of an encoder-decoder
network G; for converting an input image to the desired output image, a discriminator network D;
to flag the real or fake photos and an input-perceptual loss network P; to calculate fundamental structure
difference between an input image and the ground-truth image. We employe the input-perceptual,
the traditional reconstruction L1, and the generative adversarial losses in the objective function. Initially,
this work utilized the input-perceptual loss to calculate the missing information of the basic structure in
the input images according to the target images. Then, this study used similar to many traditional losses
the L1 loss for penalizing generated images to be near to the targeted images. Meanwhile, we used
the generative adversarial losses to estimate the distribution of converted images, i.e., to punish the
generated distribution for converging into the target distribution of output, which generally results in
the production of more visually pleasing images. The contributions of this study are as follows:

• This study introduces a novel approach to deal with imperfect paired datasets and the method
of feeding extra information into the objective function in the form of input-perceptual losses
calculated between the input images and the target images for imperfect paired datasets.

• We introduce an optimized method based on pix2pix-cGAN and conditional GANs (cGANs)
frameworks for existing imperfect pair datasets.

• We also analyzed the primary two different configurations of the generator structure, and the
results show the proposed approach is better than previous methods.

• We achieve both qualitative and quantitative results by using IP-RAN, which indicates that the
adopted technique produces better results than the baseline models.

Table 1 shows a comparison between the proposed and existing methods.
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Table 1. Comparison between state-of-the-art and proposed method.

Methods Advantages Disadvantages

CNNs (Reconstruction L1 and L2
losses) based methods [1,17]

Need less computation as one
network is to trained. Need big datasets to train

Fast and easy to train Produce blurry results

Simple GAN (Adversarial Loss)
based methods [21,26]

Can be trained with small datasets
More computation than CNNs as

two different networks
to be trained

Produces sharp and
realistic images

GAN networks are difficult to train

There is an image artifacts problem

Adversarial, reconstruction and
perceptual losses with

skip-connections in generator
network based methods

[3,4,23,25,29,63]

Achieve good quality results than
CNNs and simple GAN by

combining two loss functions
Skip-connections affect the quality

of generated images by directly
passing unwanted input
information to the output

of the network.

Skip-connections in generator
configuration reduce vanishing

gradient problem

Proposed method

This method adds extra
information to the objective

function to optimize the results.

Need to calculate input-perceptual
losses which increase training time

Use the Resnet bottleneck
structure in the generator

configuration to reduce the
vanishing gradient problem.

Achieves excellent results visually
and quantitatively

3. Methodology

In this work, we have two sets of paired training images, i.e., a set of input images {xi}
N
i=1 ∈ X

and a set of target output images
{
yi
}N
i=1 ∈ Y. We train the generative network G that the fake

generated images G(x) to be same as the real targeted images, and alongside we train a discriminative
network D to distinguish the fake generated images G(x) from the real targeted images. The generator
network learns the mapping from an input domain to a real-world domain by minimizing adversarial
losses, aiming to deceive the discriminator network. The generator has sub-networks: an encoder
Enc, residual blocks Res, and a decoder network Dec. The encoder network contains a sequence
of convolutional layers, which convert an input image into encoded feature space Enc(x). Later,
the output of encoder network, Enc(x), becomes the input of residual blocks [68]. The output of the
residual layers, Res(Enc(x)), is the activation maps which feed to the decoder network Dec. At that
moment, a sequence of fractionally-stride convolutionary layers decode the converted features into the
fake generated image G(x). Equation (1) expresses the output of the generator network:

G(x) = Dec(Res(Enc(x))) (1)

The whole network architecture is shown in Figure 2 and is called the Input-Perceptual
Pixel-Reconstruction Generative Adversarial Networks (IP-RAN).
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Figure 2. IP-RAN framework. IP-RAN consists of generator network, G, input-perceptual loss
network, P, and discriminator network, D. The generator network, G, is intended to generate translated
images from given input images. It is composed of an encoder-decoder structure that includes two
down-sampling layers of stride-2 convolution, several residual blocks, and two up-sampling layers
stride-2 of transposed convolution. Input-perceptual loss network, P, is the pre-trained VGG-19 and
used to extract features from hidden layers to calculate the perceptual loss. The discriminator network,
D, consists of convolutional-BatchNorm-LeakyRelu layers, and its output is used to distinguish
generated images from real images.

3.1. Objective

The input-perceptual loss calculated between high-resolution input grids and targeted
high-resolution output grids, which decrease the effect of less information in the input images
and useful against imperfect paired datasets. Equation (2) expresses input-perceptual loss:

LP(P) = ϕcl f + ϕsls (2)

where l f is the feature reconstruction as given in Equation (3), and ls is the style reconstruction losses
as given in Equation (4), are the two parts of the perceptual loss function, as Johnson et al. described
in [6]. Input-perceptual losses are utilized to measure fundamental structural differences such as
common patterns, texture, colors, etc., between the high-resolution input grids and the high-resolution
target grids.

Let Pi(x) be the activation maps for the ith layer of the network P when processing the image x. If i
is a convolutional layer then Pi(x) will be an activation map having a shape of Ci ×Hi ×Wi. The feature
reconstruction loss can be calculated as Euclidean distance between activation maps as follows:

l f = `P,i
f eat(x, y) =

1
CiHiWi

||Pi(x) − Pi(y) ||22 (3)
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where Pi denotes the non-linear CNN transformation at the ith layers of the loss network, P. The `P
f eat

loss aims to measure the discrepancy between high-level features of the given images.
The style reconstruction loss can be computed as squared Frobenius norm for the discrepancy

between the Gram matrices of the input and the targeted images as follows:

ls = `P,i
style(x, y) =

∣∣∣∣∣∣∣∣GP
i (x) −G

P
i (y) ||2F (4)

where GP
i (x) is the Gram matrix of ith layer activation maps of a given image x extracted from network P.

GP
i (x) is defined as the components of the Ci ×Ci matrix is given by:

GP
i (x)c,c∗ =

1
CiHiWi

Hi∑
h=1

Wi∑
w=1

Pi(x)h,w,cPi(x)h,w,c∗ (5)

where Pi(x) interpret as giving Ci-dimensional activation maps for each point on Hi ×Wi grid, and the
Gram matrix, GP

i (x), relates to non-centric covariance of the Ci-dimensional activation maps, processing
each grid site as an autonomous sample. Therefore, it gathers details about the features that appear to
be working together. The Gram matrix can also be determined accurately by transforming Pi(x) into a

matrix φ of shape Ci ×HiWi; then GP
i (x) =

φφT

CiHiWi
.

Generative adversarial loss [21], which trains G and D together as the two-player mini-max game
with loss function LGAN(G, D). The generator network G attempts to produce an image G(x) that
appears similar to the image in the target domain Y, while the discriminator network D attempts to
differentiate between them. In particular, we train the discriminator network, D, to maximize the
likelihood of classifying the correct label to the targeted image and the generated image G(x), while
training G is to minimize the likelihood of classifying the correct label to the generated image G(x).
The mini-max game can be formulated as:

min
G

max
D

Ey∈Y[log(D(y))] +Ex∈X[log(1−D(G(x)))] (6)

GANs-based models have revealed the significant ability to learn generative models, particularly
for image generation tasks [16,53,55]. Therefore, we also implement the GANs learning process to
resolve image conversion tasks. As illustrated in Figure 2, the image generation network G is used to
produce output image, G(x), against the input image, x ∈ X. In the meantime, each input image xi has
a correspondent target image yi. We assume that all target images, y, follow the distribution y ∈ Y,
and the generated images, G(x), are motivated to have matching distribution as targeted images y,
i.e., G(x) ∼ Y. Besides, to accomplish the generative adversarial learning approach, a discriminative
network, D, is added, and the adversarial loss function can be expressed as follows:

min
G

max
D

V(G, D) = Ey∈Y[log(D(y))] +Ex∈X[log(1−D(G(x)))] (7)

We use least squares loss (LSGAN) as discussed in [69], which offers a non-saturated and smooth
gradient for discriminator network D. Adversarial loss, LGAN(G, D), is expressed as:

LGAN(G, D) = Ey∈Y
[
(D(y) − 1)2

]
+Ex∈X

[
D(G(x))2

]
(8)

The generative adversarial loss turns as per the numerical measurement to punish the variance
between the distributions of generated images and ground-truth images.

The basic GAN framework is unstable as it trains two competing neural networks. In [64],
the author noted that one cause for instability is that there are un-unique solutions during the training
of the generator. As shown in Figure 3, several artifacts introduced by the standard GAN structure can
be observed which significantly impacts the visual quality of the output image. Previous methods
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have found that it is useful to combine GAN objectives with more traditional losses such as L2 loss [1]
in such way that the work of the discriminator remains unchanged as in Equation (8), but the task
of the generator is not only to deceive the discriminator but also to make generated image closer to
the targeted ground truth image according to L2. In our method, we used L1 distance instead of L2,
because L1 encourages blur reduction:

LL1(G) = Ex,y
[∣∣∣∣∣∣y−G(x) ||1

]
(9)Sensors 2020, 20, x FOR PEER REVIEW 8 of 21 
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Figure 3. (a) ground-truth image, (b) image generated by conventional CNN using L1 loss function,
(c) image generated by standard GAN using adversarial loss and (d) image constructed by the proposed
method with Input-Perceptual and Reconstruction Adversarial losses

The adversarial loss helps the generator and protect from the blurry effect of L1 loss as well as
remain close to the targeted output images. The final objective for the generator network is expressed as:

LGT = ϕgLGAN(G) + ϕL1LL1(G) + ϕPLP(P) (10)

where LGT represents the total generator network loss which is the sum of the generator’s adversarial
loss, LGAN(G), L1 reconstruction loss, LL1(G), and the input-perceptual, LP(P).

3.2. Network Architecture

Figure 2 demonstrates the proposed structure consisting of three CNNs networks, i.e., the generator
network, G, the input-perceptual loss network, P, and the discriminative network, D.

Recently, many solutions [3,23,25] to these problems used skip-connections in the generator
network to shuttle the information directly from input to output throughout the network and to solve
the vanishing gradient problem. On the one hand, skip-connections are useful in resolving the vanishing
gradient problem. Still, for image-to-image conversion problems, these skip-connections are carrying
unwanted information from the input throughout the network and influencing the performance of the
results critically, see Figure 2. We utilize the ResNet [68] framework same as Johnson et al. [6], with
an encoder-decoder structure instead of skip-connections between encoder-decoder layers to avoid
unwanted information coming from the input and to produce visually pleasing results. Our generator
network includes two downsampling layers of stride-2 convolution, nine residual blocks, and two
upsampling layers with stride-2 of transposed convolution and utilizes instance normalization [70],
for specifications, see Table 2. The input-perceptual loss network, P, uses VGG-19 pre-trained on the
ImageNet dataset [33,34]. We extract features from six layers (Relu-1 of block1, Relu-1 of block2, Relu-1
of block3, Relu-1 of block4, Relu-1 of block5) for style loss ls and Relu-2 of block4 for feature loss l f of
pre-trained VGG-19 to calculate input-perceptual losses.

In this work, we use 70 × 70 Markovian PatchGANs [7,23,71] for the discriminator network D to
classify whether 70 × 70 overlapping patches of images are real or fake. Patch-level discriminator has
fewer parameters than a full-image discriminator and can operate in a fully convolutionary fashion on
images of arbitrary size [23].



Sensors 2020, 20, 4161 9 of 21

Table 2. Generator Network of IP-RAN.

Operation Pre-Reflection
Padding Kernel Size Stride Non-Linearity Feature Maps

Encoder
entry 2

Convolution 3 7 1 ReLU 64

Convolution 3 2 ReLU 128

Convolution 3 2 ReLU 256

Residual
Blocks

Residual block 1 3 1 ReLU 256

Residual block 1 3 1 ReLU 256

Residual block 1 3 1 ReLU 256

Residual block 1 3 1 ReLU 256

Residual block 1 3 1 ReLU 256

Residual block 1 3 1 ReLU 256

Residual block 1 3 1 ReLU 256

Residual block 1 3 1 ReLU 256

Residual block 1 3 1 ReLU 256

Decoder

Deconvolutional 3 2 ReLU 128

Deconvolutional 3 2 ReLU 256

Convolutional 3 7 1 Tanh 256

4. Experiments and Results

In this section, we first discuss the specifications of the datasets, proposed model, and training
parameters. We compared the IP-RAN with the standard approaches and current state-of-the-art
methods. We also discuss the information on the experiments and performance measures used to test
the proposed method.

4.1. Datasets

Experiments are carried out on several datasets to evaluate the performance of IP-RAN and other
state-of-the-art methods. We use three public paired datasets which are as follows:

• CMP facades dataset [72] is used to train for architectural “Labels to Photos” task.
• Dataset provided by ID-CGAN [3] is used to train for the “Image De-raining” task.
• Dataset formed by pix2pix [23] is used to train for the “Edges to Photos” task. The original dataset

has come from [54] and [73], and the use of the HED edge detector [74] to extract edges. All images
are scaled to 256 × 256.

4.2. Model and Parameter Details

In this subsection, we discuss the model and the parameter details. In the case of GAN loss
(LGAN), we replace the criterion of negative log-likelihood with a least-square loss [69] for the network’s
training stabilization. This least-square loss is found more stable throughout the training procedure
and produces higher quality results. In general, for LGAN(G, D), we set that G, train to minimize
Ex∼pdata(x)

[
(D(G(x)) − 1)2

]
and D, train to minimize Ey∼pdata(y)

[
(D(y) − 1)2

]
+ Ex∼pdata(x)

[
(D(G(x))2

]
.

Furthermore, we divide the discriminator’s criterion by 2 when optimizing D, which slows the learning
rate of D proportional to G. We apply the Adam optimizer [75] and use minibatch Stochastic Gradient
Decent (SGD), setting a learning rate of α = 0.0002, β1 = 0.5. Relu activation function, with slope
value of 0.2, is used in the generator network, G, except the last layer used tanh. The Batch size is set
to one for all of the experiments. The training parameters are set as ϕg = 1, ϕL1 = 10, ϕs = 1 and
ϕc = 0 for labels to photos task, ϕg = 1, ϕL1 = 10, ϕs = 1 and ϕc = 1× 10−6 for edges to photos task,
and ϕg = 1× 10−9, ϕL1 = 10, ϕs = 1 and ϕc = 1× 10−6 for image de-raining task.
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4.3. Evaluation Criteria

For a performance demonstration of image-to-image conversion tasks, we performed qualitative
and quantitative tests to determine the quality of the generated images. We directly present input and
generated images for qualitative assessments. We apply quantitative measures on test sets to assess
the performance of different model and configurations such as, Peak Signal to Noise Ratio (PSNR),
Structural Similarity Index (SSIM) [76], Visual Information Fidelity (VIF) [77], and Universal Quality
Index (UQI) [78]. These quantitative measures valuation are based on the luminance channel of the
image. FID score [79] determines the distance between the real data distribution and the generated
data distribution.

4.4. Analysis of Different Loss Functions

We train models to separate the effect of different variations of loss functions on the architectural
CMP facades “label to photos” dataset. We perform tests to compare the impact of each part of
Equation (10). Figure 4 shows the qualitative results of the variations mentioned below on labels to
photos problem.

• L1, by setting ϕg = 0 and ϕP = 0 in Equation (10), causes to generate blurry outputs.
• The cGAN, by setting ϕL1 = 0 and ϕP = 0 in Equation (10), leads to much sharper outputs but

brings visual artifacts.
• L1 and cGAN together, by setting ϕP = 0 in Equation (10) causes sensible results but still far from

the targeted outputs.
• The results of the proposed loss function in Equation (10), show a significant improvement in

quality and similarity to the targeted results.
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Figure 4. Shows label input against different loss functions that produce different architectural photo
results. (a) input label image, (b) result of L1 (LL1(G)) alone, (c) result of cGAN (LGAN(G) ) alone,
(d) result of L1+cGAN (LGAN(G) +LL1(G)), (e) result of the IP-RAN, and (f) target output photo.
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In Table 3, we compared the abovementioned cases quantitatively using the PSNR, SSIM, UQI,
VIF, and FID scores on the labels to photos dataset. L1 achieves higher scores in PSNR, SSIM, UQI,
and VIF, but the output results are blurred images and are very poor in FID-score. Hence, pointing
out that the results are visually unpleasant. We observed from Figure 4 and Table 3 that for blurry
images PSNR, SSIM, UQI, and VIF evaluation scores perform inferiorly. Table 3 shows that cGAN
alone achieves poor scores in PSNR, SSIM, UQI, and VIF, which indicating that results are less similar
to the targeted output. However, it has got a good FID-score as compare to L1 that shows results have a
recognizable structure. Table 3 shows that the IP-RAN achieves the best possible scores in PSNR, SSIM,
UQI, VIF, and FID. Hence, the results are similar to the targeted output as well as have a recognizable
structure, and they are visually pleasing.

Table 3. Quantitative results compared with different loss functions.

PSNR(dB) SSIM UQI VIF FID

L1 13.43 0.2837 0.8186 0.0627 176.74
cGAN 11.86 0.1996 0.7722 0.0399 111.00

L1+cGAN=CGAN 12.80 0.2399 0.8035 0.0480 113.53
IP-RAN 12.84 0.2426 0.8052 0.0488 110.29

4.5. Analysis of Different Generator Configuration

The encoder-decoder structure does not have skip-connections among the layers. The U-Net
structure has skip-connections between encoder layers and decoder layers, as shown in Figure 5.
We have trained both structures on image de-raining dataset and labels to photos dataset with similar
loss function using pix2pix-cGANs [23] architecture. We conducted tests to compare both structures.
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Figure 5. Different structures of image-to-image generation networks.

Figure 6 shows the encoder-decoder structure achieves excellent results without losing any
information than the U-Net structure. Skip-connections passing unwanted information of the input
images, which have a severe influence on generated images, leads to corrupted results and poorly
achieved their targets. In the image de-raining task, the generator structure with skip-connections
poorly converts between the rain to de-raining images. In Figure 6c the first four rows, where
rain-streaks still can be found in resultant images. The resultant images inherit this unwanted
information via skip-connections from the corresponding input images. Figure 6c the last four rows,
where resultant images contain bluish and greenish color effects, which are directly coming from the
input labeled images via skip-connections.
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Figure 6. Sample results in the first four rows of rainy to de-raining images and last four rows of labels
to architectural photos. For good visual comparison, the smaller images below the test images represent
specific regions-of-interest. (a) input images, (b) targeted photos, (c) U-Net with skip-connections,
(d) Encoder-Decoder and (e) IP-RAN.
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4.6. Comparison with Baseline

For comparison purposes, we selected the following latest state-of-the-art approaches for
image-to-image conversion problems:

• Pix2Pix-cGAN [23]: Pix2pix is designed for paired image datasets based on the cGAN architecture.
Pix2Pix utilizes L1 reconstruction loss and adversarial loss to train its model for the conversion of
input images to output images.

• UTN-GAN [29]: UTN-GAN introduced a GAN-based unsupervised transformation network
with hierarchical representations learning and weight-sharing technique. The reconstruction
network learns the hierarchical representations of the input image, and the mutual high-level
representations are shared with the translation network to realize the target-domain oriented
image translation.

• PAN [25]: PAN can learn a mapping function to transform input images to targeted output
images. PAN consists of a image transformer network and a discriminator network. In PAN,
the discriminator measures perceptual losses on different layers and identifies between real and
fake images. PAN uses perceptual adversarial losses to train the generator model.

• iPANs [63]: iPANs used U-NET as image transformation network and perceptual similarity
network as a discriminator network. iPANs introduced new paired input conditions for the
replacement of conditional adversarial networks to improve the image-to-image translation tasks.
In this method the ground-truth images which are identical images are the real pair, whereas the
generated images and ground-truth images are the fake pair.

• ID-CGAN [3]: ID-CGAN introduced to handle the image de-raining task by combining the pixel-wise
least-squares reconstruction loss, conditional generative adversarial losses, and perceptual losses.
ID-CGAN used cGAN structure to map from rainy images to de-rainy images. ID-CGAN consists
of a dense generator to transform from an input image to its counter-part output images.
ID-CGAN used the pre-trained VGG-16 network to calculate the perceptual losses between generated
and ground-truth images.

4.6.1. Comparison with Pix2Pix-cGAN, PAN, UTN-GAN and iPANs

We attempt to transform semantic labels to architectural photos. This inverse conversion is a
complicated process and distinct from the tasks of image segmentation. Pix2Pix-cGAN and UTN-GAN
used adversarial and reconstruction losses, and PAN and iPANs used adversarial and perceptual losses
to produce labels to architectural photos as shown in Figure 7. After the comparison, we observe the
adopted approach captures further information and generates realistic and more similar images to
the targeted photos with less deformation. Furthermore, the quantitative assessment in Table 4 also
demonstrates that the IP-RAN can attain substantially improved results.

Creating a real-world object from the corresponding input edges is one of the image-to-image
conversion tasks as well. We train the IP-RAN on the dataset given by [23] to convert edges-to-shoes
and compare its results by the outcomes of pix2pix-cGAN, PAN, UTN-GAN and iPANs. Figure 8
shows shoe photos generated from given input edges by the proposed method, pix2pix-cGAN,
PAN, UTN-GAN and iPANs, while Table 5 presents the quantitative measures on the test set results.
By observing and comparing the constructed shoe photos, we find that the IP-RAN, pix2pix-cGAN
and PAN accomplished promising results, so far, it’s difficult to express which of these is better. On the
measurement score of UQI and FID, the IP-RAN performed slightly weak compared to pix2pix-cGAN
and PAN, yet superior in the other quantitative measures.
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streaks from a given input rainy photos. Assuming un-predictable weather situations, the image de-
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Table 4. Quantitative results of labels to architectural photos, bold results show good scores.

PSNR(dB) SSIM UQI VIF FID

Pix2Pix-cGAN 13.37 0.2559 0.8195 0.0541 113.53
UTN-GAN 12.78 0.2362 0.8016 0.0481 111.86

PAN 12.82 0.2370 0.8030 0.0477 112.47
iPANs 11.46 0.1765 0.7603 0.0382 140.70

IP-RAN 12.84 0.2426 0.8052 0.0488 110.29

Table 5. Quantitative results of Edges to Shoes, bold results show good scores.

PSNR(dB) SSIM UQI VIF FID

Pix2Pix-cGAN 19.33 0.7569 0.9220 0.2092 59.93
UTN-GAN 15.41 0.6588 0.8255 0.1786 104.9

PAN 19.11 0.7389 0.9187 0.2034 62.13
iPANs 15.71 0.6671 0.8444 0.1778 117.1

IP-RAN 19.42 0.7608 0.9179 0.2153 62.15

4.6.2. Comparison with UTN-GAN, ID-CGAN and iPANs

ID-CGAN and iPANs try to resolve the image de-raining problem. They aim to eliminate rain
streaks from a given input rainy photos. Assuming un-predictable weather situations, the image
de-raining or de-snowing alone is a challenging image-to-image conversion problem.

We try to resolve a single image de-raining task by the IP-RAN using a similar configuration to
ID-CGAN. We train our adopted scheme on the image de-raining dataset provided by ID-CGAN [3].
This dataset contains 700 synthesizing images for training, whereas 100 artificial and 50 real-world rainy
images are presented for testing purposes. Figure 9 shows the sample results of synthetic test images.
As per the collection of ground-truth images are available against the set of synthetic test photos,
we measure and report the quantitative outcomes in Table 6. Furthermore, we assess UTN-GAN,
ID-CGAN, iPANs and IP-RAN on natural rainy images, and the results are shown in Figure 10.
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Figure 9. Sample results of synthetic test images. For good visual comparison, the smaller images
below the test images represent specific regions-of-interest. (a) input images, (b) results of UTN-GAN,
(c) results of ID-CGAN, (d) results of iPANs and (e) results of the IP-RAN.

Table 6. Quantitative results of image de-raining, bold results show good scores.

PSNR(dB) SSIM UQI VIF FID

UTN-GAN 21.81 0.7325 0.9056 0.2939 127.4
ID-CGAN 24.42 0.8490 0.9433 0.3708 76.71

iPANs 22.44 0.7687 0.9252 0.3101 112.72
IP-RAN 23.69 0.8518 0.9412 0.3740 75.90

From Figures 9 and 10, we can observe that ID-CGAN, iPANs and the IP-RAN have accomplished
great results in image de-raining tasks. The findings of the iPANs look slightly better, but contain
some artifacts and blurriness. However, by examining the results carefully, the adopted scheme
eliminates more rain-streaks with a lesser amount of color distortion. Moreover, as specified in Table 6,
for a synthetic set of test images, the introduced method’s evaluation scores and the resultant images
are far more comparable with the corresponding ground-truth photos than with the results of the
other methods. In the single image de-raining problem, the adopted method can accomplish more
improved results than UTN-GAN, ID-CGAN, iPANs; one of the possible reasons is that these methods
used skip-connection in their generator network. These skip-connection passes useful as well as
unwanted information directly from the input image to the output images throughout the network and
influence the results. Even though ID-CGAN achieved highest score in the PSNR and UQI metrics, still
rain-streak can be seen in the resultant images of ID-CGAN. On the other hand, the adopted method
tries to resolve the problem through the proposed loss function using an encoder-decoder generator
structure. The novel training scheme of IP-RAN can benefit the generator to learn better-quality
mapping from the input images to the output images, leading to improved performance.
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5. Conclusions

We have introduced a novel cGAN-based scheme to overcome the lack of information in input labels
for imperfect paired datasets. In this work, we propose a novel Input-Perceptual and Reconstruction
Adversarial Network (IP-RAN) for paired image-to-image conversion tasks as a general-purpose
framework. We merge the input-perceptual loss with the adversarial and the per-pixel reconstruction
Euclidean losses as an innovative loss function for imperfect paired datasets. Also, we analyze
two popular generator configurations and evaluated their results quantitatively and qualitatively.
A generator without skip-connections produced much better and visually pleasing results than
a generator with skip-connections. We conducted extensive experiments on multiple datasets to
assess the efficiency of the IP-RAN. The adopted scheme outperforms the state-of-the-art works for
image-to-image conversion problems. The experimental results of several image-to-image conversion
tasks illustrated that the proposed framework is efficient and capable of practical imperfect paired
image-to-image conversion applications. In this study, we explored input-perceptual losses to feed
the extra information of imperfect paired datasets for only paired image-to-image conversion tasks.
Future work is required to examine the impact of input-perceptual losses for unpaired image-to-image
conversion applications.
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