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Abstract: The energy detection process for enabling opportunistic spectrum access in dynamic
primary user (PU) scenarios, where PU changes state from active to inactive at random time instances,
requires the estimation of several parameters ranging from noise variance and signal-to-noise ratio
(SNR) to instantaneous and average PU activity. A prerequisite to parameter estimation is an accurate
extraction of the signal and noise samples in a received signal time frame. In this paper, we propose
a low-complexity and accurate signal samples detection algorithm as compared to well-known
methods, which is also blind to the PU activity distribution. The proposed algorithm is analyzed
in a semi-experimental simulation setup for its accuracy and time complexity in recognizing signal
and noise samples, and its use in channel occupancy estimation, under varying occupancy and SNR
of the PU signal. The results confirm its suitability for acquiring the necessary information on the
dynamic behavior of PU, which is otherwise assumed to be known in the literature.

Keywords: discontinuous signals; blind detection; rank order filtering; primary user traffic

1. Introduction

In cognitive radios, detecting white spaces, and determining channel occupancy in a dynamic
radio environment is essential for opportunistic access to radio resources. The simplest and widely
used method of assessing the availability of the radio resources is energy detection, for which efficiency
in terms of probability of detection and probability of false alarm is analyzed extensively in the
literature [1–3]. However, these studies consider the context of a static primary user (PU) signal, which
is either active or inactive within the entire detection period. In realistic scenarios, however, the PU
signal can dynamically switch between active and inactive states, while detection is in progress. The
detection of discontinuous PU is considered in [4–7] by redesigning the detection algorithms, in which,
however, signal, noise, and PU traffic parameters are assumed to be known a priori while the methods
to obtain/estimate these necessary parameters are not described.

Many studies show that any uncertainty in estimating parameters of the received signal seriously
limits the ability of the detector to assign energy to a particular activity state correctly [8]. Consequently,
the correct operation of the energy detector in a dynamic radio channel requires accurately estimating,
(a) PU traffic parameters such as the average and current duration of the PU, and its channel occupancy
ratio and, (b) signal and noise parameters as noise variance and signal-to-noise ratio (SNR). Importantly,
the estimation of all these parameters and the ensuing detection performance starts with the accurate
splitting of the signal and noise samples in received energy samples.

In this paper, we present a practical algorithm for energy samples recognition—marking of
signal and noise samples in a received time frame—of a dynamic PU signal. The algorithm uses rank
order filtering, earlier studied for signal spectrum analysis only [9–11], for temporal signal analysis
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by redesigning the signal processing and samples marking processes. We evaluate the algorithm
in terms of signal samples detection and complete samples recognition with respect to SNR and
different PU activity factors, and also examine the execution time of the detection process. Besides, its
performance is compared with the well-known reference methods in the literature [12–14], which is
then followed by its utility appraisal for channel occupancy estimation. To assess the accuracy of these
operations, a semi-experimental simulation setup of packet-based PU transmission is designed, where
the background distortion comes from the radio frequency (RF) noise traces captured with National
Instrument software defined radio (SDR), USRP-2900. The proposed solution, with its appealing
performance, provides a convenient basis, although not the subject of this article, for parameter
estimation in the subsequent detection of intermittent PU signals.

The rest of the article is organized as follows. Section 2 gives the motivation for samples
recognition, and Section 3 describes the proposed detection algorithm. Section 4 explains the simulation
methodology and shows numerical results. Finally, Section 5 gives the concluding remarks.

2. Motivation for Samples Recognition

To reason the need for samples recognition, we restate the energy detection (ED) process for
dynamic PU signals. Consider the ED-based sampling of dynamic PU modeled as an alternating
renewal process, similar to [4–6], and shown in Figure 1. Energy detection as an auxiliary process
in basic secondary user (SU) operations is considered as discontinuous and periodic, and therefore
may not register constant PU activity in the detection window, but rather may contain transitions
between the activity states. At any time instant, PU is either in ON (active) or OFF (idle) state, while
the state transition occurs at random time instances, and the state holding times are exponentially
distributed with mean τ and µ, respectively. The energy detector collects signal samples xn, n = 1 . . . N
in a detection interval of duration (T), which is independent of the PU ON/OFF process. As the signal
is sampled at a specific frequency fs, total number of collected samples are N = fsT, and N0 and
N1 represent the number of samples corresponding to hypothesis (subject to detection) H0 and H1.
As N → ∞, normalized occupancy/absence rate Ni/N approaches its average value pi, i ∈ {0, 1}.
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Figure 1. Illustration of a dynamic PU signal activity along with the energy sampling process.

A predominant model to characterize energy detection performance for such dynamic PU scenario,
in terms of test statistic (β), probability of detection (Pd), and probability of false alarm (Pf ), is as
follows [4]

β = p0
1
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Pf = Q
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)]

, (3)

where γ is the decision threshold, σ2
w is noise variance and ρ is the SNR, which in instantaneous

form, for mixed signal-with-noise and noise-only samples, can be calculated as a ratio of averaged
powers [15]

ρ =
∑N1

n=1 |sn + wn| 2

∑N0
n=1 |wn| 2

− 1. (4)

To implement this detection model or any other involving PU transition probabilities (e.g., [6]),
several necessary parameters, as noise variance, SNR, instantaneous and mean occupancy/absence
rates, are assumed to be known. Some of these parameters remain dependent on the primary user
activity (i.e., N0/1, p0/1) and can be derived directly from the received signal. Others depend on
the operating conditions of the receiver (i.e., σ2

w, ρ) and must be estimated based on the appropriate
groups of the received samples. In practice, the very first step to extract these parameters is samples
recognition. Figure 2 summarizes the different stages of the energy detection process while featuring
the source and demand of the necessary parameters at each stage.
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Figure 2. Block diagram of an energy detection process for discontinuous PU signals: source and
demand of necessary parameters.

In this context, our objective is to develop a samples separation algorithm that is effective in
extracting the necessary (detection-related) parameters of bursty PU signal. We assume a specific
(exponential) distribution of PU idle/active state; however, the design of the algorithm is generic and
blind to the PU activity pattern.

3. Algorithm Design and Description

In this section, we describe the design of the proposed algorithm, which finds its motivation
from rank order filtering (ROF). ROF, a commonly used image processing technique, sorts the input
values in ascending order, and selects for the output value encountered at a certain rank order number.
The selected input value becomes the output, without any calculation performed on the input values.
The two special operations of ROF are erosion—equivalent to lowest rank as it returns the minimum of
the input set, and dilation—equivalent to highest rank as it returns the maximum. Erosion and dilation,
besides being useful in image processing, can also be effectively used in impulse noise reduction
and noise power estimation, as demonstrated in [9–11]. These studies iteratively increase the size of
the filters used on the power spectrum samples. By filtration, the peak values of the spectrum are
reduced until the difference in the noise floor achieved in i–th and (i + 1)–th iteration falls below a
predetermined threshold value. Although effective, the algorithms in [9–11] are only dedicated to
estimating spectrum parameters and are burdened with the following disadvantages that limit their
usefulness for time-domain analysis of dynamic PU behavior:
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• The selection of an appropriate threshold for the noise floor difference is problematic due to its
unambiguous interpretation.

• The process carried out on spectrum samples strongly benefits from the processing gain provided
by the fast Fourier transform (FFT) [16]. Although the transition between frequency and time
domains can be performed quite efficiently, for simple energy detectors, it is not imperative to
transform the signal into the frequency domain.

With these considerations, we design a new signal samples detecting technique, by reconstructing
the ROF-based solutions, for accurate extraction of parameters from intermittent PU transmission,
while keeping the samples recognition process as simple as possible to enable low-complexity detection.
The main steps of the proposed algorithm are as follows:

Initialization—energy vector: The detection algorithm starts with the conversion of an N
complex samples, i.e., x = [x1, . . . , xN ], into a vector of energy samples, yn = |xn|2. Afterward,
a moving average (MAV) of a small size minit � N is used to reduce noise variance initially. The right
choice for minit in accordance with N, i.e., small enough not to reduce the signal but large enough
to reduce noise variance, increases the algorithm’s accuracy for signals of longer duration or high
SNR. However, too large minit may limit the algorithm’s sensitivity for weak signals. Because the
recursive formulation of the m-sized MAV as ȳn = ȳn−1 +

1
m (yn − yn−m) requires only one addition,

one subtraction, and one division per sample, the formula is independent of the number of samples
N, and the runtime complexity for each sample is constant, i.e., O(1). Thus, the complexity of the
pre-processing preceding filtering is kept to a minimum. However, it should also be noted that the
recursive implementation of the moving average can cause a risk of error propagation in the event of
a calculation error, which depends on the device’s computational capabilities, i.e., limited precision.
Therefore, it is a trade-off for simple devices between hardware load and the risk of introducing a faulty
observation window for further processing. Nevertheless, considering the case of short observation
windows, the error accumulation and propagation has a limited impact.

LOOP process—ROF: In this step, the initially averaged energy vector ȳ is iteratively filtered
by consecutive erosion and dilation operations. After each filtration, the total energy e of the vector
is determined. A consistent increase in the size k of movmin and movmax filters allows finding the
size msec for which the energy decrease in relation to the energy after previous filtration e′k =

ek−1−ek
ek−1

remains the highest. The search for maximum value removes the requirement to set a threshold,
as typical in earlier works. The resulting size of the filter msec is interpreted as the probable longest
continuous signal duration in the analyzed frame, and is used in the second moving average, ¯̄y.

Samples marking process—derivative evaluation: The identification of signal and noise
samples is based on the evaluation of the derivative of the double–averaged energy vector y′n =
¯̄yn − ¯̄yn−1. The intervals in which the derivative has positive values with a width wider than the
assumed threshold of minimal signal width λmsw indicate signal samples. The threshold λmsw can
be interpreted as a resolution of the algorithm, i.e., the minimum detectable signal duration. Due
to the influence of the noise variance, the problem of maintaining the required interval continuity
occurs. Positive intervals potentially indicating the signal can be divided by single samples with
non-positive values. Therefore, before assessing if the width of the positive interval meets the condition
of λmsw, adjacent intervals separated by the single non-positive sample are combined. This simple
step significantly improves the marking accuracy of the algorithm for weak signals.

The above-presented solution results in a simple yet effective samples recognition technique
for the detection of packet-based PU signals. The pseudo-code of the proposed scheme is given in
Algorithm 1 with notations: minit—initial size of the moving average, λmsw—minimal signal width,
x—received signal, y—processed signal, e—energy, e′—energy decrease, and y′—differential.
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Algorithm 1 Pseudo-code of the samples detection algorithm

Input: x, minit, λmsw
Output: noise, signal

Initialisation:
1: y=(abs(x))2, ȳ=mav(y, minit), e=sum(ȳ)/length(ȳ)

Parallelized LOOP process:
2: for k = 2 to length(ȳ)/2 do

3: erosion = movmin(ȳ, k)
4: dilation = movmax(erosion, k)
5: ek = sum(dilation)/length(dilation)
6: e′k = (ek−1 − ek)/ek−1
7: end for
8: [value, msec] = max(e′(2 : end)), ¯̄y = mav(ȳ, msec)

Samples marking process:
9: for j = 1 to length( ¯̄y)− 1 do

10: y′j = ¯̄yj − ¯̄yj+1
11: end for

Intervals continuity assessment:
12: for l = 3 to length(y′) do

13: if y′l > 0 then

14: y′l = 1
15: if y′l−2 > 0 then

16: y′l−1 = 1
17: end if
18: else

19: y′l = 0
20: end if
21: end for

Intervals length assessment:
22: for i = 2 to length(y′) do

23: if y′i then

24: y′i = y′i−1 + 1
25: end if
26: end for

Minimum length evaluation:
27: for n = 1 to length(y′) do

28: if y′n > λmsw then

29: mark(n− λmsw : n) = 1
30: end if
31: end for

Samples identification:
32: signal = y ·mark, noise = y− signal
33: return noise, signal
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4. Simulation Setup and Results

To assess the performance of the proposed algorithm, we have developed a simulation setup
that supports random ON/OFF traffic behavior of PU. For background noise, the simulator uses
radio-frequency (RF) noise I/Q traces sampled in a bandwidth of 5 MHz centered around 868 MHz,
i.e., the first channel of the IEEE 802.15.4 standard. The RF noise traces are collected in an open
university area using National Instrument USRP-2900. The receiver digitizes RF samples using
direct downconversion to baseband. We recorded the average noise power of −110.7 dBm, which is
normalized to 1 mW in the simulations.

It should be noted that although the pseudorandom noise approach is the most commonly used in
simulated transmission models, the use of pseudorandom noise, fitted to the theoretical assumptions
of the white Gaussian noise, may significantly differ from the background noise recorded by the
real radio receiver. The use of real noise traces includes an uneven distribution of power between
frequencies, instantaneous noise power variations, and distortions due to receiver limitations.

In the simulations, the subject of analysis is non-overlapping time frames, each containing
1024 samples. A new noise realization is recorded for each frame, to which a PU signal is added as
a rectangular pulse as shown in Figure 3(top). The radio pulse is adopted as a deterministic signal
hidden in noise due to its universality in reproducing an unknown signal while maintaining a simple
regulation of amplitude and time duration. Both the signal-with-noise pulses and the following
noise-only durations are exponentially distributed with mean values being swept respectively from
10% to 30% and 90% to 70% of the time frame. The sample splitting is based on a positive or
non-positive differential processed according to Algorithm 1, and depicted in Figure 3(bottom).
In simulations, as input parameters of the algorithm, minit and λmsw are set as 1% and 5% of the
observation window, respectively.

Figure 3. An instance of analyzed time frame: (top)—the time frame with RF noise and PU pulse
signals with randomly distributed durations. (bottom)—splitting of signal and noise samples based on
the processed sign of the differential.

As the basic reference method, we study the estimation of primary user activity based on the
idle/busy periods determined by using short spectrum sensing decisions [12,13,17]. As the above
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method, however, requires noise floor information, which we obtain using the extended Forward
Consecutive Mean Excision (FCME) algorithm with Welch FFT [13,17]. For the simulation of the
FCME-based algorithm, a 64-sample periodogram is adopted along with an energy detection window
with a length of 5% of the analyzed time frame and a false alarm probability of 1%.

As the second reference method (operating in the time-domain), we adopt linear discriminant
analysis (LDA). LDA is used in statistics and pattern recognition as a basic mathematical tool to
separate two classes of objects, applied as Fisher discriminant function [14].

The performance of the algorithms is measured by the average percentage of correctness in
assigning samples to groups of signal-with-noise or noise-only samples, compared to a known pattern
generated independently for each time frame. Each comparison point in Figures 4 and 5 is obtained
after averaging 1000 observations, generated according to point parameters. In the simulated SNR
dependencies, the variability of the N0 and N1 ratio in Equation (4) should be considered. Therefore,
the SNR value is determined as the average value obtained for all observations at the assumed constant
pulse amplitude set relative to the average noise amplitude, and taking into account the average
duration of the pulse generated with a given τ.

Figure 4. Signal samples detection efficiency as an average ratio of correctly recognized signal samples.

Figure 5. Total detection efficiency as an average ratio of correctly recognized signal-with-noise and
noise-only samples.
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Figure 4 shows the detection accuracy for the signal group, indicating a decrease in the assignment
accuracy with a decrease in SNR. The adopted metric approximates the probability of detection as
N → ∞. The comparison indicates that the proposed ROF-based signal detection (RSD) shows a
performance near to FCME-based solution and significantly higher than LDA (i.e., the reference
time-domain method). Moreover, the accuracy of RSD remains almost independent of the mean
occupancy of the time frame.

The total marking accuracy, measured as an average ratio of correctly recognized signal-with-noise
samples and noise-only samples, is shown in Figure 5. With a decrease in SNR, the curve indicates
an increase in type I and type II errors. The efficiency of RSD decreases by the percentage close
to the signal presence in the frame, which in extreme cases is entirely recognized as noise. Thus,
the inaccuracy in RSD is mainly limited to error type false negative, i.e., less recognizable signal
samples are assigned to the noise group, while the noise is rarely classified as a signal, leading to
reduced false positive errors. At high SNR, the accuracy does not drop more than the assumed 5%
resolution threshold.

To complement the comparison, it is also necessary to analyze the complexity of the methods.
However, for short observation windows, thus small number of samples, such as those used in this
study, the asymptotic behavior of the methods may not dominate. The differences in performance can
be caused by time-consuming operations other than calculations, i.e., bringing the data into and out of
the processor cache. Therefore, the use of asymptotic analysis for practical N values has limited utility.
Accordingly, Figure 6 compares the average execution time of the proposed RSD algorithm with the
reference methods. The results were obtained by averaging the time over a thousand single-threaded
function calls performed on a quad-core 3.07 GHz Intel Xeon W3550. Time analysis shows that
the proposed RSD method exhibits significantly lower complexity, especially for a small number of
samples, with respect to the reference solutions. These time differences are of significant importance
as the samples recognition remains only a supportive process for effective estimation of channel
parameters and primary user detection.

Figure 6. Time complexity as an average execution time of the detection process for a given number
of samples.

The marking efficiency of signal-with-noise samples in the exemplary application can be directly
used for estimating the average occupancy of the PU signal under test. For each observation window,
based on the algorithm’s indications, the number N1 of signal-with-noise samples is determined.
Samples are collected over 1000 observation windows and based on them, the average occupancy of
the transmission channel is determined. Then the relative error of the estimated channel occupancy is
determined relative to the expected value τ for which the frames were generated. As shown in Figure 7,



Sensors 2020, 20, 4136 9 of 11

it is visible that for a low PU occupancy of 10–20% with SNR above 0 dB, the proposed algorithm
preserves high 1–2% accuracy. In the case of increasing occupancy and weak signals, the algorithm
noticeably loses efficiency. Therefore, for a secondary user subject to strong PU signals with a moderate
activity factor, the proposed algorithm demonstrates to be a perfectly matched, easy to implement,
and accurate signal samples detection technique.

Figure 7. Accuracy of the mean channel occupancy estimation.

5. Conclusions and Future Work

Stimulated by the need for estimating several vital parameters to perform the energy detection of
dynamic PU, we developed a new algorithm for accurate recognition of signal and noise samples in the
received signal time frame. The algorithm has its roots in rank order filtering-based spectral analysis
that we reconstructed for low-complexity time-domain analysis of bursty signals. We evaluated
the algorithm in terms of its accuracy to detect signal samples, complete sample recognition, time
complexity and utility in channel occupancy estimation. The algorithm exhibits an accuracy of 87%
in marking samples even for weak signals with SNR close to 0 dB. For strong and narrow pulses,
it provides up to 97% of correct sample recognition and remains competitive for twice as complex
solutions. The achieved accuracy, together with a simple design, makes the proposed solution a
convenient basis for obtaining information required for effective energy detection.

Future fully real-data experiments can provide detailed information related to the impact of the
remaining operational parameters, i.e., minit and λmsw and their optimization to enhance the overall
accuracy of the proposed solution. As a future work, we also aim to consider variable sensing periods
and transmission power levels, and multiple PUs.
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ED energy detection
FCME Forward Consecutive Mean Excision
FFT fast Fourier transform
LDA linear discriminant analysis
MAV moving average
PU primary user
RF radio frequency
ROF rank order filter
RSD ROF-based signal detection
SDR software defined radio
SNR signal to noise ratio
SU secondary user
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