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Abstract: Accurate estimation of 3D object pose is highly desirable in a wide range of applications,
such as robotics and augmented reality. Although significant advancement has been made for
pose estimation, there is room for further improvement. Recent pose estimation systems utilize an
iterative refinement process to revise the predicted pose to obtain a better final output. However,
such refinement process only takes account of geometric features for pose revision during the iteration.
Motivated by this approach, this paper designs a novel iterative refinement process that deals with
both color and geometric features for object pose refinement. Experiments show that the proposed
method is able to reach 94.74% and 93.2% in ADD(-S) metric with only 2 iterations, outperforming
the state-of-the-art methods on the LINEMOD and YCB-Video datasets, respectively.
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1. Introduction

The pose of an object contains vital information to mimic how humans describe the position
and orientation of real-world objects appeared in their vision. Making accurate estimate of the object
pose favors not only robotic pick-and-place applications [1] but also augmented reality. The former
adequately serves the rising need of factory automation in modern days, while the later integrates
virtual objects in a real environment. As a result, object pose estimation has become a popular research
topic over the past years. To allow steady and effective operations, six degree-of-freedom (DoF) object
pose estimator focuses on predicting two matrices, i.e., the rotation matrix and the translation matrix,
of a camera relative to a given object. The rotation matrix denotes the rotation between the camera
coordinate system and the world coordinate system, whereas the translation matrix indicates the
Euclidian distance between the origins of them.

Traditional pose estimation methods can generally be divided into two categories: feature-based
methods [2–4] and template-based methods [5–7]. The former detects candidate feature points in 2D
image that are likely to be the projected positions of the 3D object model and then predicts the pose by
matching the correspondence between 2D and 3D feature points. However, the feature-based methods
are error-prone when handling texture-less objects. The latter, on the other hand, formulates each
object and its pose status into a predefined template model with several parameters. By calculating
the similarity between the captured image and the corresponding template with various candidate
parameters, object pose can be estimated according to the parameter setting having the highest
similarity score. However, one of the challenges of object pose estimation is that the scene condition
lies in various aspects, such as object shapes, object texture, lighting conditions, objects in cluttered
scenes, and occlusion between objects. For such reason, it is not easy to formulate a template that
parameterizes such a complex situation. As a result, data-driven methods for object pose estimation
have gained great popularity because of advancements of deep learning in recent years.
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Thanks to the rapid development of powerful graphical processing units (GPU), the data-driven
techniques have made a great leap in pose estimation [8,9]. Recent methods [10–22] can be categorized
based on the types of input data, i.e., RGB or RGBD. Traditional data-driven approaches [23,24] utilize
convolution neural network (CNN) to select candidate feature points that roughly construct a bounding
box surrounding the target object in 2D image, and subsequently solve the perspective-n-point (pnp)
problem based on these points for pose estimation [25]. However, these methods are likely to encounter
ambiguity of the pose estimation if the 2D–3D correspondences of the captured features are not
accurate. Literatures [23,26] have suggested that adding an additional pose refinement process,
such as the iterative close point (ICP) [27,28], is able to remedy this deficiency. Nevertheless, existing
work [23] relying on ICP solution incurs a high execution time cost in the ICP calculation. Under
such circumstance, the execution speed of other components in the method except ICP has to be
further accelerated for increasing the speed of the entire pose estimation process. Instead of using
ICP for refinement, DenseFusion [11] makes a rough pose estimate with CNN at first, and then
concatenates an estimator network with an iterative refinement process. The refinement process
has speed advantage compared with the time-consuming ICP. However, such refinement process
in [11] only focuses on updating the geometry embedding for the pose refinement network during
the iteration. The color embedding, on the other hand, remains intact during the entire refinement
process. Thus, this deficiency motivated us to investigate whether modifying color embedding would
be helpful to the iterative refinement process by utilizing the available data in the inner network.

As an attempt to solve the above-mentioned problem, this paper proposes a pose estimation
system which contains a pose estimator and a novel iterative refinement process, where the former
roughly makes a pose estimate and the later revises the estimated pose to obtain better estimation
result by iteratively updating the input data of the pose refinement network in both geometry and
color. Because the refinement process uses basic image processing techniques, it is very simple
for implementation. Although the pose refinement network mainly depends on geometry features,
color features can be helpful for further improvement. Experimental results show that the performance
of the proposed pose estimation system reaches 94.74% and 93.2% in accuracy with average distance
of model points (ADD) metric, outperforming state-of-the-art methods on the LINEMOD [5,29] and
YCB-Video datasets [23], respectively.

The rest of the paper is organized are follows: Section 2 introduces the related work, Section 3
presents the proposed pose estimation method, Section 4 shows the training detail and experimental
results, and the conclusion is given in Section 5.

2. Related Works

2.1. RGB-Based Pose Estimation

The entire pose estimation process [12] contains two components, i.e., object detection and pose
estimation. The former localizes a target object and gathers available features of the target from the
image, and the later estimates object pose by matching those features. PoseNet [30] combines the
two components and regresses the pose by using CNN with a single RGB image. However, the lack
of 2D–3D correspondence leads to difficulties in obtaining converged result for the regression. Since the
pose data of an object contains 3D information, it is necessary to establish correspondence between
the object model and the features gathered in the object detection stage for a concise representation.
PoseCNN [23] feeds the captured image into CNN for extracting different task-specific features among
various layers. Then, it generates semantic labels according to those features. Finally, the pose
data are estimated by Hough voting and the regression based on the semantic labels. Unlike the
approaches [23,30] that use regression to make pose estimate, keypoint-based methods [13,15,17]
provide an alternative solution by using pnp solver. In the feature extraction stage, keypoint-based
approaches estimate eight feature points in the captured image corresponding to the eight vertices
of the bounding box of the object in 3D space. Then, pnp solver produces the final pose according
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to the 2D–3D correspondence. One drawback of such approaches is that the pose estimation error
mostly relates to the mapping error between 2D and 3D key points. If the object in image encounters
occlusion problem or cluttered background, 2D–3D localization is likely to be interfered, resulting in
estimation error of the object pose. To deal with such problem, plenty of existing methods [13] focus
on how to extract reliable object key points for pnp solver to make accurate pose estimate. PVNet [13]
determines the key points with pixel-wise voting network to avoid estimation error under occlusion,
and then utilizes uncertainty-driven pnp to estimate object pose. However, the key points in 3D
object model must be predefined for such approaches. To sum up, the RGB-based pose estimation
requires a great amount of data to compensate the lack of depth information. Otherwise, it requires a
predefined 2D–3D correspondence in 3D space.

2.2. RGBD-Based Pose Estimation

Further robustness of pose estimation can be obtained with the availability of depth data. In fact,
the depth of a target object is helpful to perform 3D localization and detect texture-less objects for pose
estimation. For approaches [5,31] using depth map or point cloud, the correspondence between 2D
pixel point and 3D point cloud can be easily established by using the available depth information.
Note that the depth map can be transferred into point cloud format given the camera parameters.
Some approaches [11,32] generate a candidate predicted pose and a corresponding confidence factor
at each of the image patch region or data point subset of a point cloud through a CNN. The final
pose estimate can be determined according to the confidence value. Tien [10] estimates rotation and
translation separately to determine the final prediction by using uncertainty scores and RANSAC-based
voting layer, respectively. DenseFusion [11] transfers image and depth map into high dimensional
embeddings for each pixel, and then fuses these embedding data among patch regions in various scales.
The fused data at each image patch region is fed into the estimator to generate a preliminary pose
data. In the last stage, the pose is iteratively revised via an iterative refinement network. The input
embedding data to the refinement network is iteratively updated based on the predicted pose. However,
the refinement network in [11] only focuses on updating geometry embedding during the iteration.
Hence, we are inspired to utilize the predicted pose to benefit both the geometry and color embeddings
to obtain better performance.

3. Methods

Figure 1 shows the architecture of the proposed pose estimation system, where four stages are
required for processing, including data acquisition, feature embedding, pose estimation, and pose
refinement. The detail of each stage is described as follows.
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Figure 1. The architecture of the proposed pose estimation system.
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3.1. Data Acquisition

When an image with 640 × 480 resolution is captured by the camera, object detection is applied
to label the target object in the image. According to the detection result, we then generate a mask by
applying the method in [23] where the region of interest (ROI) in the image is colored in white and the
others are in black. After that, the captured image and depth map are processed separately based on
the mask. We then crop the captured image to a smaller size according to the position and the size of
the bounding box that fits the contour of the ROI. The bounding box is obtained by using open source
OpenCV function “boundingReck”. On the other hand, the depth map is cropped into a smaller size
based on the mask as well. Last, the cropped depth map and the pixel position of the mask in Cartesian
coordinate system are transformed into point cloud data based on the camera parameters. Each pixel
position (x, y) in the cropped depth map generates a 3D point (X, Y, Z) in the point cloud as follows:

Z = d/s (1)

X = (x− cx) ·Z/ fx (2)

Y = (y− cy) ·Z/ fy, (3)

where d is the depth data at pixel position (x, y), s is the camera scale factor, and (fx, fy, cx, and cy) are
the camera internal parameters.

3.2. Feature Embedding and 6D Pose Estimation

In this step, the features are gathered and described in a higher-level manner before being sent
into the following pose estimator. Both the cropped image and the corresponding point cloud data are
separately taken as the inputs of two independent neural networks to generate color embedding and
geometry embedding, respectively. The cropped image is normalized and then fed into a Pyramid
Scene Parsing Network (PSPNet) [33] for generating semantic high dimensional features, whereas
the cropped point cloud is fed into a CNN for feature-sensing in various sizes of local region. Next,
the local and the global features are jointly fused at each pixel according to the above two types of
embedding data. Thus, this process produces a high dimensional data at each pixel that makes it
named as “dense data.”

In the pose estimation stage, the rotation matrix and the translation matrix are estimated in this
step based on the dense data. In the forward process of propagation, the input dense data pass through
a CNN to generate a quaternion rotation matrix, a translation matrix, and a confidence value given
the target object. Since we built our method upon DenseFusion [11], we use the same component in
this stage.

3.3. Pose Refinement

The stage of pose refinement is an iterative refinement process which learns how the pose is
gradually varied to narrow the gap between the prediction and ground truth. In fact, the residual of
the predicted pose is learned by iteratively setting the current transformed point cloud as the new
input data of the refinement network. That is to say, the geometry embedding is changed based on
the predicted pose during the iterative process. Compared with the structure of DenseFusion [11],
we extend the use of the predicted pose for improving the color embedding. The architecture of the
proposed iterative pose refinement process is shown in Figure 2, where the estimated pose in the
previous stage is fed into a pose residual estimation network at the beginning. Then, the predicted pose
is updated and then utilized to transform the current point cloud for revising the geometry embedding
and the color embedding. The reconstruction of geometry embedding is a straightforward decision
because the refinement network has to know the change of geometric structure of the point cloud based
on the predicted pose. However, the revision of color embedding requires a judgment as to when
we should launch the revision in the refinement process. Once the process has launched, we project
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the chosen point cloud onto the captured image by using the predicted pose and the camera internal
parameters, and then count the amount of the projected points which lie in the bounding box region
estimated from the previous data acquisition stage. Here, we compute the following score f as

f = ni/n, (4)

where n is the total number of the pixel positions projected from the chosen point cloud, and ni is
the number of the projected points which lie within the bounding box region. If f is greater than 0.8,
we launch the following image modification and embed the modified image into color embedding
at the last step of the refinement process. Otherwise, the previous color embedding is used for the
next iteration.
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The image modification is a process that blurs the entire region except the ROI. The purpose of
this modification is to reduce the redundant factor of the color embedding. This is because the color
embedding of the cropped image is a high-dimensional vector containing the gradient of color at each
pixel position. If we blur the surrounding region of ROI, the amount of the redundant gradient can
be suppressed in the feature embedding process, resulting in a better pose refinement performance.
To accomplish the task, image processing is applied to the cropped image. Figure 3 shows the entire
image modification process. When the chosen point cloud is projected on the image, a binary image
is generated where the projected positions in image are colored in white and the others are in black.
However, there are holes exist in the generated binary image. Hence, we apply morphology closing to
deal with the holes to generate a binary mask Ib indicating the current pose projection. The resulting
image Io is

Io = (Ic ∧ Ib)∧ (G(Ic)∧ Ib) (5)
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where Ic is the cropped image, “∧” is the AND operator, and G(x) is a two dimensional Gaussian blur
function with zero mean. The logical AND and NOT operators are implemented with OpenCV open
source functions “CV.bitwise_and” and “CV.bitwise_not”. Although there is a binary mask generated
in the data acquisition stage, it is our goal to utilize the available source in the inner network and
maximize the use of the predicted pose for improving the performance of the pose refinement process.
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4. Experimental Results

In order to evaluate the proposed pose estimation system, we conduct our experiments on Intel
(R) Core(TM) i7-7700 @ 3.6GHz and a NVIDIA GeForce GTX 1080 graphic card. The well-known
LINEMOD and YCB-Video datasets [23] are chosen for the evaluation of 6DoF pose estimation. During
the training process, the ground-truth mask of each scene is used in the data acquisition stage. Note that
the ground-truth mask can be generated by projecting the point cloud of the object onto the image
plane based on the ground-truth pose. The critical part of the training process is to decide when to
launch the image modification process, because such process highly depends on the performance of the
predicted pose. If the predicted pose is inaccurate that cannot make proper 2D projection, the image
modification will blur the ROI and then formulate an inaccurate color embedding for pose estimation,
making the training process difficult to converge. Hence, we launch the image modification only when
the error of the predicted pose is small enough. In fact, we manually select the modification launch time
when the learning curve is becoming saturated within a steady margin during the training process.

There are two metrics for performance evaluation in this paper, i.e., the average distance of
model points (ADD) [11] and the area under curve (AUC) [22]. Note that the symmetric objects will
be handled with ADD-S [11], which indicates ADD metric for symmetric objects. Table 1 shows
the accuracy in ADD(-S) metric of the proposed method, in comparison with the state-of-the-art
approaches, including BB8 [15], SSD-6D [16], PVNet [13], Tien [10], and DenseFusion [11]. We take
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the best performance record according to the original papers. In addition, the iterative refinement
process of the proposed method is only executed two times for a fair comparison with DenseFusion.
In Table 1, we can see that the average accuracy of ADD(-S) metric reaches 94.74%, outperforming
the state-of-the-art methods. Note that the average accuracy in ADD(-S) metric of the proposed
method is also better than DenseFusion if we increase the number of iterations to four. That is to say,
based on similar system architecture, the image modification process is helpful for improving the
iterative refinement network. In order to prove the validity, we utilize the same trained parameters of
DenseFusion to execute the proposed method on the YCB-Video dataset for evaluation. We follow the
same AUC setting in [23] and set the threshold of the ADD-S to 0.1 m. Table 2 shows the accuracy of
AUC test in ADD-S metric of the proposed method, in comparison with Tien [10], PoseCNN+ICP [23],
and DenseFusion. We can see that the average AUC metric of the proposed method still slightly
out-performs the state-of-the-art methods.

Table 1. Comparison between the proposed method and state-of-the-art approaches on LINEMOD in
ADD(-S) metric, where the best results are marked in bold. Note that * denotes the objects are symmetric.

BB8 w/Ref. [15] SSD-6D w/Ref. [16] PVNet [13] Tien [10] DenseFusion [11] Proposed Method

Ape 40.4 65 43.62 85.03 92 92.95
Bench vise 91.8 80 99.90 95.54 93 92.05

Cam 55.7 78 86.86 91.27 94 96.96
Can 64.1 86 95.47 95.18 93 93.31
Cat 62.6 70 79.34 93.61 97 96.31

Driller 74.4 73 96.43 82.56 87 88.80
Duck 44.3 66 52.58 88.08 92 92.95

Eggbox * 57.8 100 99.15 99.90 100 99.71
Glue * 41.2 100 95.66 99.61 100 99.90

Hole pucher 67.2 49 81.92 92.58 92 91.15
Iron 84.7 78 98.88 95.91 97 96.32

Lamp 76.5 73 99.33 94.43 95 94.91
Phone 54.0 79 92.41 93.56 93 96.34

Average 62.7 79 86.27 92.87 94 94.74

Table 2. Comparison between the proposed method and state-of-the-art approaches on YCB-Video
dataset in AUC metric, where the best results are marked in bold.

Tien [10] Posecnn+ICP [23] DenseFusion [11] Proposed Method

002_master_chef_can 93.9 95.8 96.4 96.4
003_cracker_box 92.9 91.8 95.5 95.8
004_sugar_box 95.4 98.2 97.5 97.6

005_tomato_soup_can 93.3 94.5 94.6 94.5
006_mustard_bottle 95.4 98.4 97.2 97.4
007_tuna_fish_can 94.9 97.1 96.6 97.1
008_pudding_box 94.0 97.9 96.5 96.0
009_gelatin_box 97.6 98.8 98.1 98.0

010_potted_meat_can 90.6 92.8 91.3 90. 7
011_banana 91.7 96.9 96.6 96.1

019_pitcher_base 93.1 97.8 97.1 97.5
021_bleach_cleanser 93.4 96.8 95.8 95.9

024_bowl 92.9 78.3 88.2 89.5
025_mug 96.1 95.1 97.1 96.7

035_power_drill 93.3 98.0 96.0 96.1
036_wood_block 87.6 90.5 89.7 92.8

037_scissors 95.7 92.2 95.2 92.1
040_large_marker 95.6 97.2 97.5 97.6
051_large_clamp 75.4 75.4 72.9 72.5

052_extra_large_clamp 73.0 65.3 69.8 70.0
061_foam_brick 94.2 97.1 92.5 92.0

Average 91.8 93.0 93.1 93.2
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Figure 4 shows some of the pose estimation results on the LINEMOD dataset compared with
DenseFusion, where the pose refinement process of both the proposed method and DenseFusion
is executed for four iterations for a fair comparison. In Figure 4, the far-left column of the figures
shows that the target object ”Cam” is occluded by the surrounding objects, resulting in failure for
DenseFusion to provide an accurate estimate. On the contrary, the proposed method is able to make
an accurate estimate in such condition. Moreover, according to the scene of the far right figures in
column in Figure 4, we can see that the target object “Lamp” is an object colored in white, while the
neighboring object “Can”, shares the same color. Hence, the gradient information of both two objects
is mixed together in the color embedding data at the overlapped region between the two objects in the
image. In this scene, DenseFusion makes an incorrect pose estimate while the propose method can
make a satisfactory estimate of the object pose closer to the ground-truth. The evolving process of the
refinement network for the same scene is shown in Figure 5, where the proposed method can gradually
correct the pose and iteratively derive the final pose closer to the ground truth even the initial pose
estimate is incorrect.
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Figure 5. The evolving process of the estimated pose during the refinement process, for the scene
shown in the far right column in Figure 4.

In the test of AUC on the LINEMOD dataset, the proposed method reaches 94.79%, which is slightly
better than 94.49% of DenseFusion. According to the experiment in [22], we plot the accuracy-threshold
curves of DenseFusion and the proposed method as shown in Figure 6. We can see that although the
two curves are almost overlapped, the red line of the proposed method is slightly higher than the
green line of DenseFusion when the threshold is larger than 0.02. Thus, the accuracy of the proposed
method is still better than DenseFusion even the threshold setting becomes larger.
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The advantage of the proposed method is that we improve the pose refinement process by
adding an image modification based on both geometric and color components. In addition, the image
modification step of the proposed method includes only basic openCV functions which bear a low
computational cost. Specifically, the execution time of the image modification step is around 24 ms
per frame. We believe that there is room for improvement if the codes can be executed on GPU.
There are, however, the limitations of the proposed method, which lie in the 2D projection process and
the parameter setting of mask-generating in the image modification step. The former indicates that
the initial estimated pose has to make a proper 3D-to-2D projection close to the ROI region for the
following mask-generating process. Otherwise, the blurring process will incur negative impacts to the
generated color embedding since the important color features are suppressed. Moreover, 2D projection
process needs a careful selection of the launch time of the image modification in the training process.
The later indicates the need of an adaptive kernel size selection for generating the mask in the pose
refinement process. If the projected point cloud is not sufficiently dense enough, the kernel size of
morphology opening has to be adaptively increased for hole filling process. It is our plan to remove
these limitations by adopting learning techniques in the future.
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5. Conclusions

We developed a novel iterative pose refinement process that utilizes the predicted pose to update
both the color and geometric embedding for obtaining better performance on object pose estimation.
Since the color embedding for pose estimation contains high-dimensional information extracted at
the local region of an image, our method aims at reducing the image redundant factor so that the
embedding data can suppress the interference of surrounding objects. Thus, the proposed method can
reduce estimation error when the color of surrounding objects is similar to that of the target object.
Experimental results show that the proposed method outperforms the state-of-the-art DenseFusion
method in both ADD and AUC metrics. Moreover, the design of the proposed refinement network
only utilizes the available data of the inner network. This makes the proposed method flexible to
support other designs for object pose estimation.
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