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Abstract: Point set registration is one of the basic problems in computer vision. When the overlap
ratio between point sets is small or the relative transformation is large, local methods cannot guarantee
the accuracy. However, the time complexity of the branch and bound (BnB) optimization used in
most existing global methods is exponential in the dimensionality of parameter space. Therefore,
seven-Degrees of Freedom (7-DoF) similarity transformation is a big challenge for BnB. In this paper,
a novel rotation and scale invariant feature is introduced to decouple the optimization of translation,
rotation, and scale in similarity point set registration, so that BnB optimization can be done in two
lower dimensional spaces. With the transformation decomposition, the translation is first estimated
and then the rotation is optimized by maximizing a robust objective function defined on consensus set.
Finally, the scale is estimated according to the potential correspondences in the obtained consensus
set. Experiments on synthetic data and clinical data show that our method is approximately two
orders of magnitude faster than the state-of-the-art global method and more accurate than a typical
local method. When the outlier ratio with respect to the inliers is up to 1.0, our method still achieves
accurate registration.

Keywords: branch and bound; similarity point set registration; transformation decomposition

1. Introduction

Point set registration is a fundamental problem in computer vision. It is widely used
in three-dimensional reconstruction [1,2], medical image analysis [3–5], mobile robots [6,7] and
autonomous driving [8]. The goal of point set registration is to estimate a transformation to align
two point sets, namely moving point set and reference point set. This paper focuses on the scenarios
of estimating a similarity transformation between two 3D point sets.

A large body of methods have been proposed to solve the three-dimensional rigid point
set registration problem [9,10]. Similarity point set registration has only increased a scale factor
compared to rigid registration, so many studies have extended the rigid registration method to estimate
similarity transformation. The iterative closest point (ICP) [11] is the most typical rigid registration
method; it has been extended for similarity point set registration in many researches [12–18]. However,
the optimization scheme of ICP is the expectation maximization (EM) [19] type so it can only converge
to a local optimum. Another line of research represents each point set with a probability density and
registers the two point sets by aligning the two probability densities [20–22]. Some methods use similar
ideas to achieve non-rigid registration between two point sets [23]. Though these non-rigid point set
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registration methods can also be used for similarity registration, these methods can also only converge
to a local optimum.

In recent years, some global point set registration methods have emerged, such as Go-ICP [24],
GOGMA [25] and so on [26–29]. These methods parameterize rigid point set registration with the rigid
transformation, which consists of a three-Degrees of Freedom (3-DoF) rotation and 3-DoF translation
between the two point sets to be registered, but they cannot be simply extended to estimate 7-DoF
similarity transformation, which consists of another DoF scale between the two point sets. In addition,
most of these global methods use branch and bound (BnB) optimization framework, but the time
complexity of BnB optimization is exponential in the dimensionality of the problem. It is already very
slow for these global methods to perform 6-DoF rigid registration, and it will be very inefficient for
them to do 7-DoF similarity registration. Asymmetric point matching (APM) [30] parameterizes point
set registration with the correspondence between points from each set and develops a deterministic
global method to solve affine point set registration problem. APM can also be used to solve the
similarity point set registration problem, but it assumes a point-to-point correspondence, which makes
it difficult to register partially overlapping point sets or point sets with outliers.

In this paper, we propose a global similarity point set registration method by using
BnB optimization framework. To avoid the inefficiency of the BnB-based method in solving
high-dimensional problems, we introduce a transformation decomposition approach so that the
translation, rotation and scale can be estimated separately. Two BnB-based algorithms are used to
globally estimate the 3-DoF translation and the 3-DoF rotation, and the two algorithms are fast because
the problem dimensionality is low. To the best of our knowledge, this is the first global similarity
point set registration method. In addition, a consensus set-based objective function is used for the
translation and rotation estimation, so the proposed method is robust to outlier and partial-overlap.
Extensive experiments show that the proposed method is approximately two order of magnitudes
faster than state-of-the-art global method and much more accurate than local methods in similarity
point set registration.

The rest of this paper is organized as follows. In Section 2, the related work is reviewed.
The proposed method is introduced in Section 3. In Section 4, results on synthetic and clinical
data are presented and discussed. Finally, conclusions and limitations are discussed in Section 5.

2. Related Work

We review the works on the following three topics that are related to this paper: local
methods for similarity point set registration, global point set registration methods and transformation
decomposition method developed in point set registration.

ICP is the most widely used local point set registration method. ICP first determines the
correspondence using an initial guess of transformation between the two point sets to be registered
and then iterates between updating transformation and determining correspondences. ICP was
originally developed for rigid point set registration, and many works have been done to extend
it for similarity point set registration. For example, Zha et al. [18] used extended feature images
to establish accurate correspondence, and then integrated the scale factor into an improved ICP
algorithm to achieve precise image registration. Du et al. [31] proposed an objective function based on
bidirectional distance, introducing overlap ratio and scale factor. Furthermore, a new isotropic scale ICP
algorithm is proposed, which can automatically calculate the scale transformation, correspondence and
overlap ratio of each iteration. Although this method is very robust, it is time-consuming to establish
a bidirectional correspondence. To speed up the isotropic scaling registration, Li et al. [16] introduced
a sparse-to-dense hierarchical model in ICP. Ying et al. [17] proposed the Scale-ICP method. By adding
a scale factor into ICP, the registration problem was transformed into a constraint optimization problem
on a seven-dimensional nonlinear space, and then the singular value decomposition method was
used for iterative solution. However, Scale-ICP may be affected by local dissimilarity, so Du et al. [15]
added the corner point constraint to the objective function and proposed a new isotropic scaling
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ICP algorithm. Wu et al. [13] developed a robust scale ICP algorithm by using correntropy [32] to
substitute the mean square error (MSE) as the new similarity measure. Chen et al. [12] proposed
a robust algorithm based on correntropy and ICP. Yang et al. [14] combined the kernel mean p-power
error (KMPE) [33] loss measure with ICP framework to model the similarity and affine registrations.
The optimization scheme of ICP is the EM [19] type so it can only converge to a local optimum.
The similarity point set registration methods extended from ICP also have this drawback. To relieve
the problem of local convergence, some researches model point sets as probability densities and
achieve point set registration by aligning the two probability densities, such as the GMMReg method
proposed by Jian et al. [22], in which probability density is constructed by using Gaussian mixture
model (GMM). Some other methods also use this idea to achieve non-rigid point set registration and
they can also be used for similarity point set registration. A typical example of them is the coherent
point drift (CPD) method proposed by Myronenko et al. [23]. The objective functions of these methods
can be made smoother than that of ICP, so that they can have a larger basin of convergence, but a good
initialization is still needed for them to achieve an accurate registration.

In recent years, there has been a series of work utilizing BnB to globally estimate the rigid
transformation between two point sets, such as Go-ICP [24], GOGMA [25] and so on [34–36]. However,
these methods focus on rigid point set registration and they cannot be simply extended to solve the
7-DoF similarity registration problem. In addition, the time complexity of BnB is exponential in the
dimensionality of the problem. It is already very slow to estimate the 6-DoF rigid transformation,
and it will be even slower to use them to estimate the 7-DoF similarity transformation. APM [30] is
a global affine point set registration method, and it can be used to globally solve the similarity point set
registration problem. In APM, the objective function of registration is defined on transformation and
point corresponding matrix, and it assumes a point-to-point correspondence to achieve a theoretically
global optimal solution, which makes it difficult to register partially overlapping point sets or point
sets with outliers. Li et al. [37] proposed an global affine point set registration method based on
matching probability density and BnB. Though this method can also be used for similarity point set
registration, it estimates the affine directly and the computation complexity of estimating a 12-DoF
affine transformation is prohibitive.

An effective way of speeding up the BnB based global point set registration method is to
decompose the transformation into components of lower dimensionality. For example, a rigid
transformation in SE(3) can be decomposed into a rotation in SO(3) and a translation in R3. Here SE(3)
and SO(3) are special Euclidean group and special orthogonal group in three dimensions, respectively,
and they are the parameter space of 3D rigid transformation and 3D rotation [38]. Two studies utilize
the idea of transformation decomposition for global rigid point set registration. Straub et al. [27]
constructed a surface normal distribution from the original point set, which is translation invariant,
and used BnB to optimize rotation to align the two surface normal distributions first. Then it applied
the obtained optimal rotation to the original point set, and used another BnB to optimize translation.
Although this method decoupled the six-dimensional parameter space into two three-dimensional
parameter spaces, it was time-consuming to construct translation-invariant features and required GPU
acceleration. Liu et al. [28] proposed a rotation invariant feature to decompose rigid transformation,
but it cannot be used for similarity registration. Yang et al. [39,40] estimated scale, rotation and
translation separately and proposed a polynomial time method, but putative correspondences between
the two point sets to be registered are needed.

In this paper, we propose an efficient global method for similarity point set registration, in which
the similarity transformation is decomposed into translation, rotation, and scale, and the three
parameters are estimated sequentially. The transformation decomposition makes the registration
very efficient. Concretely, our contribution in this paper includes two aspects:

• We propose a rotation and scale invariant feature (RSIF) utilizing the angle invariance in similarity
transformation. Using this RSIF, we can first globally search for the translation between the two
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point sets to be registered. A BnB-based global optimal translation search algorithm is developed
to match the RSIF sets constructed from the two original point sets.

• Then we propose a globally optimal rotation search algorithm, which is not influenced by the
relative scale, to estimate the optimal rotation between the two original point sets after applying
the relative translation obtained in the previous step. Finally, the scale is estimated according to
the potential correspondences obtained in rotation estimation.

3. Method

Suppose there is a similarity transformation between the moving point set X = {xi}X
i=1 and the

reference point set Y =
{

yj
}Y

j=1. For a pair of corresponding points yj ∈ Y and xi ∈ X , we have

yj = sR∗ (xi + t∗) (1)

where t∗ ∈ R3 and R∗ ∈ SO(3) are the translation and rotation from X to Y , respectively, and s is
the scale.

Most existing BnB-based global methods jointly search every parameter. In this scenario, the 7-DoF
similarity transformation is a big challenge for BnB, because the time complexity of BnB optimization
is exponential in the dimensionality of the problem. In this paper, an efficient similarity point set
registration method based on transformation decomposition is proposed. The RSIF is first introduced
to decouple similarity transformation in Section 3.1. Then in Section 3.2, the BnB-based global optimal
translation search algorithm is given to align the RSIF sets generated from the two original point sets
to be registered. In Section 3.3, the complete similarity point set registration algorithm is given.

3.1. Rotation and Scale Invariant Feature

For a set of three points {xi1, xi2, xi3} from the moving point set, a triple

 6 (xi1, xi2)
6 (xi1, xi3)
6 (xi2, xi3)

 is

constructed, where 6 (•, •) denotes the angular distance between two vectors. This triple is invariant
with respect to scale and rotation of xi1, xi2 and xi3 around the origin. Thus, 6 (sRxi1, sRxi2)

6 (sRxi1, sRxi3)
6 (sRxi2, sRxi3)

 =

 6 (xi1, xi2)
6 (xi1, xi3)
6 (xi2, xi3)

 (2)

where R ∈ SO(3) and s ∈ R. This triple is called a RSIF.

Let pi1,i2,i3 =

 6 (xi1, xi2)
6 (xi1, xi3)
6 (xi2, xi3)

 denote the RSIF constructed from a set of moving points {xi1, xi2, xi3}

and qj1,j2,j3 =

 6 (yj1, yj2)
6 (yj1, yj3)
6 (yj2, yj3)

 denote the RSIF constructed from a set of reference points
{

yj1, yj2, yj3
}

.

According to (1) and (2),

qj1,j2,j3 =

 6 (yj1, yj2)
6 (yj1, yj3)
6 (yj2, yj3)

 =

 6 (sR(xi1 + t), sR(xi2 + t))
6 (sR(xi1 + t), sR(xi3 + t))
6 (sR(xi2 + t), sR(xi3 + t))

 =

 6 (xi1 + t, xi2 + t)
6 (xi1 + t, xi3 + t)
6 (xi2 + t, xi3 + t)

 := F(pi1,i2,i3, t) (3)

A function F(p, t) is defined to express that the two RSIFs are related by the translation t.
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P = {pm}M
m=1 is used to denote the set of RSIFs constructed from point sets {xi1, xi2, xi3}, where

xi1, xi2, xi3 ∈ X and i1 6= i2 6= i3. Q = {qn}N
n=1 is used to denote the set of RSIFs constructed from

point sets
{

yj1, yj2, yj3
}

, where yj1, yj2, yj3 ∈ Y and j1 6= j2 6= j3. The problem of finding the optimal
translation from X to Y is changed to be finding the optimal translation from P to Q. In practice, the

cardinalities of P and Q are very large, so we match a subset of each of them as P ′ =
{

pm′
}M′

m′=1
and

Q′=
{

qn′
}N′

n′=1
. The steps to obtain the subsets to match are as follows.

• All the three-point combinations are screened from moving and reference point set.
Each three-point combination can construct a RSIF. This paper chooses 300 RSIFs with the
largest angular distance, and denotes them as P1 and Q1.

• For pi1,i2,i3 =

 6 (xi1, xi2)
6 (xi1, xi3)
6 (xi2, xi3)

, it is constructed from a set {xi1, xi2, xi3}. Take the difference between

these three vectors and obtain a new vector gi1,i2,i3 =

xi1 − xi2
xi1 − xi3
xi2 − xi3

. Take the angular distance for

every two dimensions of gi1,i2,i3, and we have g′i1,i2,i3 =

 6 (xi1 − xi2, xi1 − xi3)
6 (xi1 − xi2, xi2 − xi3)
6 (xi1 − xi3, xi2 − xi3)

.

• Without loss of generality, it assumes that qj1,j2,j3 =

 6 (yj1, yj2)
6 (yj1, yj3)
6 (yj2, yj3)

 is the corresponding

RSIF of pi1,i2,i3. Following the previous step, we have kj1,j2,j3 =

yj1 − yj2
yj1 − yj3
yj2 − yj3

 and k′j1,j2,j3 =

 6 (yj1 − yj2, yj1 − yj3)
6 (yj1 − yj2, yj2 − yj3)
6 (yj1 − yj3, yj2 − yj3)

 =

 6 (sR(xi1 + t)− sR(xi2 + t), sR(xi1 + t)− sR(xi3 + t))
6 (sR(xi1 + t)− sR(xi2 + t), sR(xi2 + t)− sR(xi3 + t))
6 (sR(xi1 + t)− sR(xi3 + t), sR(xi2 + t)− sR(xi3 + t))

 =

 6 (xi1 − xi2, xi1 − xi3)
6 (xi1 − xi2, xi2 − xi3)
6 (xi1 − xi3, xi2 − xi3)

.

• According to the previous steps, g′i1,i2,i3 and k′j1,j2,j3 should be equal when the data is clean, and
the Euclidean distance between them is close to 0, if there exists noise in data .

• Finally, all the RSIFs that satisfy the condition ‖g′i1,i2,i3 − k′j1,j2,j3 ≤ ε f ‖ are chosen from P1 and
Q1, and denoted as P ′ and Q′, respectively.

On the basis of the consensus set, our objective function of similarity transformation is defined by

Et(t) = ∑
m′

max
n′
b‖F(pm′ , t)− qn′‖ ≤ εtc (4)

where b•c is an indicator function that returns 1 if the inner condition is true and 0 otherwise, ‖ • ‖
denotes the Euclidean norm in R3, and εt is the translation search inlier threshold. The optimal
translation is obtained by maximizing Et (t).

3.2. Global Translation Search

When BnB-based algorithm is used to globally solve the maximization problem (4), the key is
to find a way to calculate the upper bound of Et in a branch T of the parameter space of translation,
which means we need to find a function Et(T) satisfying
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Et(T) ≥∑
m′

max
n′
b‖F(pm′ , t)− qn′‖ ≤ εtc, t ∈ T (5)

Define D(t) = ‖F(pm′ , t)− qn′‖ and if it is possible to find a lower bound function

D(T) ≤ D (t) , ∀t ∈ T (6)

then use Et(T) = ∑
m′

max
n′

⌊
D(T) ≤ εt

⌋
as the upper bound of Et in the branch T. Therefore, the problem

becomes how to find D(T) given a translation cube T. Here, this problem is addressed by natural

interval extension [41,42], in which we need to first calculate the bound of each element of F(pm′ , t)
when t ∈ T. Since F(pm′ , t) is computed identically for each dimension, the bounds used in this paper
are described using the first dimension as an example.

For pi1,i2,i3 =

 6 (xi1, xi2)
6 (xi1, xi3)
6 (xi2, xi3)

, without loss of generality, derive the bound of its first element

6 (xi1 + t, xi2 + t), when t falls in a branch T. It turns out to be difficult to calculate a tight angular
distance bound, but a simple yet loose bound can be directly obtained from previous studies [43,44].

When a point x is translated by a translation in a cubic branch T, the vector corresponding
to the translated point falls in a confined range, which is called the uncertainty angle bound in [43].
The uncertainty angle bound is the maximum deviation of the vector in the range from the one
corresponding to point x translated by the center of T. The bound proposed by [43] is directly used
in this paper. Given a 3D point x and a cubic translation branch T centered at t0 with half space
diagonal δt, then

6 (x + t0, x + t) ≤ {arcsin(
δt

‖x + t0‖
) i f δt ≤ ‖x + t0‖

π otherwise

:= β(x,T)

(7)

The proof of (7) can be found in [43].
Thus, the angular distance bound of 6 (xi1 + t, xi2 + t) when t ∈ T can be determined directly by

using the results of (7):

max( 6 (xi1 + t0, xi2 + t0)− β(xi1,T)− β(xi2,T), 0)

≤ 6 (xi1 + t, xi2 + t)

≤ min( 6 (xi1 + t0, xi2 + t0) + β(xi1,T) + β(xi2,T), π)
(8)

After calculating the bounds of 6 (xi1 + t, xi2 + t), where t ∈ T, the second and third elements
of F (pm′, t) can also be obtained. Then obtain D(T) by natural interval extension and the upper

bound Et(T) for a translation branch T. By utilizing the upper bound Et(T), we can search the
translation space to find the globally optimal translation that maximizes the objective function (4) by
BnB. The algorithm is outlined in Algorithm 1.
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Algorithm 1: Globally Optimal Translation Search Based on RSIFs.
Input: Moving point set X , reference point set Y and inlier threshold εt

Output: Optimal translation t∗ between X and Y .
1 Construct two sets of RSIFs, P ′ and Q′.
2 Initialize translation branch T; E∗t ← 0, t∗ ← ∅. Insert T with priority Et(T) into queue qt.
3 while qt is not empty do
4 Obtain the highest-priority cube T from qt.
5 if Et(T) = E∗t then
6 Terminate.
7 end
8 tc ←centre of cube T
9 if Et(tc) > E∗t then

10 Update E∗t ←− Et(tc), t∗ ← tc

11 end
12 Subdivide T into eight cubes {Td}8

d=1.
13 for each Td do
14 if Et(Td) > E∗t then
15 Insert Td with priority Et(Td) into qt.
16 end
17 end
18 end
19 Obtain the optimal translation t∗.

After the global optimal translation t∗ has been found, the moving point set X = {xi}X
i=1 is

translated to X ∗ =
{

x∗i
}X

i=1 where x∗i = xi + t∗. Thus, there are a relative rotation and scale between
X ∗ and Y . We first estimate the optimal R∗.

3.3. Similarity Point Set Registration Algorithm

After the global optimal translation t∗ has been found, another BnB algorithm similar to the
rotation search method in [43,44] is used to search the global optimal rotation about the origin. Again,
define the objective function on the basis of the cardinality of the inlier set:

Er(R) = ∑
i

max
j
b 6 (Rx∗i , yj) ≤ εrc (9)

where εr is the inlier threshold. Please note that this objective function is not influenced by the relative
scale between the two point sets, so the rotation can be calculated without considering the scale factor.

To maximize (9) with BnB, it is required to find an upper bound for a branch of its parameter
space. Here, the axis-angle representation of the rotation is used, and then all rotations are contained
in a ball of radius π. As in many similar works [24,25], we enclose the ball with a cube with side length
2π as the initial branch of BnB. Given two rotation vectors a and b in the parameter space of rotation
and a 3D vector u, it was established in [45] that

6 (Rau, Rbu) ≤ ‖a− b‖ (10)

where Ra and Rb are the matrix forms of rotation corresponding to a and b, respectively. Furthermore,
given a cube B in the parameter space of rotation, let vp and vq be points at two opposite corners of
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B. Then, c := (vp + vq)/2 is the center of B, and its corresponding rotation matrix is denoted as Rc.
For any rotation a situated in the cube B,

6 (Rcu, Rau) ≤ min{‖c− a‖, π}

≤ min{
‖vp − vq‖

2
, π}

:= µB

(11)

Then, for ∀R ∈ B,

6
(
Rcx∗i , yj

)
− µB ≤ 6

(
Rx∗i , yj

)
≤ 6

(
Rcx∗i , yj

)
+ µB (12)

Then, the upper bound of the objective function can be defined as

Er(B) = ∑
i

max
j
b 6 (Rcx∗i , yj) ≤ (εr + µB)c (13)

Utilizing the upper bound given by Equation (13), we can search the rotation space to find the
globally optimal rotation that maximizes the objective function (9). The algorithm is outlined in
Algorithm 2.

Algorithm 2: Globally Optimal Rotation Search.
Input: Translated moving point set X ∗, reference point set Y and inlier threshold εr

Output: Optimal translation r∗ between X ∗ and Y .
1 Initialize rotation branch B; E∗r ← 0, r∗ ← ∅. Insert B with priority Er(B) into queue qr.
2 while qr is not empty do
3 Obtain the highest-priority cube B from qr.
4 if Er(B) = E∗r then
5 Terminate.
6 end
7 rc ←centre of cube B
8 if Er(rc) > E∗r then
9 Update E∗r ←− Er(rc), r∗ ← rc

10 end
11 Subdivide B into eight cubes {Bd}8

d=1.
12 for each Bd do
13 if Er(Bd) > E∗r then
14 Insert Bd with priority Er(Bd) into qr.
15 end
16 end
17 end
18 Obtain the optimal translation r∗.

By using Algorithm 2, the global optimal rotation can be obtained. At this point, there is only
a scale relationship between the two sets, and the scale can be calculated according to the potential
correspondences established in Algorithm 2. Concretely, apply the obtained rotation and translation
to the original moving point set, and calculate the angle between any two points of the transformed
moving point set and reference point set and the origin. For each point of the moving point set,
find the point with the smallest angular distance in the reference point set, which is regarded as the
corresponding point. Each pair of corresponding points calculates a scale, and takes the median of
these scales as the scale factor estimated by our method.
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The full similarity point set registration algorithm is composed of a translation search by
Algorithm 1, a rotation search by Algorithm 2, and a final calculation of the scale factor. It should be
noted that the decomposed problem is not exactly the same as the original problem formulated in
Equation (1), but in practice, it is feasible to find the translation, the rotation and the scale separately.

4. Results and Discussion

In this section, we evaluate the performance of our method and compare it against state-of-the-art
global and local methods in similarity point set registration. Because there are few new methods
dedicated for similarity point set registration, we choose to compare to two recent methods, APM [30]
and CPD [23], which can be used for similarity registration. APM and CPD are the state-of-the-art
methods for global affine registration and local deformable registration, respectively. In this experiment,
we study the runtimes and accuracy of these three methods on synthetic data and clinical data.
Our method is implemented in MATLAB R2017b, except the parts of objective function calculation
and collinear points screening, which were implemented in C. The code for the comparing methods
was obtained from the authors. To avoid excessive runtimes, we set a limit for every method: if it
was unable to converge and return a final solution within 1200 s, it will be terminated by force. In the
experiment with synthetic data, the ground truth translation, rotation and scale between the moving
point set and the reference point set are known. The accuracy of each method is mainly evaluated by
success rate, where success means that the angle between the ground truth rotation and the output
rotation is less than 0.1 radian and the translation error relative to the ground truth ‖t− tgt‖/‖tgt‖
is less than 0.1, where t is the estimated translation and tgt is the ground truth translation, and the
absolute error between the output scale and the ground truth scale is less than 0.1. All experiments
were performed on a laptop with a 2.21 GHz Intel(R) Core(TM) i7-8750H CPU and 8 GB of RAM.

4.1. Synthetic Data

We experimented on point sets from four different data sets, which were Chef data set from
University of Western Australia [46,47], Lucy data set from the Stanford 3D Scanning Repository [48],
Archer and Kids and Owl data sets from EPFL Computer Graphics and Geometry Laboratory [49] and
random point data uniformly distributed in [−1, 1]3. The original 3D models used in this experiment
are shown in Figure 1. For our method, the inlier threshold of RSIFs screening was set to 0.01, the inlier
threshold of translation search was set to 1, and the inlier threshold of rotation search was set to 1◦.
The iterations and tolerance error of CPD were set to 10,000 and 1 × 10−8, respectively. For APM, we
used three different tolerance errors: 0.1, 0.2 and 0.3.

Figure 1. The original 3D models. Archer, Chef, Kids, Lucy and Owl.

4.1.1. Runtime Comparison with APM and CPD

In this experiment, the runtimes of the three methods with respect to the number of points
are studied. The original 3D models were first randomly down-sampled to different numbers of
points, and then these points were uniformly scaled to fit in a cube [−1, 1]3. For random point
data, different numbers of uniformly distributed 3D points from [−1, 1]3 were randomly generated.
The down-sampled model data sets and random points were used as moving point sets. For each
moving point set, a random similarity transformation (R, t, s) (where 1 ≤ s ≤ 5) was applied to
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generate a reference point set. For each number of points, we performed 20 registrations with different
relative random transformations. Figure 2 shows the median runtime and success rate of APM, CPD
and our method with respective to the number of points. We use five models and random data to
evaluate our method, APM and CPD. The left column of Figure 2 shows the median runtime of APM,
CPD and our method. We set three different tolerance errors, 0.1, 0.2 and 0.3, to APM as denoted
APM(0.1), APM(0.2) and APM(0.3). APM exceeded 1200 s in most experiments. On the contrary, as a
global method, ours can converge within 1200 s in all experiments. The median runtime of our method
on Archer and Kids data sets are less than 40 s, which is 30 times faster than APM. This is because we
decouple the translation, rotation, and scale, and we optimize the translation and rotation separately
by using two BnB algorithms. The right column of Figure 2 shows the success rate of CPD and our
method, and the success rate of APM is not plotted because it cannot terminate in the time limit in
most cases. We can see our method achieved 100% success rate on random data (first row), Archer
(2nd row), Lucy (5th row) and Owl (last row), although our method failed once in 20 registrations of
Chef data with 600 points and twice in 20 registrations of Kids data with 800 points. Meanwhile, the
success rate of CPD is very low, because it can only converge to a local optimum. From these results
we can see that though the local method CPD is much faster than global methods, its success rate is
very low without a proper initialization. Global methods tend to be slow, but our method is much
faster than APM.

4.1.2. Robustness to Outliers

In this experiment, we compare the robustness of our method, APM and CPD to outliers using the
same raw data as in Section 4.1.1. These original model data sets were first randomly down-sampled to
200 points, and then each model was scaled uniformly to make it fit in a cube of [−1, 1]3. For random
point data, 200 points uniformly distributed in [−1, 1]3 were randomly generated. The down-sampled
model data sets and random points were used as moving point sets. For each moving point set,
a random similarity transformation (R, t, s) (where 1 ≤ s ≤ 5) was applied and random gross outlier
points with different outlier percentages with respect to the inliers were added to obtain the reference
point sets. For each outlier ratio, 20 registrations under different random transformations were
performed. Figure 3 shows the median runtime and success rate of CPD and our method. Please note
that the results of APM are not shown in Figure 3, because APM was unable to terminate within 1200 s
in most experiments. The left column of Figure 3 shows the median runtime of CPD and our method.
The right column of Figure 3 shows the success rate of CPD and our method. Just as mentioned
above, global method APM is very slow, while our method can converge within 20 s in all experiments.
Although CPD is fast, it cannot return an accurate result in most cases. Our method achieved 100%
success rate, which indicates that our method is very robust to gross outliers. From Figure 3, we can
see our method is much faster than the global method APM and more accurate than local method CPD.
The reason is that our method uses BnB to optimize the translation and rotation separately, which can
guarantee the global optimal, and the decomposition strategy greatly improve the efficiency of BnB.
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Figure 2. Median runtime and success rate with respective to the number of points. Random data
(first row), Archer (2nd row), Chef (3rd row), Kids (4th row), Lucy (5th row) and Owl (last row). Left
column: The median runtimes of our method, asymmetric point matching (APM) and coherent point
drift (CPD) with respect to the number of points. Right column: The mean success rates of our method
and CPD with respect to the number of points.
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Figure 3. Median runtime and success rate with respective to the outlier ratio. Random data (first row),
Archer (2nd row), Chef (3rd row), Kids (4th row), Lucy (5th row) and Owl (last row). Left column: The
median runtimes of our method and CPD with respect to the outlier ratio. Right column: The mean
success rates of our method and CPD with respect to the outlier ratio.
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4.1.3. Robustness to Missing Points

In this experiment, we study the robustness of the three methods with respect to the missing point
ratio using the same raw data as in Section 4.1.1. These original model data sets were first randomly
down-sampled to 200 points, and then each model was scaled uniformly to make it fit in a cube of
[−1, 1]3. For random point data, 200 points uniformly distributed in [−1, 1]3 were randomly generated.
Different ratios of data points were deleted from the down-sampled model data sets and random points
to generate the moving point sets, while the reference point sets were constructed by applying random
similarity transformation (R, t, s) (where 1 ≤ s ≤ 5) to the entire down-sampled model data sets and
random points. For each missing point ratio, 20 registrations under different random transformations
were performed. Figure 4 shows the median runtime and success rate of CPD and our method. Please
note that the results of APM are not shown in Figure 4, because APM was unable to terminate within
1200 s in most experiments. The left column of Figure 4 shows the median runtime of CPD and our
method. The right column of Figure 4 shows the success rate of CPD and our method. From Figure 4,
we can see the median runtime of our method is less than 10 s in most cases, which is much faster
than the global method APM. The reason may be that the assumption of one-to-one correspondence
adopted by APM is not valid in these experiments and transformation decomposition in our method
can greatly improve the efficiency of BnB. Our method could successfully register the moving and
reference point sets except two failed cases in 20 registrations of the Archer data with 0.2 missing point
ratio and one failed case in 20 registrations of the Archer data with 0.4 missing point ratio. Although
CPD is fast, it cannot return an accurate result in most cases.

4.2. Clinical Data

In this section, we compare our method, APM and CPD in registering clinical data. Two scans
from 3D MRI volume data and a laser range scanner were used. The point clouds used in these
experiments are very dense, and they were down-sampled by using the pcdownsample function of
MATLAB with a specified gridsize 20 to 223 and 241 points, respectively. Then these points were scaled
uniformly to make it fit in a cube of [−1, 1]3. Since there is no ground truth for transformation, in
order to calculate the registration error, three targets were selected from the data to calculate the target
registration error (TRE). It should be noted that due to the manual selection of the target and the weak
correspondence between the data, there is a certain error between the corresponding targets. For our
method, the inlier threshold of RSIFs screening was set to 0.1, the inlier threshold of translation search
was set to 1, and the inlier threshold of rotation search was set to 10◦. The iterations and tolerance error
of CPD were set to 10,000 and 1× 10−8, respectively. For APM, we used three different tolerance errors:
0.1, 0.2 and 0.3. Since APM requires that the number of moving points to be less than the number of
reference points, two point sets were exchanged and input into APM. However, APM cannot converge
within 1200 s. Then we randomly delete 18 points from the moving point set so that the number of
moving points is the same as the number of reference points, but APM still cannot converge in 1200 s.
Figure 5 shows the clinical data before and after registration. There is approximately relative rotation
of 90 degrees between two point sets in Figure 5a. The result of our method is shown in Figure 5b,
and our method could successfully register two point sets. Figure 5c shows the result of CPD. The
running time of each method, TRE, mean, and standard deviation are listed in Table 1. The scale of
CPD is 0.893, and ours is 1.040. CPD is much faster than our method, but it failed, while our method
succeeded in 19 s.
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Figure 4. Median runtime and success rate with respective to the missing point ratio. Random
data (first row), Archer (2nd row), Chef (3rd row), Kids (4th row), Lucy (5th row) and Owl (last
row). Left column: The median runtimes of our method and CPD with respect to the missing point
ratio. Right column: The mean success rates of the our method and CPD with respect to the missing
point ratio.
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(a) (b) (c)

Figure 5. Clinical data before and after registration. (a) The initial relative position of the two point
sets to be registered. (b) The result of our method. (c) The result of CPD.

Table 1. The results of registration on the clinical data.

Methods Time [s] TRE Mean Standard DeviationTarget No.1 Target No.2 Target No.3

Our method 18.568 0.109 0.092 0.090 0.097 0.009
CPD 0.416 0.423 0.782 0.472 0.559 0.159

5. Conclusions

This paper focuses on the similarity point set registration problem and proposes an efficient
global method by using BnB and transformation decomposition. Because the time efficiency of BnB
optimization is exponential in the dimensionality of the problem, a novel rotation and scale invariant
feature is proposed to decouple the optimization of translation, rotation and scale. The optimal
translation is first globally optimized based on the two sets of rotation and scale invariant features
constructed from the original point sets. Then, the optimal rotation between the original point sets is
calculated after applying the obtained optimal translation to the moving point set. Finally, the scale
is estimated through potential correspondences. Decoupling the optimization of the translation, the
rotation and the scale makes the proposed algorithm much more efficient than the existing global
method. When the outlier ratio with respect to inliers is up to 1.0 or missing point ratio is 0.5, our
method still successfully registers the moving point set and reference point set. Extensive experiments
show that the proposed method is approximately two orders of magnitude faster than state-of-the-art
global method and much more accurate than local methods in similarity point set registration.

There are several limitations of this study. First of all, we have to admit that the decomposed
problem is not exactly the same as the original problem. However, in practice, it is feasible to find the
translation, the rotation and the scale separately. Secondly, when the outlier ratio is higher, the method
may fail. Finally, the application experiment is relatively simple. In the future, we will further optimize
the algorithm and enhance its applicability.

Overall, this paper proposes an efficient global similarity point registration algorithm based on
transformation decomposition and BnB optimization framework. Two BnB-based algorithms are used
to globally estimate translation and rotation in two three-dimensional spaces, which improve the
efficiency of BnB. Thus, our method is faster than the state-of-the-art global method. At the same time,
our method uses BnB optimization framework to guarantee the global optimality, which makes it more
accurate than local method in similarity point set registration.
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