
  

Sensors 2020, 20, 4081; doi:10.3390/s20154081 www.mdpi.com/journal/sensors 

Article 

Weighted Kernel Filter Based Anti-Air Object 
Tracking for Thermal Infrared Systems 
Chuljoong Kim 1,2 and Hanseok Ko 1,* 

1 Department of Video Information Processing, Korea University, Seoul 136-713, Korea; 
cjkim@ispl.korea.ac.kr  

2 Hanwha Systems Co., Sungnam 461-140, Korea 
* Correspondence: hsko@korea.ac.kr 

Received: 23 June 2020; Accepted: 20 July 2020; Published: 22 July 2020 

Abstract: Visual object tracking is an important component of surveillance systems and many high-
performance methods have been developed. However, these tracking methods tend to be optimized 
for the Red/Green/Blue (RGB) domain and are thus not suitable for use with the infrared (IR) 
domain. To overcome this disadvantage, many researchers have constructed datasets for IR 
analysis, including those developed for The Thermal Infrared Visual Object Tracking (VOT-TIR) 
challenges. As a consequence, many state-of-the-art trackers for the IR domain have been proposed, 
but there remains a need for reliable IR-based trackers for anti-air surveillance systems, including 
the construction of a new IR dataset for this purpose. In this paper, we collect various anti-air 
thermal-wave IR (TIR) images from an electro-optical surveillance system to create a new dataset. 
We also present a framework based on an end-to-end convolutional neural network that learns 
object tracking in the IR domain for anti-air targets such as unmanned aerial vehicles (UAVs) and 
drones. More specifically, we adopt a Siamese network for feature extraction and three region 
proposal networks for the classification and regression branches. In the inference phase, the 
proposed network is formulated as a detection-by-tracking method, and kernel filters for the 
template branch that are continuously updated for every frame are introduced. The proposed 
network is able to learn robust structural information for the targets during offline training, and the 
kernel filters can robustly track the targets, demonstrating enhanced performance. Experimental 
results from the new IR dataset reveal that the proposed method achieves outstanding performance, 
with a real-time processing speed of 40 frames per second. 

Keywords: visual object tracking; thermal infrared (TIR); region proposal network (RPN); 
convolutional neural network (CNN); weighted kernel filter (WKF) 

 

1. Introduction 

Visual tracking has received significant research attention in recent years, with infrared (IR) 
object tracking in particular important for military uses [1], such as surveillance and missile and laser 
weapon systems. IR radiation is composed of electromagnetic radiation that has a longer wavelength 
than visible radiation. It is divided into near-wave IR (NIR, 700–1000 nm), short-wave IR (SWIR, 
1000–3000 nm), middle-wave IR (MWIR, 3000–5000 nm), and long-wave IR (LWIR, 7500–12,000 nm). 
Normally, MWIR and LWIR are referred to as thermal IR (TIR). 

NIR and SWIR have a disadvantage in that they are not clearly visible at night. On the other 
hand, TIR is more commonly used to observe any object because it operates in the region of the 
spectrum where the thermal contrast is much higher due to black body physics. This allows TIR to 
be used in general visual object tracking for grayscale sequences [2]. As a consequence, any effective 
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general image tracker, such as those using RGB images, is capable of TIR tracking, and this has led to 
the development of many TIR applications, including pedestrian detection and object tracking [3]. 

However, some key differences between RGB and TIR trackers mean that the use of an TIR 
tracker is much more difficult. The most obvious difference is that color information, a fundamental 
feature of targets in RGB images, is absent in the TIR domain, meaning that trackers that depend 
heavily on color information may not be able to track in the TIR domain. For instance, two objects 
with different color information but similar temperature distributions cannot be distinguished using 
TIR, confusing the tracker. Another difference is that the intensity of the objects in TIR images is 
represented by their temperature distribution rather than their illumination. Therefore, objects in TIR 
images are more likely to merge with the background. 

The discriminative correlation filter (DCF) trains the ridge regressor via circular correlation and 
operates in the Fourier domain. trackers using DCF can conduct online tracking and update the 
weight of the filter at the same time. Many DCF based trackers have been widely used in the tracking 
community [4–7], and correlation-filter-based trackers that extract deep features to improve accuracy 
have recently been introduced [8–10]. Convolutional neural network (CNN)-based trackers use 
various deep features and have an outstanding tracking performance [11–15] due to their strong 
feature learning abilities. However, for TIR input, these trackers are not sufficiently effective. For 
instance, in the VOT-TIR 2017 challenge, ECO that is trained on the RGB domain ranked fifth out of 
ten trackers [16]. 

Due to the VOT-TIR challenge, various trackers that have been optimized for the IR domain have 
been introduced and tracking performance has greatly improved for IR images. In the VOT-TIR 
challenges, its objective is mainly to track for ground targets such as pedestrian, car, and bike which 
are clearly classified. In addition, there is an attempt to develop an algorithm to track various targets 
from videos that is captured by UAV [17]. Nevertheless, it is a formidable task develop trackers which 
tracks various size of drones and UAVs approaching from the sky. Moreover, there have been no 
attempts to create an anti-air dataset. For these reasons, in order to solve the limitations with the 
existing trackers and improve the anti-air tracking performance, we are about to develop a tracker 
for anti-air TIR images in this study. 

To achieve this, a new dataset of anti-air TIR images is created and a robust anti-air TIR object 
tracking method with an end-to-end convolutional neural network (CNN) framework is proposed. 
In addition, a preprocessing procedure for the raw TIR images is developed because all TIR cameras 
have various bit-depths, so they must be normalized. Finally, a simple image enhancement method 
is utilized to reduce the computational time. 

In terms of the network architecture for the proposed method, feature extraction is first trained 
using a modified version of MobileNetV2 [18] as the backbone network. Following this, a Siamese 
structure with region proposal networks (RPNs) is employed. Inspired by standard RPNs [19], the 
RPNs are modified to utilize a cross-correlation feature map of Siamese branches. For the cross-
correlation, a layer-wise operation method is adopted, enabling the tracker to predict the similarity 
map from features learned at multiple levels. Because the similarity map is produced using cross-
correlation at multiple levels, a depth-wise cross-correlation structure is used, which greatly reduces 
the number of parameters and the computational time. 

For inference, the weighted kernel filters are employed in the template branch as a local detection 
task after the bounding box in the first frame is derived. The kernel filters are updated for every frame 
because they contain information from the past to the present. Lastly, after cross-correlation, the 
RPNs are summed with weights to predict the size and the position of the target. 

The main contributions of this study are as follows: 

(1) We create a new dataset for anti-air TIR images and propose an image-enhancement method for 
anti-air targets. 

(2) We propose a Siamese architecture with a modified backbone and fused RPNs. This network is 
fully trained end-to-end without using pre-trained parameters for the RGB domain. 

(3) In the inference phase, we utilize the weighted kernel filters that are updated for every frame. 
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Based on the contributions above, we develop a state-of-the-art visual tracking model that 
improves tracking accuracy. Separate training, validation, and test datasets are created from the anti-
air TIR dataset for use with the tracker. The tracker is implemented in Python using PyTorch libraries. 

2. Related Work 

This section briefly summarizes the development of common datasets, recent trackers, and deep 
architectures. 

2.1. Datasets 

Quality datasets are crucial for vision-based computer applications, particularly in the training 
and testing of algorithms. ImageNet [20] is a dataset containing more than 14 million images, while 
YouTube-Bounding Boxes (YouTube-BB) [21] is a large-scale dataset of video URLs with densely-
sampled high-quality single-object bounding box annotations. COCO [22] is a large-scale dataset 
used for the detection and the precise localization of objects, and the VOT and MOT Challenges 
produce new datasets annually. These datasets are mainly created to overcome various common 
difficulties for visual object tracking. As a consequence, by collecting a diverse range of image data, 
they have enabled the rapid development of object tracking and detection. 

Though these datasets target RGB images, there have been attempts to create IR datasets. In the 
VOT 2019 challenge, a TIR dataset was introduced for IR trackers. VOT-TIR2016 [23] has 25 thermal 
infrared sequences and each sequence has six local attributes which can be used to test the 
performance of the tracking algorithm on frames with specific attribute evaluation. PTB-TIR [24] 
includes a number of thermal infrared video dataset for pedestrian tracking. RGB-T [25] includes 234 
comprehensive thermal video dataset and takes into consideration of various environmental 
challenges. However, none of the data target the anti-air target dataset. Therefore, the creation of an 
anti-air IR dataset for electro-optical systems is required. 

2.2. Trackers 

The accuracy, efficiency, and robustness of the visual object tracking have rapidly improved 
since MOSSE [26] was first introduced. MOSSE was introduced to transform the template-matching 
problem into a correlation operation in the frequency domain. Due to this transformation, many 
trackers based on correlation filters are able to achieve efficient operating speeds and higher accuracy 
if the features are extracted effectively [4–7,27]. ECO-TIR [28] utilizes an end-to-end network to 
generate synthetic thermal data from RGB sequences and this could overcome the need of alignment 
of RGB and thermal data. MMNet [29] proposed a multi-task framework to learn the TIR-specific 
discriminative features and fine-grained correlation features for TIR tracking. 

Siamese-based trackers have received significant attention for their accuracy and efficiency 
[9,11,14,15,30–32]. These trackers consist of two branches that encode input patches to another space 
and then join them as a cross-correlation operation to produce a similarity map. Inspired by the 
template-matching method, Siamese-FC [11] introduced a cross-correlation layer in a Siamese 
network without online updating and achieved high accuracy and speed. MCFTS [31] used pre-
trained VGG-Net Siamese network for thermal infrared and proposed a correlation filter based 
ensemble method. It also proposed a fusion method based Kullback–Leibler divergence. CFnet [30] 
improved on the Siamese network-based tracking framework by adding a correlation filter to a 
Siamese network, making it shallower but more efficient. DCFNet [9] proposed a similar Siamese 
network that was trainable online by replacing the correlation layer was a discriminative correlation 
filter and that performed offline training through the Siamese network. HSSNet [32] introduced 
several multiple feature fusion based methods to overcome the limitations of one single feature in 
visual object tracking. In addition, state-of-the-art trackers [14,15] have introduced RPNs as a 
detection task after the Siamese network and have produced very promising results. However, none 
of these trackers have been applied to the anti-air TIR domain, thus their tracking accuracy needs to 
be validated in this respect. 
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2.3. Deep Architectures 

Research on network architecture has rapidly developed since AlexNet [33] was first introduced 
in 2012, and many complex deep network architectures have since been proposed, such as VGGNet 
[34], GooLeNet [35], ResNet [36], MobileNet [37], and MobileNetV2 [18]. These architectures can not 
only be trained well with deeper structures, but have also greatly assisted the development of 
computer vision applications, such as object detection [38] and image segmentation [39]. For VOT, 
many deeper architectures have been adopted, producing promising results. SiamMask [40] 
introduced a rotational bounding box as a binary mask and classified pixel-wise belongingness for 
the target. For feature extraction, it adopted resnet-50, which is deeper network architecture. D&T 
[41] simultaneously produced regression-based tracking boxes and detection boxes with resnet-101 
for feature extraction, and the detection boxes were linked and re-scored based on the tracking boxes. 
However, none of these architectures have been trained on anti-air TIR images. Therefore, this study 
looks to train all of the parameters within the entire network in the TIR domain. 

3. Proposed Method 

This section describes the development of the anti-air TIR dataset and the proposed Siamese-
based network architecture with RPNs. In addition, the tracking process using cumulated kernel 
filters is explained. 

3.1. Anti-Air TIR Dataset 

3.1.1. Data Collection 

In order to produce an anti-air TIR dataset, object categories, such as drones, UAVs, and missiles, 
must be identified. The defense industry is most interested in systems that can track small anti-air 
objects such as drones and UAVs, thus an anti-air dataset needs to be created for deep-learning-based 
trackers. Because cameras in electro-optical systems must also be able to observe their surroundings 
during both the day and at night, TIR images are the most suitable choice for this dataset. Moreover, 
in order to collect anti-air IR data with various size, we need a camera to be able to observe small 
objects from far distances. For instance, if we need to observe 30 cm objects such as small drones 
within 2 km with 480 × 480 camera resolutions, we need a camera with less than a 1-degree field of 
view (FOV) because it is observed at 4 × 4 pixels. Therefore, we use a military-use TIR camera 
developed by Hanwha Systems and it’s FOV is 1-degree with 480 × 480 resolution. 

Figure 1 presents images of small drones and UAVs from the proposed TIR dataset. To ensure a 
variety of data, if at least one of the shape, scale, background, or pixel intensity of the target changes, 
data extraction is attempted. However, to prevent overfitting, data with similar shapes or little 
change in the background are excluded. The accurate tracking of drones has two major 
considerations. First, drones are typically symmetrical, thus data should be acquired when the angle 
of the drone changes. Second, the pixel intensity of a drone is sometimes darker than its surroundings 
if it has a lower temperature distribution than the background. When this happens, data should be 
extracted. In addition, almost all of the background data are collected at low altitudes and thus often 
include buildings, forests, or mountains. For UAVs, the data is collected from various angles (e.g., 
left-to-right, right-to-left, or rotation) and the background data are generally acquired at high 
altitudes, such as flying in front of clouds. The overall dataset is separated into training with 300 
sequences and 78,903 frames, validation with 70 sequences and 21,046 frames, and test with 30 
sequences and 14,750 frames. 
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(a) UAV Dataset 

(b) Drone Dataset 

Figure 1. Proposed anti-air TIR dataset: (a) UAVs collected when the shape changes with a cloudy or 
sky background and (b) drones captured at low altitudes. 

3.1.2. Preprocessing 

In electro-optical systems, most TIR cameras do not have the same data structure. Therefore, the 
data must be converted to a certain bit-depth, such as RGB channels. To do this, how best to change 
the data needs to be decided. This is not a problem for high-temperature objects, which can be 
normalized within 0–255 with the min/max values of the current frame. In other words, they can be 
tracked robustly despite changes in illumination. However, for low-temperature objects, such as 
drones and UAVs, if the images are normalized using this technique, the pixel distribution fluctuates 
dramatically between frames due to the high variation in the pixel intensity. For this reason, we 
propose a preprocessing procedure that matches the bit-depths to 8 bits, improves image quality, and 
leads to less variation in the pixel intensity. 

𝑚𝑒𝑎𝑛 1𝑁 𝑀 , 𝑠𝑡𝑑 1𝑁 𝑆  (1)

min 𝑚𝑒𝑎𝑛 − 4 𝑠𝑡𝑑  max 𝑚𝑒𝑎𝑛 4 𝑠𝑡𝑑  
(2)

𝐼𝑚𝑎𝑔𝑒 𝐼𝑚𝑎𝑔𝑒 −𝑚𝑖𝑛𝑚𝑎𝑥 −𝑚𝑖𝑛 255 (3)

First, two circular buffers with N frames are constructed to save the mean and standard 
deviation of the images, and these are updated in each buffer. Second, based on the current frame, 
the cumulated average of the mean and standard deviation are calculated with the most recent N 
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frames (Equation (1) and Figure 2). This extracts the representative features from these recent images. 
Third, the min/max threshold values are decided using Equation (2). Finally, based on the threshold 
values, the current image can be converted to 8 bits using the normalizing operation in Equation (3). 
Equation (2) and Equation (3) lead to images with a lower variation in pixel intensity and a higher 
quality (Figure 3). If Equation (2) is not used, the pixel intensity of the images fluctuates dramatically 
between frames, making the image appear as if it is affected by illumination and thus more difficult 
to be trained on (Figure 3). 

 

(a) Mean value of the images 

 

(b) Standard deviation of the images 

Figure 2. The structure of the circular buffer: (a) mean and (b) standard deviation of the images. All 
values are updated based on the frame number index. For instance, assuming that the buffer consists 
of 50 frames and the current frame number is 138, the buffer index is 138 mod 50 = 38. 

 

(a) Proposed preprocessing 

 

(b) Min/max normalized preprocessing 

 

(c) Bit-shift preprocessing 

Figure 3. A comparison of the preprocessing results for consecutive frames. (a,b) display images that 
are converted to 8 bits via normalization. (a) uses the mean and standard deviation for cumulated 
images, while (b) uses the mean and standard deviation for the current image. The pixel distribution 
in (a) shows lower variation. The images in (c) employ the bit-shift method, leading to a loss of 
information. 

3.2. Training: Siamese-Based Deep Network with RPNs 

VOT requires data with rich representations, such as various dimensions, scales, and resolutions. 
However, a single output layer for feature extraction is not sufficient even if the depth of features is 
rich in a CNN. Instead, combining several layers of feature extraction into one improves classification 
and localization. 

As shown in Figure 4 and Table 1, the proposed framework consists of a Siamese network for 
feature extraction and three RPNs for target classification and box regression. Specifically, 
MobilenetV2 [18] is adopted for its rich feature representations, though it is modified to simplify its 
structure. The three RPNs are fused to enable the robust tracking of a target location. As input 
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patches, template and search images are fed into the proposed network and the entire network is 
trained end-to-end.  

3.2.1. Siamese-Based Feature Extraction Network 

The feature extraction network is depicted in Figure 4 The input to the network is a pair of 
patches cropped from the previous frame for the template and the current frame for tracking. To use 
various features with an identical patch size, the proposed feature extraction network consists of 
MobileNetV2, which has linear bottlenecks. However, adopting the existing MobileNetV2 wholescale 
is inefficient because the network does not operate in real-time. Therefore, we propose a modified 
network that is lighter than MobileNetV2 but that maintains the linear bottlenecks. 

 
Figure 4. The proposed network architecture for the training phase. For feature extraction, a modified 
version of Siamese MobileNetV2 with a reduced number of layers is adopted. Region proposal 
networks (RPNs) lie between the Siamese networks. Each RPN has two branches, one for classification 
and the other for box regression, and they are formulated using depth-wise cross-correlation. As a 
consequence, the entire network outputs a dense prediction by fusing the three RPNs. 

In order to simplify MobileNetV2, the number of existing bottlenecks is reduced from 7 to 5, and 
the number of repetitions for the bottlenecks is also reduced. In addition, the layers for classification 
that consist of two convolutions and average pooling are removed. However, the depth-wise 
separable convolutions, which are the key function of MobileNet [37], are adopted for all bottlenecks. 
Moreover, we add a receptive field using dilated convolutions [42] in the middle sequence of Layer 
4 and Layer 5. The specifications for the feature extraction layers are presented in Table 1. 

Table 1. Details of the proposed feature extraction network. Each column describes a sequence of 1 
or more modulo stride layers, repeated n times. All layers have c output channels. The first sequence 
of all layers has stride s. All of the convolutions, except for channel expansion and reduction, use a 3 
× 3 kernel. The input channels for each sequence are multiplied by the expansion factor t. 

Template Input Search Input Operator t c n s Remark 127 3 255 3 conv2D - 32 1 2 Layer 0 63 32 127 32 bottleneck 1 16 1 1 Layer 1 63 16 127 16 bottleneck 6 24 2 2 Layer 2 31 24 63 24 bottleneck 6 32 3 1 Layer 3 31 32 63 32 bottleneck 6 64 3 1 Layer 4 31 64 63 64 bottleneck 6 160 1 1 Layer 5 31 160 63 160 - - - - - - 
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The proposed Siamese network consists of two branches: template, which receives the previous 
target patch as input and search, which receives the current target patch as input. They share all of 
the parameters in the CNN so that the two inputs are encoded by the same transformation. z denotes 
the input of the template branch and x denotes the input of the search branch. The output features of 
the Siamese network can thus be represented as φ z ,φ x , φ z ,φ x , and φ z ,φ x . 
These multi-branch outputs are fed into the RPNs individually. 

3.2.2. Weighted Sum of the Region Proposal Networks 

The RPNs consist of feature-adjustment, depth-wise cross-correlation, and result sections. The 
feature-adjustment sections are appended to each of the feature extraction outputs to balance the 
output channels. It also crops padding areas in the template branch to reduce computational time. As 
shown in Table 1, because 3 × 3 convolution sequences in all of the layers are retained as padding, the 
template and search features have 31 × 31 and 63 × 63 regions. Thus, it is burdensome to compute six 
cross-correlations. To overcome this, the padding area can be cropped from the features. However, 
search features cannot be cropped because they are placed in a certain position within a random shift 
range to prevent center bias overfitting. Therefore, the template features can be reduced up to a 
central 17 × 17 region, but we should optimize the time required for the cross-correlation between the 
63 × 63 and cropped template. With this in mind, the most efficient method is to crop the template 
features to a central 27 × 27 region (Figure 5a). The depth-wise cross-correlation section consists of 
lightweight layers used to extract an efficient feature map. As shown in Figure 4, cross-correlation 
operations are computed six times, requiring high computational time. Inspired by depth-wise 
separable convolution [37], we adopt a depth-wise cross-correlation that is computed channel-by-
channel (Figure 5b), significantly reducing the parameters and computational cost. 

 

(a) Average computational time for depth-
wise cross-correlation with a cropped 

template 

 

(b) Depth-wise cross-correlation  

Figure 5. Description of depth-wise cross-correlation. (a) shows the computational time for cropped 
templates of various sizes. (b) displays a schematic summary of the depth-wise cross-correlation 
method. It predicts multi-channel correlation features between the template and search branches. 

The result section has two branches, one for foreground and background classification and the 
other for box regression. If there are k anchors, the RPN outputs 2k channels for classification and 4k 
for regression. As mentioned above, the feature adjust section transforms φ z  and φ x  into φ z  and φ x  with the same number of channels using a 1 × 1 kernel. After the depth-wise 
cross-correlation with the φ z  and φ x , all of the outputs are calculated with 2k and 4k 
channels respectively using a 1 × 1 kernel, and we can get the results which consist of 𝐶  and 𝑆  (Equation (4)). 

Thus, φ z  serves as a correlation kernel filter for φ x , meaning that depth-wise cross-
correlation is computed for both the classification and box regression branches. Because each RPN, 
i.e., (C1, S1), (C2, S2), and (C3, S3) (Figure 4), has the same resolution, the weighted sum of each RPN 
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is adopted as the final output (Equation (5)). The weight parameters in Equation (5) are optimized 
end-to-end with the network in the offline phase. 𝐶 = φ(z)  ★ φ(x)  𝑆 = φ(z)  ★ φ(x)  

(4)

𝐶 = 𝛼 × 𝐶   𝑆 = 𝛽 × 𝑆 , 𝑗 ≠ 3 (5)

3.2.3. Loss and Optimization Strategy 

As shown in Figure 4, each 𝐶  contains a 2k channel vector, which represents the positive and 
negative intersection of union (IOU) for each anchor. SoftMax is adopted to compute the classification 
branch for both the training and inference phases. Similarly, each 𝑆  contains a 4k channel vector, 
which measures the normalized distance between the anchor and ground-truth. When the entire 
network is trained with k anchors, inspired by the loss in Faster R-CNN [19], we adopt cross-entropy 
loss and smooth L1 loss. They are employed for the classification branch and the box regression 
branch. Cross-entropy loss can be formulated as 𝐿 = − 1|𝐷| 𝑦[𝑢]ln(𝑣[𝑢])∈  (6) 

where v is a real-valued classification map of the template-search pair and y is the positive and 
negative ground-truth IOU label. Using the proposed network, this produces the classification 
probability map v ∶ D → ℝ. 

Let (Ax, Ay, Aw, Ah) denote the center point and the size of the anchor box and let (Gx, Gy, Gw, Gh) 
denote the center point and the size of the ground-truth. The normalized distance m between the 
anchor box and the ground-truth is m[0] = 𝐺 − 𝐴𝐴 , m[1] = 𝐺 − 𝐴𝐴  

m[2] = ln 𝐺𝐴 , m[3] = ln𝐺𝐴  
(7) 

Smooth L1 loss is thus formulated as 

𝐿 = SmoothL1(𝑚[𝑖]) 

SmoothL1(x) = 0.5𝑥 , |𝑥| < 1|𝑥| − 12 , |𝑥| ≥ 1   (8) 

Final loss can then be computed: 𝐿 = 𝜆 𝐿 + 𝜆 𝐿  (9) 

where λ1 and λ2 are hyperparameters used to balance the two losses. 
By using the combined loss, the main objective is to find the parameter W that minimizes the 

average loss of the proposed network. Assume the prediction function ζ(𝑥;𝑊), which has n-sample 
search xi and corresponding label ℓi. The average loss that minimizes parameter W is 

𝑎𝑟𝑔𝑚𝑖𝑛 1𝑛 𝐿(ζ(𝑥 ;𝑊), ℓ ). (10) 

The parameter W of the prediction function can be learned from the n-sample template zi using 
the feed-forward function Φ, which maps (𝑧;𝑊 ) to W: 
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𝑎𝑟𝑔𝑚𝑖𝑛 1𝑛 𝐿(ζ(𝑥 ;𝜙(𝑧 ;𝑊 )), ℓ ) (11) 

The prediction function ζ with parameter W consists of the Siamese feature extraction function 
as φ and the RPN function as ω. Therefore, Equation (11) can be reformulated using φ, ω, and W of 
the proposed network for the problem: 

𝑎𝑟𝑔𝑚𝑖𝑛 1𝑛 𝐿(𝜔(𝜑(𝑥 ;𝑊);𝜑(𝑧 ;𝑊)), ℓ ) (12) 

As seen in Equation (12), 𝜑(𝑧 ;𝑊) is the information for the class of interest for finding the 
target of search patch x. In this way, the template branch, 𝜑(𝑧 ;𝑊), can be reinterpreted as the 
training parameters for the kernel filter. In other words, if the network is trained properly in the 
training phase and the template branch in the inference phase has rich information from the past to 
the current frame, it can robustly track any arbitrary object. Therefore, the template branch embeds 
target information into the kernel filter and the search branch predicts the target location using this 
information. 

3.3. Inference Process 

3.3.1. Kernel Filter 

As mentioned in Section 3.2.3, the Siamese template branch φ(𝑧 ; W) functions as the kernel 
filter. Therefore, tracking performance can be improved if the kernel filter has the information from 
the past and the current feature. For this reason, we propose a kernel filter with weighted summation. 
As shown in Figure 6, the weighted kernel filters are summed with the current feature and then 
updated using a loop-back method. The weighted kernel filter is formulated as 𝑘𝑒𝑟𝑛𝑒𝑙 = φ(𝑧 )                    , 𝑡 = 0(1 − 𝜂) × 𝑘𝑒𝑟𝑛𝑒𝑙 + 𝜂 × φ(𝑧 )  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (13) 

where t represents the frame index and ƞ is the online learning rate. 

 
Figure 6. Proposed network architecture for the inference phase. Before depth-wise cross-correlation, 
the kernel filter in the template branch is updated to store the information from the past to the current 
feature. Adopting the weighted kernel filter improves tracking performance. 

3.3.2. Box Decoding and Selection 

As shown in Equation (5), the RPNs conduct online inference with the weighted kernel filter 
(Equation (13) and Figure 6). A forward pass on the proposed network is conducted to obtain the 
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classification and the box regression outputs. Given the notation defined in Equation (5), the 
classification and box regression feature map are given as 𝐶 ( × × ) = 𝐼 , ,  (14) 

where 0 ≤ 𝑖 < 𝑤, 0 ≤ 𝑗 < ℎ, 0 ≤ 𝑚 < 2k 𝑆 ( × × ) = 𝑑𝑥 , , ,𝑑𝑦 , , ,𝑑𝑤 , , ,𝑑ℎ , ,  (15) 

where 0 ≤ 𝑖 < 𝑤, 0 ≤ 𝑗 < ℎ, 0 ≤ 𝑛 < k 
Because variables i and j encode the location of the corresponding anchor, and m encodes the 

ratio of the corresponding anchor, the corresponding anchor set can be derived as 𝑥 ,𝑦 ,𝑤 ,ℎ . Therefore, 𝑆 ( × × ) can be decoded to the set 𝑅𝐸𝑆 = 𝑑𝑥 ,𝑑𝑦 ,𝑑𝑤 ,𝑑ℎ  
using the anchor set:  𝑑𝑥 = 𝑑𝑥 , , × 𝑤 + 𝑥  𝑑𝑦 = 𝑑𝑦 , , × ℎ + 𝑦  𝑑𝑤 = 𝑒𝑥𝑝 𝑑𝑤 , , × 𝑤  𝑑ℎ = 𝑒𝑥𝑝 𝑑ℎ , , × ℎ . 

(16) 

After decoding the box regression (Equation (16)), a scale penalty and cosine window are 
adopted to re-rank the decoded box information and determine the best score. The cosine window is 
added to prevent significant displacement from the previous target and the scale penalty is added to 
prevent a large change in the scale and ratio. The scale penalty is represented as 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝑒𝑥𝑝 − 𝑚𝑎𝑥 𝑟𝑟 , 𝑟𝑟 × 𝑚𝑎𝑥 𝑠𝑠 , 𝑠𝑠  − 1 × 𝑘  (17) 

where k is a hyperparameter, r represents the previous target ratio for the width and height, and r’ 
represents the ratio of RES. s represents the previous target scale for the width and height and s’ 
represents the scale of RES. They can be expressed as 𝑟 = 𝑤ℎ , 𝑠 = (𝑤 + 𝑝𝑎𝑑) × (ℎ + 𝑝𝑎𝑑) (18) 

where pad is equal to . 
Afterwards, the final classification output is re-ranked and the best score chosen. Finally, the 

target information, including the bounding box and center points, is smoothly updated. 

4. Experimental Results 

This section provides the details of the proposed method and evaluates the proposed tracking 
algorithm by comparing it with other trackers using the anti-air TIR dataset described in Section 3.1. 
The effectiveness of the proposed network is evaluated by modifying the number of the feature 
extraction output layers in ablation analysis and by running the network with and without the 
weighted kernel filter described in Section 3.3.1. Finally, qualitative results for the anti-air TIR test set 
are presented. 

4.1. Implementation Details  

As previously discussed, this study uses a modified version of MobileNetV2 that does not 
employ existing pre-trained parameters because the domain is different. Therefore, the entire 
network is trained end-to-end using the anti-air TIR dataset. All of the parameters are trained by 
optimizing the combined loss in Equation (9) with stochastic gradient descent (SGD) using one GPU. 
A total of 30 epochs are run with a batch size of 32, which takes about 60 h to converge. During the 
first seven epochs, the learning rate is fixed at 0.001 for the RPNs and 0.005 for the backbone network. 
For the remaining 23 epochs, the learning rate for the entire network is decreased in log space from 
0.005 to 0.0005. The input image pairs from the anti-air TIR dataset are extracted with an interval of 
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fewer than 10 frames and then cropped. If the bounding box of the target is denoted as (w, h), the 
input patch is cropped around the center with a size of A × A. The equation is the same as the value 
for s in Equation (18). The target is now placed in the center of the area A × A and then the target 
position is randomly shifted within A × A. Afterwards, it is resized to 255 × 255 for the search and 
127 × 127 for the template. During the inference phase, the kernel filter of the template branch and 
the target position are continuously updated. The experiments are implemented using PyTorch on 
Ubuntu 16.04 with an Intel i7 processor (Intel Co., Santa Clara, CA, USA), 32 GB of RAM (Samsung 
Co., Suwon, Korea), and an Nvidia RTX 2080Ti (Nvidia Co., Santa Clara, CA, USA). 

4.2. Ablation Analysis 

In order to analyze the effectiveness of the proposed method, ablation analysis is conducted on 
the anti-air TIR test set. In total, ten experiments are conducted (Table 2–4). We also analyzed the 
affection of the preprocessing method described in Section 3.1.2. 

4.2.1. Ablation Analysis on Selecting the Feature Extraction Layers 

The choice of feature-extraction layers is important because the number of parameters directly 
affects the speed and performance of the tracker. Therefore, we select layers that are able to be run in 
real-time. When using two layers, consecutive layers are avoided as the purpose of feature extraction 
is to use appearance and semantic features. Based on the information presented in Table 2, Table 3, 
and Figure 7, three feature-extraction layers (No 4. and No. 5 in Table 2 and Table 3) were found to 
produce better results than two feature-extraction layers. Also, using layers 2, 4, and 5, which is our 
proposed feature extraction method, produces the best result. 

Table 2. Ablation analysis for the number of feature layers without the weighted kernel filter on anti-
air TIR test set. Considering real-time speed, using all layers is excluded. 

No. Layer 2 Layer 3 Layer 4 Layer 5 Weighted Kernel Filter Overlap Ratio 
1 O X O X X 0.663 
2 O X X O X 0.687 
3 X O X O X 0.668 
4 X O O O X 0.729 
5 O X O O X 0.757 

Table 3. Ablation analysis for the number of feature layers with the weighted kernel filter on anti-air 
TIR test set. Considering real-time speed, using all layers is excluded. 

No. Layer 2 Layer 3 Layer 4 Layer 5 Weighted Kernel Filter Overlap Ratio 
1 O X O X O 0.724 
2 O X X O O 0.762 
3 X O X O O 0.701 
4 X O O O O 0.765 
5 O X O O O 0.772 
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(a) Success plots for Table 2. (b) Precision plots for Table 2. 

  

(c) Success plots for Table 3. (d) Precision plots for Table 3. 

Figure 7. (a), (c) Success and (b), (d) precision plots for Table 2 and Table 3 on ablation analysis. 

4.2.2. Ablation Analysis on Adopting the Weighted Kernel Filters 

As shown in Section 4.2.1, the proposed backbone network is found to produce the best result. 
Therefore, we remain the proposed backbone network and compare the impact of the weighted 
kernel filter. As shown in Table 4 and Figure 8, the adoption of the weighted kernel filter improves 
the success rate. This is because balanced template branches, which have various information from 
the past to the current feature, are embedded in the filter, stabilizing the inference process. 

Table 4. Ablation analysis for the weighted kernel filter on the anti-air TIR test set. We use the 
proposed backbone network as it produces the best result. The weighted kernel filter updates the 
template branch from the past to the current feature if it is used. 

No. Layer 2 Layer 3 Layer 4 Layer 5 Weighted kernel filter Overlap ratio 
1 O X O O X 0.757 
2 O X O O O 0.772 
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(a) Success plots for Table 4. (b) Precision plots for Table 4. 

Figure 8. (a) Success and (b) precision plots for Table 4 on ablation analysis. 

Overall, adopting the proposed backbone network and the weighted kernel filter produces the 
best performance in terms of success and precision plots. 

4.2.3. Ablation Analysis on Adopting the Preprocessing Method 

The choice of the preprocessing method affects the tracking performance. For the ablation 
analysis, we remain the proposed backbone network and kernel filter. As shown in Table 5 and Figure 
9, the proposed preprocessing method is the best tracking performance. This is because less variation 
of image intensity stabilizes the training process and this leads to facilitation of the inference process. 

Table 5. Ablation analysis for selecting the preprocessing method on the anti-air TIR test set. As 
described Section 3.2.1, three preprocessing methods are adopted. 

No. Preprocessing Method Overlap Ratio 
1 Proposed 0.772 
2 Min/Max Normalized 0.691 
3 Bit-shift 0.604 

 

 

(a) Success plots for Table 5. 

 

(b) Precision plots for Table 5. 

Figure 9. (a) Success and (b) precision plots for Table 5 on ablation analysis. 

4.3. Evaluation Methodology 

The proposed tracking method is compared with six state-of-the-art trackers: DSST [5], DCFNet 
[9], ECO [10], SiamFC [11], SiamRPN [15], and Sa-Siam [43]. For extensive experimental validation 
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[44], one-pass evaluation (OPE) is employed with success and precision plots. The success plots 
measure the overlap ratio using the IOU between the ground-truth and the estimated bounding boxes. 
The precision plots measure the variation between the ground-truth and the estimated center points. 
They both plot the percentage under the threshold values. The distance threshold is set to 20 for the 
precision plots, and area under the curve is used for the success plots. 

4.4. Evaluation Using the Anti-Air TIR Dataset 

As described in Section 3.1, data is collected from TIR cameras, leading to 78,903 training images, 
21,046 validation images, and 14,750 test images. The proposed tracking method is evaluated using 
the test images with OPE and the overlap ratio success and distance precision. Compared with the 
state-of-the-art trackers, Figure 10 shows the proposed tracker is the highest ranked in the success 
plots. In particular, compared with SiamRPN [15], which is a baseline tracker, the proposed tracker 
has a 6.7% higher overlap ratio and a 1.3% higher precision ratio. 

(a) Success plots for the anti-air TIR dataset (b) Precision plots for the anti-air TIR dataset 

Figure 10. (a) Success and (b) precision plots for one-pass evaluation (OPE) using the anti-air TIR 
dataset. 

4.5. Qualitative Evaluation 

Qualitative testing of the proposed tracker and five other trackers (SiamRPN, SiamFC, DCFNet, 
ECO, and Sa-Siam) is conducted. Figure 11 presents several frames from five challenging sequences 
from the anti-air TIR test set. In the first and second columns, our tracker can robustly track the target 
even when it merges with the background and its shape disappears. In the third and fourth columns, 
the proposed tracker can accurately track the object even with sudden positional changes while other 
trackers struggle to estimate the bounding boxes. As shown in the last column, the target exhibits 
significant scale variation by rotating nearly 180 degrees. Nevertheless, our tracker can still more 
accurately estimate the bounding boxes than the other trackers. In particular, our method shows a 
significant improvement compared with the baseline tracker SiamRPN. 
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Figure 11. Qualitative results for our tracker and five comparison trackers using the anti-air TIR test 
set. The proposed tracker achieves the best performance for several challenging sequences. 

5. Conclusions 

In this paper, a deep-learning-based anti-air TIR object tracking method that employs its own 
TIR dataset was proposed. The dataset was created by adopting a preprocessing procedure with 
circular queue buffers using the mean and standard variation of the images. The proposed algorithm 
consists of Siamese-based feature extraction using a modified version of MobileNetV2 and the 
weighted summation of RPNs. It outputs classification and box regression, and combined loss is 
adopted using cross-entropy and smooth L1. Compared with prominent state-of-the-art trackers, the 
proposed tracker was shown to robustly estimate the bounding box position with higher accuracy. 
The proposed method will help researchers to further develop deep-learning-based IR trackers for 
electro-optical systems. 
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