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Abstract: Point cloud registration is a key problem in computer vision applications and involves
finding a rigid transform from a point cloud into another such that they align together. The iterative
closest point (ICP) method is a simple and effective solution that converges to a local optimum.
However, despite the fact that point cloud registration or alignment is addressed in learning-based
methods, such as PointNetLK, they do not offer good generalizability for point clouds. In this stud,
we proposed a learning-based approach that addressed existing problems, such as finding local
optima for ICP and achieving minimum generalizability. The proposed model consisted of three main
parts: an encoding network, an auxiliary module that weighed the contribution of each input point
cloud, and feature alignment to achieve the final transform. The proposed architecture offered greater
generalization among the categories. Experiments were performed on ModelNet40 with different
configurations and the results indicated that the proposed approach significantly outperformed the
state-of-the-art point cloud alignment methods.
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1. Introduction

3D digital representations of real physical objects require a high level of data expression.
3D representations store and manipulate of information of the target objects, and they can be represented
in various formats, including multi-view RGB(D), volumetric, polygonal meshes, primitive-based
CAD models, or point clouds. Point clouds are collections of points in 3D space [1] that represent
objects regardless of the environment. They produce fewer variations than other methods and can
be observed under strong changes in lighting [2]. Several tasks can be conducted on point clouds,
such as classification [3], segmentation [4], and registration [5]. However, data obtained with modern
3D sensors such as laser scanners is predominantly in the irregular format of point clouds or meshes.

Point cloud registration or alignment is a fundamental process for numerous applications
including robotics [6], autonomous driving [7], augmented reality [8], and medical image processing [9].
This process shifts different sets of data into a single coordinate system [10] to match two or more
images obtained using different sensors or from different viewpoints. At some point in their process,
most computer vision or graphic systems require registration, such as target recognition for remote
sensing, matching stereo images, and aligning medical images. In the 3D space, the problem of
registration lies in finding a spatial transformation between two separate point clouds in different
coordinate systems.

The iterative closest point (ICP) [11] has been widely used to register point clouds due to its
simplicity. However, it implicitly assumes that the aligned point clouds contain full overlap, which is
often different from what happens in practice. Despite the existence of various techniques [12-14],
point cloud registration has remained elusive and is an open challenge with opportunities for further
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improvement. Advances in data collection methods, particularly those using light detection and
ranging (LiDAR) sensors [15] or portable devices such as structure sensors [16], have allowed collecting
large point cloud datasets with ease. As such, most studies have adopted data-driven approaches
to solve 3D-based problems. Deep learning methods presently show significant improvements in
performance due to their high discriminative abilities. However, the inherent lack of structure in point
clouds inhibits their use in deep learning architectures. Recent works, such as PointNet [17] and its
variants [18], have made progress to overcome some of these challenges, enabling state-of-the-art
methods for object detection and segmentation tasks [19,20]. Aoki et al. [21] noted that significant
performance with PointNet required minimal perturbations of the point cloud in a canonical coordinate
system. However, in real world scenarios, the data seldomly aligned to a canonical coordinate
system. PointNetLK [21] revealed that learning-based alignment can be faster and more robust
compared to classical approaches based on handcrafted features [22,23]. However, it is yet to offer
better generalizability.

In this work, we introduce a new framework designed to solve a class of registration problems.
Like ICP, this method was designed iteratively, finding a misalignment estimate. The Alignment Weight
Estimation Network (Awe-Net) is a new component for our framework that includes a weight score
and orientation estimator to identify the contribution of each point cloud to the final misalignment
estimation using the weight scores. Furthermore, it assisted the optimization using only the 1D
orientation angle. This framework provided greater generalizability and faster convergence for the
correct transform estimate. This approach mainly consisted of two components: one extracted global
features and the other assisted in network optimization. Compared to classical approaches based on
handcrafted features to understand 3D data, the proposed approach aims to learn the global 3D features,
with the model trained to estimate the transform between the target point cloud and source point cloud.
Figure 1 presents an example of a desired point cloud registration output from ModelNet40 [24].

Figure 1. Example of desired output of point cloud registration for an airplane from ModelNet40 [24].
Left: before registration; right: after registration.

The proposed model was trained to understand the point cloud based on prior knowledge of the
shape formed by the point cloud and was able to output the desired registration transform. This was
achieved by robustness to noise and also by producing an estimate correct transform between the
source point cloud and the required target template. Therefore, a different learning paradigm is created
that consisted of extracting point cloud global features, aligning the features with the Lucas—Kanade
(LK) algorithm [25], weighing the contribution of each point cloud to the final estimate using weight
scores and optimizing the convergence to a correct transform by including the orientation in 1D into
the loss function, resulting in improved performance. The results are then quantitatively measured
utilizing ground truth and qualitatively observed. The performance of the proposed approach was
evaluated based on the implicit learning of the attentive features and orientation, achieving comparable
performance to state-of-the-art method on ModelNet40.
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The main contributions can be summarized as follows.

(1) A new learning paradigm was proposed for point cloud alignment, which weighed the
contribution of each of the point clouds by extract global features.

(2) An Awe-Net module was proposed to obtain the estimate transform using the aligned global
features. Not only does the Awe-Net output the weight scores but also the orientation of the
input point cloud.

(3) The proposed model offered higher generalizability to shapes unseen during training by obtaining
accurate global features.

(4) The proposed network was fully able to boost the benchmark for point alignment, exhibiting the
least estimation errors among other methods. It demonstrated the ability to learn the features
between the target and source point cloud by using the features produced by Awe-Net.

The rest of the paper is organized as follows: Related works are discussed in Section 2; Section 3
describes the proposed method and network architecture details; Section 4 introduces the experiments.
The paper is concluded in Section 5.

2. Related Work

Current registration methods can be classified into two groups: those dealing with coarse
registration and those dealing with fine registration. Coarse registration methods do not consider any
prior assumptions of the point cloud pose. However, fine registration or alignment algorithms assume
that the input clouds are partially aligned. Hence, they use an initial proximity between the points to
tweak the alignment between the two different coordinate systems.

There exists a variety of methods for local point cloud alignment, and high-end solutions are now
available for applications such as SLAM [26], which requires the ICP [14] algorithm or its variants.
The ICP is the most common method that iteratively performs point correspondence using the closest
point and optimization using the least squares function. There are several variants of ICP [27,28]
differing in their choice of cost function, how correspondences are established, and how the objective is
optimized at each iteration. A noteworthy registration method that alternated with ICP is the extended
Gaussian images in the Fourier domain [29], even though it required ICP to fine-tune the parameters
during the final stage. However, since ICP implicitly assumes that aligned point clouds contain full
overlap, ICP and its variants are generally sensitive to perturbations in alignment, producing locally
optimal estimations. Since global point cloud alignment methods make no prior assumptions about
the relative transformation or amount of overlap, global algorithms are often used to initialize local
methods. Go-ICP [30] was developed to obtain globally optimal estimations.

There are works in literature that estimated interest points to assist with registration, i.e., scale
invariant curvature descriptors [23], oriented descriptors [31], extended Gaussian images [29],
fast point feature histograms [22], color intensity-based descriptors [32], global point signatures [33],
heat kernels [34], and others. While interest points have the potential to improve the computational
speed of the registration approaches, they are not generalized for all applications [35]. The discriminative
optimization work by Vongkulbhisal et al. [36] used a hand-crafted feature vector and learned a set
of maps to estimate a decent initial alignment, and the alignment was refined later using an ICP.
The disadvantage of this approach was that the features and maps were specific to each object and
did not generalize. More recently, they developed inverse composition discriminative optimization
(ICDO) that generalized unseen object shapes. ICDO is complex, presenting the number of points in
quadratic form, making it difficult to use in several real-world scenarios.

Recently, deep learning has achieved remarkable progress on point cloud registration. PointNet [17]
is the representative work in the direct use of point clouds. It applies the channel-wise max pooling to
aggregate per-point features into a global descriptor vector. A similar permutation equivariant layer [18]
is also designed with the major difference that the permutation equivariant layer is max-normalized.
Although the max-pooling idea is demonstrated to be effective, it suffers from the lack of convolutional
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neural networks (CNN)-like hierarchical feature aggregation. PointNet++ [37] is later proposed to
group points into several groups in different levels, so that features from multiple scales could be
extracted hierarchically. In the work of Ebaz et al. [38], the sub-spaces of 3D information in the form of
projections or a depth map were learned using a 2D network. Two major approaches were proposed
by (1) using super-points instead of key-points to find the correct transformation, and (2) encoding
local 3D geometric structures using an auto-encoder. Another proposed approach was presented
in [21], in which the authors proposed a modification to the Lucas—Kanade algorithm [25] to adopt it
for PointNet. An extension of PointNetLK was previously presented [39], where the authors proposed
a new framework that utilized a pair of MLP and a look-up table to transform point-coordinate inputs
into high dimensional data. Using a deep network [40] formulates the object tracking as a relative
motion estimation of two-point sets.

In this paper, we proposed a new learning approach that consisted of PointNet to extract
global features and the LK algorithm was proposed in PointNetLK to align the features. Generally,
this approach relies on extracted global features and the proposed Awe-Net module outputs to weigh
the contribution of each point cloud to the final estimate transform during the alignment process.
Our network consisted of global-features-extracting-network where we referred to PointNet and we
used the LK algorithm for the point cloud alignment. As these are existing works and limited to global
feature extracting, we proposed Awe-Net module outputs to weigh the contribution of each point cloud
to the final estimate transform. Generally, this approach relies on extracted global features and the
proposed Awe-Net module outputs to weigh the contribution of each point cloud to the final estimate
transform during the alignment process. Thus, one contribution was a new Awe-Net component,
which included a weight score and orientation estimator to identify the contribution of each point
cloud to the final misalignment estimation using the weight scores. Predicting the orientation and the
point cloud weights implicitly to the final output of the network allowed the network to converge in
less iterations.

3. Methods

3.1. Features Extraction and Alignment

Global features extraction was required since we dealt with the global point cloud alignment.
However, due to a lack of inherent structure of the point cloud, deep learning architectures could
not directly handle the point cloud. To address this representation of the point cloud, the PointNet
network was utilized as an encoding function.

¢ denotes the PointNet function as ¢ : R®*N — RK, 50 that the input point cloud is P € R¥N,
¢ (P) outputs a K-dimensional feature vector. The function ¢ applies to a multilayer perceptron
(MLP) for each 3D point in P. A symmetric pooling function is then applied, followed by a returning
K-dimensional global descriptor.

Aoki et al. [21] proposed a modification of the LK algorithm to handle the feature alignment.
Thus, let &7, € se(3) and Pr, Ps be the template and source point clouds, respectively, with an aim of
finding the rigid-body transform G € SE(3), which aligns the source to the template.

G= exp(z .E,T,‘) E=(&1,82,...,8), @

where T; are the generators of the exponential map with twist parameters & € R®. Now, the problem of
alignment is defined to find G such that ¢(Pr) = ¢(G- Ps). To achieve that, an iterative optimization
solution is used with regards to inverse compositional (IC) formulation [41].

b(Ps) = (G- Pr) b
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b(Ps) = (Pr) + %[cp(c—1 -Pr)le 3)

The Jacobian is denoted as ] = %[cb(G_l 'PT)],
where ] € RK*® is the matrix. Using a stochastic gradient approach, ] becomes:

B b(exp(~tir,) - Pr) - &(Pr)

= ; @

Equation (3) becomes:
&=]"[d(Ps) = &(Pr)], ()

where | is the Moore-Penrose inverse of J.

3.2. Alignment Weight Estimation Network

The Awe-Net architecture module was proposed to obtain the estimate transform using the
procedure described in the feature’s extraction and alignment procedure. This module was the
MLP-based network that learned important weights to evaluate the contribution of each input,
which regularized &, as described in Equation (5). Not only did the Awe-Net output the weight scores
but also the orientation of the input point cloud.

A block diagram of the architecture is presented as in Figure 2. The model consisted of three MLP
with sizes of 64, 128, 256, and 1024. Then a symmetric max-pooling function was used to find the
auxiliary features. Later, these features were assigned to several fully connected layers. In this work,
four fully connected layers were selected, as they proved empirically sufficient for robust performance.
The FC layers consisted of the following nodes: 1024, 512, 256, and 128. Later, the last FC layer branched
into 1-layer paths for orientation and weight score predictions. The weight score, W, was a positive
number that indicated the most prominent features. This score was learned in different positions to the
input point cloud since learning was processed iteratively.

(64, 128, 256, 1024) (1024, 512, 256, 128)

MLPs 1x1024 FC /

Figure 2. Awe-Net architecture: The model consists of four multi-layer perceptions (MLPs) with sizes
of 64, 128, 256, and 1024. Using a max-pooling function allows the model to obtain auxiliary features
that are followed by four fully connected layers (1024, 512, 256, and 128) that later branch out into the
orientation and weight score.

We only predicted a 1D rotation angle ¢, avoiding equivariances in order to retain a higher
discriminating power. This was reasonable since the role of Awe-Net is to assist training to converge
to the best possible parameters during training, whereas the overall transform is predicted in a
different stream.

3.3. Proposed Architecture

This section introduces our proposed architecture. A diagram of the architecture is presented in
Figure 3. The model consisted of five MLPs similar to PointNet with sizes of 64, 64, 128, and 1024.
Both source Pg and template Pt were assigned to the MLP in a Siamese architecture [42] followed by
max pooling as a symmetric function, resulting in global feature vectors ¢(Pg) and ¢(Pr).
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Figure 3. Point cloud source Pg and template Pt are fed into shared MLP, and max-pooling to obtain
the global features ¢ (Pg) and ¢ (Pt) then the Jacobian J is computed using ¢(Pt). Both input clouds
are passed through Awe-Net to return the weight scores Ws-Wt and the orientations ¢g and ¢7.
The optimal modified twist parameters &’ are obtained and used to iteratively update the pose of Ps,
and then the global feature vector ¢ (Pg) is recalculated. During training, the loss function is based on
the difference between the orientations g and ¢ and between the corresponding points in source and
template point cloud.

s

In Figure 3, one can observe another stream going through the Awe-Net to obtain the scores W
and the orientation ¢. The features extracted in the first and second streams were later concatenated
before feeding them to the FC layers. The reason behind the addition of the concatenated features was
to provide the Awe-Net with all relevant features, such that the overall network converged. The scores
of both Pg and Pt needed to have similar contributions in the transform estimation to optimize the
twist parameters. Therefore, Equation (5) became:

= %e _ %ﬁ [6(Ps) - o(Pr)], 6)

where Wt and Wg are the weight scores of the template and the source point clouds, respectively.

Meanwhile, the orientations of the source g and the template @t should both be equal,
which means that for each iteration, the orientation ¢g tends to converge to @r.

The network was presented through an iterative scheme. In addition, introducing the iterations
empirically allowed the use of lesser hidden layers in Awe-Net. Using the proposed loss function,
the model could achieve comparable results with less parameters, since the iterations guarantee
continuous update of the parameters of the model instead of one-shot model which will require more
distinctive features. The model was not pretrained on the classification that helped distinguish among
categories, requiring more iterations to converge.

The algorithm consisted of a looping computation of the optimized twist parameters (6).

Pg «— AG - Ps where AG = exp(z & Ti) )
i

After performing n iterations, the overall transformation between the original source and template
point clouds was obtained by combining all transforms in each iteration:

Gest = AGn to 'AGO (8)
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The convergence criteria were also used
AG < g, )
where ¢ represents the stopping criterion for iterations. We used ¢ = 10.

3.4. Loss Function

The objective of the loss function is to minimize the distance between the corresponding points in
the source and template point cloud as well as the error between ¢g and ¢r. The earth mover distance
(EMD) [43] was used to compute the difference between the source point cloud and the template,
although there were other alternatives such as PoseLoss [44] or the L2 between the estimated transform
matrix. EMD showed its effectiveness in learning using the iterative approach [45]. The L1 distance
was used to compute the orientation loss. The overall loss is given by:

L= Y M —¥() I +|os -

\Fpeet_)p |Pest| A Pm

(10)

where Pr is the template point cloud, Pg is the source point cloud, and PgSt represents the transformed
source point cloud by the estimated transformation G from (1). The EMD finds a bijection {» and
minimizes the distance between corresponding points based on 1.

4. Experiments and Results

4.1. Dataset

In this section, we introduce the dataset of 3D models used for training and testing. ModelNet [24]
is one of the most recognized and commonly used datasets containing 3D models in a mesh format.
It was developed at Princeton University. Its subset, ModelNet40, is used as a benchmark for testing
different approaches. This dataset is used as the main focus for the evaluations. ModelNet40 contains
40 different categories and 12,311 individual models. The dataset has an official split for training and
testing subsets. Figure 4 shows examples of models in ModelNet40.

Figure 4. Illustration of models in ModelNet40 (bathtub, bed, flowerpot, radio, and sofa).

The models in the original ModelNet40 are not aligned and have widely different scales. Therefore,
when processing the data for neural networks, all models require to be scaled to fit a unit sphere.
The categories in the dataset are not equally populated. For instance, there are over 700 airplane
models and only over 100 wardrobe models. ModelNet40 contains files in the off format. Therefore,
preprocessing is required to generate the point clouds from the meshes and sub-sample them to feed
the neural network.

4.2. Experimental Results

In this paper, various training combinations were performed using the training data and the
test data. The results were then compared to those of PointNetLK as the baseline and with the ICP
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algorithm. The networks were trained in three different scenarios: (1) Training and testing on fully
visible data, (2) training and testing on partially visible data, and (3) training and testing with additive
noise. For the proposed method and other PointNetLK-based approaches, a maximum of 20 iterations
were allowed when performing tests, while the maximum iterations for ICP were 100.

4.2.1. Train and Test on Fully Visible Data

Experiment 1: In the first experiment, the proposed model and PointNetLK were trained on
20,175 different data in ModelNet40, then tested on the test set for the same 20 categories. There was
no noise in the source data during training and testing.

The standard version of PointNet for classification was trained first using ModelNet40. Therefore,
the feature extractor ¢ of the proposed model was initialized using the trained PointNet model and
then fine-tuned with the proposed loss function in (3.9). Gest was used in the training with random
rotation angles of 0, 45 degrees and translations of 0, 0.8 in three-axes. During the test phase, the initial
translations were within 0, 0.3 and initial rotations within 0, 90 degrees. Figure 5 presents the results
after 10 iterations of ICP, PointNetLK, PointNetLK-AweNet, and the proposed model. This indicates
that the proposed model allows faster convergence to the correct solution with fewer iterations.

02
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—a— PointNetLK-AweNet . I\\ml;\-ll |.\—.-\“'c,\cl
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Figure 5. Our proposed model trained on 20,175 different data in ModelNet40. The model was
tested using Mean Rot. Error (a) and Mean Trans. Error (b). Both figures show that our proposed

model outperforms iterative closest point (ICP) and PointNetLK in alignment on categories seen
during training.

Experiment 2: To test the generalizability of the proposed model, we repeated experiment 1,
yet the training in this experiment was done on the other 20 categories of ModelNet40. The test
was performed on 20 categories in ModelNet40, which were in the same categories as Experiment
1. The proposed model was able to generalize much more precisely than PointNetLK and ICP for
alignment on object categories that were not seen in the training. Figure 6 shows the results obtained
for ModelNet40 through Experiment 2. In both experiments, the results for 10 iterations are reported,
showing the proposed model performs a correct alignment in fewer iterations.

Our method in Experiment 1 and Experiment 2 produced better results compared to others.
Mean rotational error at the left graph shows that our proposed model obtained less errors
compared to the existing state-of-the-art methods, such as ICP, PointNetLK, and PointNetLK-LUT.
Mean translational error at the right graph also exhibits the comparison results with ICP, PointNetLK,
and PointNetLK-LUT, obtaining less error. Moreover, when we applied Awe-Net to PointNetLK,
the errors were greatly reduced.

In both experiments, all approaches produced lower errors from angle 0 to 50 degrees, but the
errors rose rapidly afterward. However, our approach remained the lowest one. Our model trained
only 10 iterations, yet it was sufficient due to its consistent results in every angle of the range from 0 to
90 degrees.
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Figure 6. Our proposed model trained on the other 20 categories of ModelNet40. The model was tested
using Mean Rot. Error (a) and Mean Trans. Error (b). Both figures show that our proposed model
outperforms ICP and PointNetLK-based approaches in alignment on categories unseen during training.

4.2.2. Train and Test on Partially Visible Data

In a real-world scenario, the template used is commonly a 3D model and the sources are taken
from the scanner. To reproduce the same environment in the real world, sampling visible points
is typically based on simulating a 3D sensor that has a horizontal and vertical field-of-view and a
minimum and maximum depth. The sampling is done on the ModelNet40 dataset following the
same process conducted in the PointNetLK. The faces of the template are sampled and placed into
a unit box [0, 1]3, the source was then warped using some random perturbation. The template and
the source were translated by 2-[1,1, 1]T from the origin. Thus, let P} denote all the points that
satisfy (PT +2-[1,1, 1]T) < mean(PT +2-11,1, 1]T), which means placing the sensor in the direction of
1,1, 1]T and sampling the point cloud in front of the sensor—in other words, the visible part of the
3D object.

The test on the ModelNet40 was conducted using random translation between 0, 0.3. The area
under the curve (AUC) was used as the metric to evaluate the performance of the registration algorithms.
Plots showing the success ratio versus success criteria on rotation error (in degrees) were generated
for ICP, PointNetLK, PointNetLK-AweNet, and the proposed model. Figure 7 shows examples of
these curves. The area below the curves was divided by 120 to normalize between 0 and 1, and it was
defined as AUC. The y-axis was the successful ratio of experiments and the x-axis shows rotation error
for success criteria, which was set to determine the alignment estimation success. Thus, the x-axis
showed a maximum rotation error value that qualified the estimation to be a success. Therefore, the
area under the curve (or the integral not equal to 1 in this case) divided the 120 maximum degree error
of the x-axis to make the AUC<= 1. AUC expressed a measure of registration success and, as such,
the higher the value of AUC, the better the network’s performance. The proposed model was able to
generalize well and register objects using the sensor model approach. When the rotation error was
less than 5 degrees and the translation less than 0.01, it was considered a success. Figure 8 shows
examples of the template and partially visible source point clouds that were aligned for the ModelNet
test dataset. The success of the qualitative results was due to the fact that the model offered good
generalizability. Conversely, Figure 9 shows a case of failure regarding alignment due to the symmetry
of a point cloud. The proposed model was not trained to extract symmetric information of the 3D
model. In Figure 9, the table is symmetric based on a certain plane where misalignment happens.
Moreover, the proposed model did not consider the geometric information of the point cloud since the
feature extractor was PointNet.
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Figure 7. The alignment of the data that are partially visible is tested on ModelNet40.

(a) Initial alignment of airplane point clouds. (b) Final alignment of airplane point clouds.

(c) Initial alignment of guitar point clouds. (d) Final alignment of guitar point clouds.

Figure 8. Illustration of point alignment of partially visible data. The alignment test on partially
visible data was conduced on ModelNet40. The results include PointNetLK shown by black points.
The proposed method is shown by red points. (a) initial alignment of airplane point clouds; (b) final
alignment of airplane point clouds; (c) initial alignment of guitar point clouds; (d) final alignment of
guitar point clouds.

(a) Initial alignment of desk (b) Final alignment of desk
Point clouds. Point clouds

Figure 9. Illustration of failure case point alignment of partially visible data. The alignment test on
partially visible data of ModelNet40. The results include PointNetLK shown by black points and the
proposed method shown by red points.
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4.2.3. Train and Test with Additive Noise

This section presented experiments conducted with additive Gaussian noise. The template point
cloud was randomly sampled from faces and the source point cloud was equal to the template with
additive Gaussian noise at a certain standard deviation. The first 1000 points were selected during the
sampling process. The authors of PointNetLK hypothesized that the choice of the symmetric operator
was critical to the performance with additive noise. PointNet used a max pool operator yield to output
the global feature vector. In case of noisy data, the choice was subject to variations among the different
random noise samples. Therefore, PointNetLK used average pooling when learning global features
rather than the max pool operator, assuming that it would be better suited to learn global features.
However, the proposed model was trained using the same symmetric operator, which meant that the
max-pooling operator was used during training. Figure 10 shows the results of the proposed model
with PointNetLK. The proposed model was trained on zero-noise data and then trained on noisy
data with a standard deviation SD = 0.04. The proposed model achieved better performance than
PointNetLK, with an average pooling and training noise of SD = 0.04.

12

- e- Proposed Model(0.04)
——  Proposed Model
—— PointNetLK(avg,0)
—e— PointNetLK(avg,0.04)

Median Rot. Error (Deg)

0 0.02 0.04
Noise SD

Figure 10. The proposed model outperforms ICP and PointNetLK in alignment on noisy data.

The shortcoming of approaches based on hand-crafted features [35,36] (learned alignment) was a
quadratic complexity in the number of points and a lack of generalization due to the feature vector and
registration maps both being learned. Moreover, we found that the PointNetLK approach produced
good generalizability to shapes unseen in training but was not robust to noise [21]. In Figures 8-10,
we quantitively proved that our approach outperformed the state-of-the-art alignment approach in
various scenarios, meaning that our model provided better generalizability.

5. Conclusions

We proposed a novel learning approach to solve the point cloud alignment problem with highly
accurate registration, based on an effective auxiliary Awe-Net module that assisted with the overall
network in converging to the correct estimate and learning in order to apply the contribution of each
input point clouds. The proposed network was implemented in an iterative manner to obtain highly
accurate transform estimates comparable to other global registration methods. The advantage of
our framework was that it provided a good approach for different scenarios where prior knowledge
existed of the shape formed by the point cloud and where noise was present. The Awe-Net showed its
robustness to noise and initial random misalignment. It provided higher generalizability to shapes
unseen during training and was fully able to boost the benchmark for point alignment. Experimental
results showed the robustness of the proposed framework to noisy real-world data, partial overlap
data, and fully visible data. Despite the success of this approach, there is still room for improvement



Sensors 2020, 20, 4032 12 of 14

since the network can only be implemented iteratively. We aim to adopt a single-shot design as well as
handling occluded point clouds.
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