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Abstract: Gait is a characteristic that has been utilized for identifying individuals. As human gait
information is now able to be captured by several types of devices, many studies have proposed
biometric identification methods using gait information. As research continues, the performance
of this technology in terms of identification accuracy has been improved by gathering information
from multi-modal sensors. However, in past studies, gait information was collected using ancillary
devices while the identification accuracy was not high enough for biometric identification. In this
study, we propose a deep learning-based biometric model to identify people by their gait information
collected through a wearable device, namely an insole. The identification accuracy of the proposed
model when utilizing multi-modal sensing is over 99%.
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1. Introduction

Gait is a unique behavioral characteristic of an individual that can be used for identifying
that person [1–4]. Studies [5–7] have demonstrated human’s ability to recognize individuals by
their gait and have also confirmed that gait information is sufficient for discriminating between
individuals. Several studies have looked into using gait information in the areas of disease
diagnosis [8,9], and methods for user identification that utilize gait information have been proposed in
recent years [10–13].

In general, user identification methods using gait information consist of two parts. The first
part is collecting data representing gait information, and the second part is identifying the users by
applying algorithms on the collected data. In this framework, we can categorize user identification
methods by data collecting devices and user identifying algorithms. In detail, the gait information can
be collected using vision sensors, pressure sensors, and Inertial Measurement Units (IMU), and the
users are identified by applying Linear Discriminant Analysis (LDA), k-Nearest Neighbor (k-NN),
Hidden Markov Model (HMM), Support Vector Machine (SVM), Convolutional Neural Network
(CNN), or their combinations [14].

In this paper, we propose a framework to identify individuals from their gait information.
We collect the gait information using sensors in insoles of shoes of participants, and we identify
users using a combination of CNN and Recurrent Neural Network (RNN) [15]. We assume a special
environment, in which all participants wear shoes with the insoles and their gait information is
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registered in the system. On this setting, our proposed framework can identify users from their gait
information of one walking cycle with high accuracy.

The collected data consist of time series measured by pressure sensors, 3D-axis accelerometers,
and 3D-axis gyroscopes installed in the insoles of shoes [16]. A walking cycle includes a stance phase
and swing phase. The swing phase is the entire time a foot is in the air, therefore the pressure values
during the swing phase should be zero for that foot [17]. Considering this characteristic of the walking
cycle, we should be able to divide the original time series into a sequence of separate units, i.e., steps,
to use the data more efficiently and effectively. However, the mounted pressure sensors in the insole
frequently report non-zero values during the swing phase due to either interference between sensors
or high temperatures [16]. To overcome potential errors from the pressure sensors, we determined the
unit steps using Gaussian filtering [18].

To identify individuals from consecutive unit step data, we designed an ensemble network using
CNN and RNN with multi-modal sensing data. The datasets were generated by selecting uni-, bi-,
or tri-modal inputs from the pressure sensors, accelerometers, or gyroscopes. The CNN and RNN
were then trained independently using identical training datasets. In the test phase, the softmax
scores [19] of individuals are computed by taking averages of the softmax scores from the CNN and
RNN [20]. Employing only single unit step, we achieved identification accuracy of around 99% using
tri-modal sensing.

The contributions of this paper are as follows. (1) For the first time, the proposed model was
able to identify people by utilizing deep learning algorithms to look at their gait information collected
through a wearable device. (2) We proposed a novel method to detect the human gait cycle precisely
from the raw gait information gathered. (3) We designed an ensemble model that uses CNN and RNN
in cooperative and complementary manner. (4) The identification accuracy of the proposed model was
maximized by utilizing multi-modal sensing.

This paper is organized as follows. Section 2 explains the data pre-processing procedure to
transform the original gait information into standard format. Section 3 describes the design of
the convolutional neural networks, recurrent neural network, and their ensemble model used for
identification. Section 4 presents the experimental results. Section 5 includes discussion and future
work. Section 6 concludes this paper.

Related Work

Gait information has been analyzed to diagnose mental and physical diseases. Changes of gait
pattern may be indexes of intellectual disability [21], dementia [22], depression [23], and deformation
of the joint diseases [24]. Gait information can reflect an older adults’ mental health; in particular,
when their mental health is negative, their gait becomes more asymmetrical [25]. In addition, gait
analysis can also be used for age and gender estimation [26]. These insights affect a variety of research
areas such as healthcare [27], biomedical [28], and sports [29]. Studies [8,9] have demonstrated that
patients who have Parkinson’s disease can be recognized by analyzing their gait information. As an
extension of such studies, types of gait, i.e., walking, running, climbing, and descending, have been
successfully classified using gait information, which was collected from wearable sensors [30]. In other
research, Dynamic Bayesian Networks could classify different types of gait, i.e., normal, left limp,
and right limp, using data recorded by Microsoft Kinect V2 system [31].

Gait analysis as a means of identifying individuals, i.e., biometrics, began by utilizing vision
sensors [32]; these approaches have since been further studied and evolved [33–36]. However,
vision-based gait analysis requires strict conditions during sensing, for example the video sequences
must include only the individual to be identified, and its identification accuracy is not high enough to
use it as biometric tool by itself. Furthermore, the accuracy depends on the perspectives and orientation
of the sensing devices. To overcome these shortcomings, pressures sensors and IMU are widely used
to collect gait information. In general, IMUs consist of accelerometers, gyroscopes, and magnetometers.
In [37], gait cycles of a user were monitored by a sensor network that used a pair of wireless IMU
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sensors. In [10], gait information was collected from five IMUs placed on the chest, lower back, right
wrist, knee, and ankle of the participants. To identify individuals, a CNN-based predictive model was
used [38]. This network took the measured time-domain data and their transformed frequency domain
data together as inputs.

Recently, pressure sensors and IMUs have been installed in wearable devices such as smartphones,
fitness trackers, or in the insoles of shoes [11]. In [12], IMUs installed in smartphones were utilized
to gather gait information. Data were collected while participants carried their phones in their front
trouser pockets, then a mixture model of a CNN and a SVM [39] was used to identify individuals.
In [13], gait information was gauged by using pressure sensors and accelerometers in the insoles of
shoes. The collected data were analyzed using null space linear discriminant analysis [40] to identify
individuals. However, these methods use a few different types of sensors placed on various parts
of the body, require a long period of time for gathering data, or need to be improved in terms of
identification accuracy. In addition, collecting data using wearable devices can be more invasive than
using vision-based devices.

2. Gait Information

Gait information is collected as time series vectors and represent multiple consecutive unit
steps. Instead of using the data as they are, we divided them into fixed size fragments to improve
identification accuracy and reduce computational complexity.

2.1. Data Source

We used a commercial insole, FootLogger, to collect gait information. As shown in Figure 1,
FootLogger includes eight pressure sensors, a 3D-axis accelerometer, and a 3D-axis gyroscope for each
foot. The sampling rate is 100 Hz for each device. The pressure sensor categorizes the intensity of
pressure to one of three levels: 0, 1, or 2. The accelerometer and gyroscope measure acceleration and
rotation, respectively; both are recorded in 3D space as integers between −32,768 and 32,768.

Figure 1. The architecture of the FootLogger insole.

We denote (uni-variate) time series and multivariate time series by x(t) and x(t), respectively.
Different sensing modality is expressed by using superscript letters, i.e., xp(t) for pressure, xa(t) for
acceleration, and xr(t) for rotation. Different participant identification is expressed by using subscript
numbers, i.e., xi(t) for id = i.

2.2. Data Pre-Processing

By transforming the collected data into a fixed standard format, we can expect better performance
in terms of identification accuracy [13,16]. To convert the data into the standard format, we propose a
novel data standardization method using Gaussian filtering.
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2.2.1. Walking Cycle Detection

As shown in Figure 2, a typical human walking cycle can be broken down into two phases: the
stance phase and the swing phase [17]. The stance phase is the whole time that a foot is on the ground,
and the swing phase is the entire time a foot is in the air. Since the pressure sensors in the insole
measure pressure between the foot and the ground, the pressure values collected by all eight pressure
sensors should be zeros during swing phases. Using this information, we should be able to divide the
original time series data into consecutive unit steps. Intuitively, we might set the beginning of a unit
step to the time when the mean of the eight pressure values changes to zero from a non-zero value.
However, this approach highlights a latent problem of the system where non-zero pressure values are
frequently recorded during swing phases. This phenomenon can be caused by interference between
sensors or high temperatures in shoes [16].

Figure 2. Typical human walking cycle.

To determine the unit steps more consistently and precisely, we perform a convolution operation
with the mean of the eight pressure values and the Gaussian function. Let xp(t) be the mean of eight

pressure values and y(t) = 1√
2πσ

e−
t2

2σ2 where σ = 0.2 s. The convolution operation is defined as

z(t) = (xp(t) ∗ y)(t) =
∫ t

0 xp(τ)y(t− τ)dτ. In Figure 3, examples of x(t) and z(t) are denoted by blue
lines and red lines, respectively.

Figure 3. Mean of eight pressure values (blue lines) and convolution of the mean and Gaussian function
with standard deviation σ = 0.2 s (red lines).

2.2.2. Standard Format

We define the unit step formally. For each foot, we consider an ordered list [t0, t1, . . . , ti, . . .] where
ti < ti+1 for all time t such that d

dt z(t) = 0 and d2

dt2 z(t) > 0. We define unit step as time series si(t) =
x(t + ti) where 0 ≤ t < ti+1− ti. For discrete variables, we define len(si(t)) = b(ti+1− ti)× 100c since
the sampling rate of the insole is 100 Hz, and the standard length is defined by d = mini len(si(t))
where si(t) are unit steps of both feet of all participants. Then, we resize all unit steps into the
standard length d using spline interpolation [41], and the unit steps of identical modalities for both
feet are concatenated. In summary, ith unit step for sensing modality m is denoted by sm

i (t) where
m ∈ {p, a, r}, and their dimensions are |sp

i (t)| = d× (8 · 2) and |sa
i (t)| = |sr

i (t)| = d× (3 · 2). We set
d = 87 in the experiments.
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To show data standardization intuitively, the procedure is illustrated in Figure 4. the original
time series for both feet was converted into the standard format by the following procedure: (a) The
original time series was divided into the unit fragments using the start time and end time of the unit
steps of the both feet independently. (b) All unit fragments were resized to the standard unit step
interval d using spline interpolation [41]. They were then separated into three sensing modes: pressure,
acceleration, and rotation. (c) For each sensing mode, the resized fragments for both feet were joined
together.

Figure 4. The procedure of data standardization. (a) Original format. (b) The length of the format is
fixed as d = 87. (c) The same sensing modalities of both feet are concatenated in the standard format.

In addition, we generated reference datasets by combining k (for 1 < k ≤ 4) consecutive unit
steps into one sample. With using the reference datasets, we show the effect of the amount of
information in a unit step to the classification accuracy. The amount of information is proportional
to the k-value. In detail, we re-labeled the series of unit steps si(t), · · · , si+k−1(t) to a new label sj(t)
for all i ∈ {0, k, 2k, . . .} where j = b i

k c. Therefore, the dimensions of the standard datasets can be
expressed as (k · d)× (w · 2) where w = 8 for pressure and w = 3 for acceleration and rotation.

3. Network Design

The standard datasets include time series which are measured using tri-modal sensing.
We assumed that the eight pressure values are correlated since they gauged pressure between different
positions of a single foot and the ground during the same gait cycle in the insole. Similarly, we supposed
that the acceleration values in three-dimensional space are correlated, and the rotation values in
three-dimensional space are correlated as well. By considering these characteristics, we designed a
predictive network model utilizing CNN and RNN. The input of the proposed network model is the
unit steps of pressure sp

i (t), acceleration sa
i (t), and rotation sr

i (t) in the standard format, and the output
of the model is the vector of softmax probabilities u:

M
(
sp

i (t), sa
i (t), sr

i (t)
)
= u (for tri-model sensing) (1)

We used the notation Mcnn when only the CNN is activated, Mrnn when only the RNN is
activated, andMens when both CNN and RNN are activated. In addition, the proposed network model
is designed to also be applicable to uni-modal and bi-modal sensing. We used notationsM

(
sp

i (t)
)
,

M
(
sa

i (t)
)
, M

(
sr

i (t)
)

for the uni-modal sensing model and used M
(
sp

i (t), sa
i (t)

)
, M

(
sp

i (t), sr
i (t)

)
,

M
(
sa

i (t), sr
i (t)

)
for the bi-modal sensing model. A conceptual diagram of the network model is

depicted in Figure 5.
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Figure 5. The architecture of the proposed network model.

3.1. Convolutional Neural Network

The proposed CNN consists of independent but identical layers for each sensing mode.
The network includes three consecutive one-dimensional (1D) convolution layers. The first convolution
layer contains 32 filters whose sizes are 20× (w · 2), the second layer contains 64 filters whose sizes
are 20 × 32, and the third layer contains 128 filters whose sizes are 20 × 64. For the first layer,
the width of the filters equals the width of the standard input format (w · 2). For the second and third
layers, the width of the filters equals the number of the filters in the previous convolutional layer.
The convolution operation between a filter and the input produces a single scalar value, and the series
of scalar values are concatenated to give a feature vector. The filtering stride for all convolutional
layers was set to 1, while the padding sizes were determined to keep the output to the same height as
the input. Therefore, the dimensions of the feature maps after each of the three convolutional layers
are 87× 32, 87× 64, and 87× 128. After the third convolutional layer, the feature map is flattened
to generate a feature vector whose size is (87, 128). For bi-modal and tri-modal sensing, the feature
vectors from different sensing modes are concatenated to one vector which becomes the input for the
fully connected layer. To avoid the vanishing gradient phenomenon, we used the Rectifier Linear Unit
(ReLU) as the activation function [42].

3.2. Recurrent Neural Network

Similar to the CNN, the proposed RNN consists of identical layers for each sensing mode.
The network model includes two consecutive Long Short-Term Memory (LSTM) [43] layers. Unlike
other RNN models, LSTM is applicable to time series data over a long period of time by utilizing
internal memory units which are designed to overcome the ‘error back-flow problem’ [43]. In the
proposed network, each LSTM layer contains 64 memory units whose forget, input, and output gates
are activated using the hard sigmoid function. We set the recurrent dropout ratio as 0.2 to prevent the
over-fitting problem [44].
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The dimension of the input for the first LSTM layer is (k · d)× (w · 2). At a given row of the input
data, the first LSTM layer is designed to produce a single scalar value per memory unit, the series
of scalar values are then concatenated to give an output vector. Hence, the dimension of the output
from the first LSTM layer is (k · d)× 64, which is the input for the second LSTM layer. Unlike the first
LSTM layer, the second LSTM layer returns only the last scalar value in the output vector per memory
unit. Therefore, the dimension of the output for the second LSTM layer is just 64. For bi-modal and
tri-modal sensing, the output vectors from different sensing modes are concatenated as one vector
which becomes the input for the fully connected layer.

3.3. Fully Connected Network

The fully connected network includes a fully connected layer, a dropout layer, and a softmax
layer. The fully connected layer contains 256 nodes, and the activation function of the nodes is ReLU.
Individual nodes are kept with a probability 0.7, so that a reduced layer is left, which is denoted by the
dropout layer in Figure 5. This ‘dropout’ procedure is used to alleviate the over-fitting problem and
improve regularization performance [44]. The softmax layer contains n nodes where n is the number of
user identifiers, in this way a user identifier can be selected by computing the normalized probabilities
using the softmax function.

3.4. Averaging Ensemble Model

The proposed network model utilizes CNN and RNN independently to select a user identifier.
To aggregate the predictions from the CNN and RNN and give one final prediction, we suggest an
averaging ensemble model. Since both CNN and RNN have the same softmax layer at the end, we can
compute the averaging probabilities of CNN and RNN by

Mens =
1
2
(Mcnn +Mrnn) (2)

We do not include the results here, but we also implemented a two-dimensional linear SVM
ensemble model. Despite its computational complexity being significantly higher than the averaging
ensemble model, the prediction accuracy of the linear SVM ensemble model is not better than the
averaging ensemble model.

4. Experimental Results

We show the performance of our proposed method using empirical datasets. We compared the
identification accuracies under distinct sensing modalities (single, double, and triple) and different
network designs (CNN, RNN, and Ensemble).

4.1. Datasets and Evaluation Method

We collected gait information from 30 adults aged 20–30 years old. The data were measured
using the insole while the participants walked for about 3 min. During the 3 min of walking, the data
collected included approximately 160 unit steps on average, and the entire dataset encompassed 4750
unit steps in total. In the experiments, we determined d = 87; hence, the dimensions of the datasets
for pressure, acceleration, and rotation are (k · 87) × (8 · 2), (k · 87) × (3 · 2), and (k · 87) × (3 · 2),
respectively, for 1 ≤ k ≤ 4.

As shown in Figure 6, we generated the training and testing datasets independently for three
types of Monte Carlo Cross-Validation (MCCV) [45] methods, which are MCCV (30%), Sub-MCCV
(50%), and MCCV (50%). Sub-MCCV sets were created to see the performance of the system with the
limited number of samples in the training dataset. MCCV utilized 100% of samples in either training or
test dataset, but Sub-MCCV used only about 84% of samples in total. The first dataset was generated
by selecting 30% of the overall sample as the testing data and the remaining ones as the training data,
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and we denote this set as MCCV (30%). The second dataset was generated from a subset of the overall
samples by selecting the same number of samples for the testing and training data, and we denote
this set as Sub-MCCV (50%). The third dataset was generated by selecting 50% of overall samples as
the testing data and the remaining ones as the training data, and we denote this set as MCCV (50%).
The number of samples for the different k-values and validation methods are summarized in Table
1. We repeated generating the three types of datasets 20 times by following the procedure explained
above. For each dataset, our proposed networks were trained and tested independently, and then the
averaged identification accuracies were summarized for each type of the MCCV methods.

Figure 6. Illustration of splitting data into training and test datasets.

Table 1. The total number of samples for different k-values. MCCV stands for Monte Carlo
cross-validation.

k # of Samples
MCCV (30%) Sub-MCCV (50%) MCCV (50%)

Train Test Train Test Train Test

1 4750 3325 1425 2000 2000 2375 2375
2 2368 1658 710 1000 1000 1184 1184
3 1570 1099 471 600 600 785 785
4 1176 823 353 500 500 588 588

4.2. Latent Space and Training Time

We show the t-distributed stochastic neighbor embedding (t-SNE) plots of feature vectors of unit
steps in Figure 7. t-SNE performs nonlinear dimensionality reduction [46]. The feature vector is the
output of the fully connected layer with 256 units in the CNN and RNN architectures in Figure 5.
In Figure 7, each color represents a participant, and the dots with the same color correspond to the
unit steps of the participant. In general, all unit steps of each participant are clearly grouped together,
and unit steps of every participant are clearly clustered.

All experiments were performed on a workstation with Intel Core i9-9820X Skylake X 10-Core 3.3
GHz CPU (Intel, Santa Clara, CA, USA), ASUS ROG GeForce RTX 2080 Ti GPU (Asus, Taipei, Taiwan),
and Samsung 64GB DDR4 PC4-21300 2666MHZ RAM (Samsung, Suwon, Korea). For k = 1 and the
tri-modal sensing, the average training time of the ensemble model was 28.48 min.

4.3. Identification Accuracy

Using the generated dataset, we evaluated the performance of our proposed framework
considering three scenarios, namely single, double, and triple sensing modalities, from pressure,
acceleration, and rotation data. Using a given training dataset generated by one of the three different
MCCV methods, we trained the CNN and RNN networks independently for the distinct k-values of
1–4. The predictive results of the ensemble network were determined by averaging the softmax scores
of the pre-trained CNN and RNN networks.

4.3.1. Tri-Modal Sensing

The first scenario considered was that we were able to utilize all modalities of pressure,
acceleration, and rotation data. Figure 8 depicts the identification accuracies for the CNN, RNN,
and ensemble networks using the tri-modal sensing. Detailed information about the identification
accuracies is summarized in Table 2.
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Figure 7. t-SNE plots of the output of the fully connected layer with 256 units in the CNN and RNN
architectures. (a) MCCV (30%), (b) Sub-MCCV (50%), (c) MCCV (50%).

Table 2. Identification accuracies of the proposed method using tri-modal sensing (pressure,
acceleration, and rotation) for different k-values.

Validation k Mcnn Mrnn Mens

MCCV (30%)

1 0.9896 0.9786 0.9922
2 0.9918 0.9676 0.9940
3 0.9928 0.9456 0.9942
4 0.9947 0.9395 0.9950

Sub-MCCV (50%)

1 0.9888 0.9754 0.9914
2 0.9912 0.9516 0.9921
3 0.9915 0.9190 0.9930
4 0.9935 0.9056 0.9946

MCCV (50%)

1 0.9892 0.9776 0.9926
2 0.9929 0.9606 0.9937
3 0.9934 0.9378 0.9940
4 0.9949 0.9253 0.9958

For all types of dataset, the CNN network is overwhelmingly more accurate than the RNN
network for identification. Interestingly, the identification accuracy of the RNN network declines with
increasing k-value while the accuracy of the CNN network increases. These trends mean, for larger
k-values, the identification accuracy of the CNN network is particularly outstanding compared to the
RNN network. However, the identification accuracy of the ensemble network is slightly higher than
the CNN network alone, even when the identification accuracy of RNN is relatively low.

4.3.2. Bi-Modal Sensing

The second scenario considered was that we were able to utilize a combination of two modalities
out of pressure, acceleration, and rotation data. Figure 9 depicts the identification accuracies for the
CNN, RNN, and ensemble networks using bi-modal sensing. For the sake of brevity, we summarize
the identification accuracies for only k = 1 in Table 3.
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Figure 8. Identification accuracies of the proposed method using tri-modal sensing for different
k-values. (a) MCCV (30%), (b) Sub-MCCV (50%), (c) MCCV (50%).

Figure 9. Identification accuracies of the proposed method using bi-modal sensing for different k-values.
(a) Pressure - Acceleration, (b) Pressure - Rotation, (c) Acceleration - Rotation.
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Considering the results of tri-modal sensing, it is difficult to argue that the identification accuracy
of our proposed method using bi-modal sensing is lower than for tri-modal sensing. In addition, we
could not figure out why the identification accuracy of the model using certain combinations of sensing
modalities outperformed other combinations because the accuracy of all combinations is excellent.

4.3.3. Uni-Modal Sensing

The third scenario considered was that we were able to utilize one modality from pressure,
acceleration, and rotation data. Figure 10 depicts the identification accuracies for the CNN, RNN,
and ensemble networks using uni-modal sensing. Similar to the bi-modal sensing results, we
summarize the identification accuracies for only k = 1 in Table 3.

Figure 10. Identification accuracies of the proposed method using uni-modal sensing for different
k-values. (a) Pressure, (b) Acceleration, (c) Rotation.

Since all of the identification accuracies for the network using bi-modal and tri-modal sensing
with k = 1 are higher than 99%, we can say that the identification performance of the model using
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uni-modal sensing is slightly lower than for bi-modal or tri-modal sensing. However, we would
emphasize that the identification accuracies of all the models using uni-modal sensing are excellent.

Table 3. Identification accuracies of the proposed method using bi-modal sensing (combinations of
two of pressure, acceleration, and rotation) for k = 1.

Validation Sensing Mcnn Mrnn Mens

MCCV (30%)
xp(t), xa(t) 0.9888 0.9762 0.9919
xa(t), xr(t) 0.9823 0.9512 0.9853
xr(t), xp(t) 0.9886 0.9732 0.9916

Sub-MCCV (50%)
xp(t), xa(t) 0.9893 0.9651 0.9917
xa(t), xr(t) 0.9825 0.9412 0.9836
xr(t), xp(t) 0.9887 0.9603 0.9908

MCCV (50%)
xp(t), xa(t) 0.9884 0.9697 0.9910
xa(t), xr(t) 0.9831 0.9459 0.9844
xr(t), xp(t) 0.9893 0.9688 0.9918

MCCV (30%)
xp(t) 0.9847 0.9673 0.9885
xa(t) 0.9808 0.9086 0.9798
xr(t) 0.9821 0.9173 0.9824

Sub-MCCV (50%)
xp(t) 0.9818 0.9559 0.9867
xa(t) 0.9808 0.8860 0.9789
xr(t) 0.9796 0.9004 0.9800

MCCV (50%)
xp(t) 0.9777 0.9580 0.9851
xa(t) 0.9801 0.9139 0.9796
xr(t) 0.9808 0.9130 0.9808

5. Discussion and Future Work

From the experimental results, we showed that the identification accuracies of the CNN generally
improved as the number of consecutive unit steps, k, increased. On the other hand, the identification
accuracies of the RNN decreased as the value of k increased. From the above results, we hypothesize
that the identification accuracies of the RNN would increase as the value of d decreases in general.
To verify this, we generated a new dataset with a standard format length value d = 43 from the
dataset used in the above experiment by spline interpolation. Using this new dataset, an experiment
of tri-modal sensing using only the RNN model was repeated and the results are summarized in
Figure 11.

Figure 11. Identification accuracies of the RNN with two hyper-parameters, d = 87 and d = 43, using
tri-modal sensing for different k-values. (a) MCCV (30%), (b) Sub-MCCV (50%), (c) MCCV (50%).

As expected, we were able to verify that the accuracies of the RNN with d = 43 is higher than that
with d = 87 for all k-values. Therefore, in future research, we will look to optimize the hyper-parameter
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d value of the RNN differently from the d value of the CNN to improve the overall accuracies of the
ensemble model. In addition, we plan to conduct research that extends our framework to user
authentication application.

6. Conclusions

This paper presents a new method to identify people by their gait information collected using
multi-modal sensors in the insoles of their shoes. The insole equipped three types of sensors,
which measure pressure, acceleration, and rotation. Using the pressure data, our proposed method
successfully detected the human gait cycle precisely even though the original gait information includes
noise from sensors. To identify individuals using the data of their single gait cycles, we propose an
ensemble model based on CNN and RNN, which employs the different sensing data either separately or
together. Considering identification accuracies, the ensemble model showed the highest performance
compared to CNN or RNN alone. In terms of the sensor types, the model with tri-modal sensing
showed highest accuracies, and the model with bi-modal or uni-modal sensing showed slightly lower
accuracies. Since these insoles can be installed in any type of shoes, our framework could be used for a
wide variety of applications including user authentication and verification.
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