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Abstract: Indoor localization based on unsynchronized, low-complexity, passive radio frequency
identification (RFID) using the received signal strength indicator (RSSI) has a wide potential
for a variety of internet of things (IoTs) applications due to their energy-harvesting capabilities
and low complexity. However, conventional RSSI-based algorithms present inaccurate ranging,
especially in indoor environments, mainly because of the multipath randomness effect. In this work,
we propose RSSI-based localization with low-complexity, passive RFID infrastructure utilizing the
potential benefits of large-scale MIMO technology operated in the millimeter-wave band, which offers
channel hardening, in order to alleviate the effect of small-scale fading. Particularly, by investigating
an indoor environment equipped with extremely simple dielectric resonator (DR) tags, we propose
an efficient localization algorithm that enables a smart object equipped with large-scale MIMO
exploiting the RSSI measurements obtained from the reference DR tags in order to improve the
localization accuracy. In this context, we also derive Cramer–Rao lower bound of the proposed
technique. Numerical results evidence the effectiveness of the proposed algorithms considering
various arbitrary network topologies, and results are compared with an existing algorithm, where the
proposed algorithms not only produce higher localization accuracy but also achieve a greater
robustness against inaccuracies in channel modeling.

Keywords: localization; RFID; large-scale MIMO; passive RFID; RSSI; localization accuracy

1. Introduction

Recently, passive radio frequency identification (RFID) has been identified as enabling technology
for many applications, such as localization, tracking, and internet of things (IoTs), due to an extreme
reduction of costs, low energy consumption, and low complexity [1–5]. The global positioning
system (GPS) was an immense step towards ubiquitous localization, where it mostly provides
an acceptable level of accuracy for outdoor applications [4]. Unfortunately, GPS technology does
not work appropriately in indoor environments since the satellite signal is attenuated critically,
and line-of-sight (LOS) links between the node and satellites are required. Moreover, GPS requires
expensive infrastructure, whereas future technologies necessitate efficient energy consumption
and cost reduction. In this regard, passive RFID-based localization addresses these issues and plays
an effective role to perform localization for the future wireless applications.

RFID technology enables a reader to interrogate and communicate with tags through the
backscattered signal. The RFID system is broadly classified, according to the tag type, into active,
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semi-passive, and passive tags. This classification mainly depends upon the existence and reliance on
a battery source in the tag. An active or semi-passive tag embeds an internal battery, where the battery
continuously powers the active tags and its radio-frequency (RF) communication circuitry. Passive tags
do not contain a battery and totally depend on the power harvested from the reader’s signal.
The passive tags are generally smaller in size and cheaper than the active tags, providing a promising
solution to a wide range of applications.

Recently, the operation of RFID systems has been proposed to be moved from UHF and ultrawide
band (UWB) into the millimeter-wave (mm-wave) band in order to overcome the limitations at
UHF and UWB bands such as bandwidth limitations and power regulations, respectively [6].
Furthermore, mm-wave RFID systems enable the equipment of large-scale MIMO antennas at the
reader and tag sides with practical dimensions [7]. Accordingly, with large-scale MIMO, a large
available bandwidth and a high transmit power allowance, the mm-wave technology is considered as
a potential candidate for RFID based localization systems.

To estimate an object location, two or more anchor nodes with known positions should exist
in the coverage of the object in order to determine the location of the object via noisy ranging techniques
such as Received Signal Strength Indicator (RSSI) [8], Time of Arrival (ToA) [2,9], Angle of Arrival
(AoA) [10], etc. Among these ranging techniques, RSSI is considered in this work, since it meets
future application requirements including the hardware simplicity and low cost [11,12]. However,
RSSI ranging suffers from imprecise accuracy due to the various environment factors such as multipath,
especially in indoor environments [13–15]. Accordingly, improving RSSI localization is worth studying
to better exploit its advantages in future applications [16–19].

Generous research effort has been devoted to developing localization methods that can
compensate for the adverse effects of uncertainties in RSSI measurements [16–29]. Most of these
proposed methods depend on the optimization techniques or fingerprinting, which requires high
computational complexity, making them unpractical for IoT localization applications. Moreover,
to the best of our knowledge, only the works in [30,31] consider large-scale, MIMO-based mm-wave
RFID localization. The authors of [30] investigate the possibility to localize passive tags by adopting
a single mm-wave RFID reader performing beamsteering, in which an accuracy of several centimeters
is achieved using AoA ranging. RSSI localization at mm-wave RFID system is considered in [31]
obtaining meter-level positioning accuracy. Recently, we propose in [2] a highly accurate indoor
localization based on RFID systems using time-based ranging at terahertz band and evaluate it in [32]
using a testbed at low GHz band. However, this approach does not offer the low-complexity that
is needed for IoT applications.

Motivated by IoT applications that need accurate and simple localization algorithms with simple
infrastructure, we consider in this paper to develop an RSSI localization algorithm in order to increase
the localization accuracy with moderate computational complexity. Thanks to the channel hardening
of the large-scale MIMO technology that is promised at mm-wave band, making the small-scale
quickly diminish with the increase of the array size [33,34], a large-scale MIMO setup at the mm-wave
reader is proposed in this work as a promising candidate for RSSI localization in order to increase the
localization accuracy.

Inspired by large-scale MIMO, which has become a reality at mm-wave band, and the extremely
simple localization infrastructure, which should be as simple as possible in order to minimize
installation cost, our key contributions in this work are summarized in the following.

1. We propose large-scale MIMO-based RSSI localization at mm-wave band using the extremely
simple dielectric resonator (DR) tags as the anchor node infrastructure in order to improve the
self-localization accuracy of smart objects. Unlike UHF and UWB, mm-wave band offers the
advantage of equipping large-scale MIMO structure at the reader and tag sides. The reader
is equipped with a large-scale antenna in order to benefit from the channel hardening, making the
small-scale quickly diminish with the increase of the array size. Furthermore, each reference DR tag
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is designed to have its unique resonance frequency and to have an array of DR elements in order
to extend the ranging coverage. The validation of the DR tag is presented using measurements.

2. We apply the weighted linear least-squares (WLLS) estimator combined with the optimal
large-scale MIMO-based ranging technique in order to estimate the position of the object.

3. We derive the Cramér–Rao Lower Bound (CRLB) for the variance of the position estimator for
the proposed framework.

4. Two sub-optimal algorithms are proposed, which can approach the performance of the optimal
large-scale MIMO-based ranging with low computational complexity.

5. Simulations are performed using analytical and deterministic channels to demonstrate the
performance of the proposed algorithms considering various topologies of the infrastructure.
These results show that the proposed method significantly improves the localization accuracy
with simple hardware and computational complexity.

This paper is organized as follows. We give a discussion of related work in Section 2. The system
model is described in Section 3. We present in Section 4 the proposed large-scale MIMO-based RSSI
localization. Section 5 presents the proposed sub-optimal algorithms. Measurement and simulation
setup is presented in Section 6. Section 7 reports simulative results. We conclude our work in Section 8.

2. Related Work

Several studies have been conducted in the literature to investigate RFID-based localization using
the RSSI technique in order to improve its accuracy. Accordingly, comprehensive channel models for
the RFID channel are proposed and utilized to enhance RSSI technique accuracy, as in [16,20,21,35,36]
and references therein. The channel model describing the relation between RSSI and distance is found
experimentally in [20] for a passive RFID system. This channel model aims at improving the ranging
accuracy, and hence the localization accuracy. The effect of carrier frequency on the channel model
and localization accuracy is investigated in [21], where the considered model explicitly depends
on the transmit power and the transmission frequency. The authors of [16] consider a 3D antenna
radiation pattern in the channel model, where the accuracy of RSSI-based localization is investigated
and the CRLB is derived.

Another direction to enhance RSSI localization is to use pattern matching and fingerprinting
based methods for reducing the influence of range measurement errors [17,19,22–29,37–41].
The LANDMARC indoor localization system is presented in [22] as a pattern matching method
to enhance the overall accuracy of locating objects using some reference tags. In order to improve
the LANDMARC algorithm, the work in [37] proposes the weighted path length and support vector
regression algorithm, while the work in [38] proposes Bayesian probability and k-nearest neighbor
based indoor positioning algorithms. In [23], the LANDMARC approach is improved to overcome the
limitations of the multipath effects and RF interference. In the Multidimensional Scaling (MDS) localization
technique introduced in [24], another pattern matching method is proposed to improve a fingerprinting
localization algorithm. The MDS-based localization algorithm is extended in [39] to mitigate the
multipath environment toward improving localization accuracy for passive RFID localization. Recently,
the authors of [19] combined the fingerprinting localization technology and the nonmetric MDS algorithm
to achieve high accuracies in the RFID multi-tag cooperative localization method in the indoor environment.
In [17], a similarity analysis approach with reference tags is proposed for improving the accuracy of
range-based localization algorithms using a grid-based pattern with many reference tags. The idea
behind is to divide the tags into groups according to transmission distances, and all tags in the same
group have the same similarity in propagation distances. The similarity measure is calculated
from the combination between RSSI and signal phases. The authors of [25] consider the problem
of self-localization by a resource-constrained node given perturbed anchor position information
and distance estimates from the anchor nodes, where a closed-form, weighted, least-squares solution
is proposed. The work in [40] proposes a Gaussian filtering algorithm based on an extreme
learning machine to address the problem of inaccurate indoor positioning when significant RSSI
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fluctuations happen during the measurement process. In [26], continuous wavelet transform is used
to extract time-frequency or time-scaling information from each RSSI samples for indoor fingerprinting
localization algorithm. The work in [27] proposes to use the feature-scaling-based k-nearest neighbor
algorithm with RSSI. In [28,29], neural network and machine learning algorithms are used for
RSSI fingerprints, respectively, in order to improve the localization accuracy. Even fingerprint
methods offer higher accuracy and better robustness, they require more cost in the facility and more
complexity, which does not meet IoT expectations [4]. The work in [41] proposes to use mid-grained
intermediate-level channel measurements that are provided by the IEEE 802.11ad/ay standards
to construct the fingerprinting database.

Large-scale MIMO technology is also proposed as an attractive candidate for localization
aiming at improving estimation accuracy in 5G cellular communication systems using mostly
AoA ranging techniques as in [42–47] and references therein. For instance, the authors of [43]
propose a finger-printing localization solution for locating multiple users by means of distributed
massive MIMO. The work in [44] proposes a personal mobile radar with mm-wave massive arrays,
which is used for localization and mapping as in [45]. A direct localization approach is proposed
in [46], where the position of a user is localized by jointly processing the observations obtained at
distributed massive MIMO base stations. In [47], an architecture with distributed antenna units
with a multistage/multiresolution search strategy is proposed in line-of-sight indoor environments.
It is worth to highlight that the considered works in the literature under large-scale MIMO need more
complex hardware and infrastructure requirements in order to find the AoA and ToA measurements,
where this is not the case in our new proposed system.

3. System Model

A monostatic mm-wave RFID-based localization system is considered, where a number of
retro-reflective tags operating at mm-wave frequencies with known geographic positions are nested
in the room acting as reference tags as shown in Figure 1. An object, i.e., a reader, not aware of
its position broadcasts an RF signal at a fundamental frequency and collects the backscatter signals
from the surrounding tags in order to measure the RSSI backscattered from the retro-reflective tags.
Afterwards, from the RSSI measurements from the reference tags, the distance between the reader
and the tags is estimated, and then the position of the reader is estimated using the positioning
algorithms [48].

Figure 1. 2D radio frequency identification (RFID) localization system with monostatic configuration.
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3.1. Tag Setup

Recently, one of the simplest passive tags has been proposed using dielectric resonators
(DRs) in [49], which has neither battery nor chip on it. Based on this, the DR tags in this work
are used as reference anchors placed in the localization environment. The DR tag proposed here
operates as a DR antenna that receives an incident electromagnetic wave which hits the dielectric
body and fully re-transmits the received power by generating a retro-directive reflected wave,
which the reader can detect. By exciting the dielectric resonator at one of its resonant frequencies,
a resonance field mode is induced by the incident wave. Compared to the scattered field amplitudes
outside the resonance frequency, the reflection from the DR tag is much stronger at the resonance
frequency [3,49–51]. The retro-directive scattering of the incident plane wave by the DR tag can
be described by the monostatic radar cross-section (RCS), which is frequency dependent (peak at the
resonance frequencies) and depends on the DR material (relative permittivity), size, and the excited
resonant mode. For a realistic modeling of the behavior of our DR tag, we constructed 3-D models
in a EM-simulator (CST Microwave Studio) [52] to perform full-wave electromagnetic simulation.
A single ceramic cylindrical resonator with relative permittivity of 35, radius of 0.682 mm, and height
of 0.64 mm was simulated, where and Figure 2A shows the calculated monostatic RCS spectral
signature with RCS values of−47.18 and−43.28 dBm2 at resonance peaks at around 58 and 60.24 GHz,
respectively, and Figure 2B shows the bi-static scattering cross-section of the simulated tag. We see
that these RCS values are quite low, which is a serious problem concerning the detection of the tag
by a reader in several meters distance.

Due to the capability of fabricating a large-scale DR array at mm-wave band in a very small area,
we propose to use a massive DR array aiming at increasing the RCS of the chipless tag to overcome the
low scattering response of the DR seen by the reader. Accordingly, the DR array at the tag is proposed
to be planar array with K = K1K2 DR elements placed in the XY plane, where K1 DR elements
are placed in each row along the x-axis direction and K2 DR elements are placed in each column along
the y-axis direction with λ/2 spacing between the DR elements.

(B)(A)

Figure 2. (A) The monostatic radar cross-section (RCS) for a single dielectric resonator (DR) tag. (B) The
bi-static scattering cross-section (m2) for a plane wave incident along the z-axis at 60.24 GHz (resonance
frequency) on the plane φ = 0 and π/2.

Figure 3 shows the monostatic RCS spectrum of the array for the cases K1 = 5, K2 = 1
and K1 = K2 = 5. Approximately, 14 dB and 28 dB improvement in the RCS at the resonance
frequencies for the cases of K1 = 5, K2 = 1 and K1 = K2 = 5 are achieved, respectively. In the
meantime, the improvement in monostatic RCS of massive planar DR arrays can be estimated,
as shown in Figure 3, to be 10 log (K1K2)

2 dB. For example, an array area of 11 × 11 mm with 5× 5
elements can improve the RCS by 28 dB. In other words, increasing the RCS of the tag improves its
receiving and reflecting gain, which enhances the detectability of the tag.
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Figure 3. Monostatic RCS of DR array for different planar DR array configurations.

The reference DR tags can be frequency coded in a way that each tag has its unique resonance
frequency with high RCS, whereas the other tags have low RCS at this operating frequency.
The resonance frequency of the tags can be designed by controlling the DR size, dielectric constant,
and excited mode. As an example, assume two DR tags with 5 × 5 array of elements: the first
is designed to have its first resonance frequency at 63 GHz, as shown in Figure 3, while the second
is designed to have it at 70 GHz. When the reader communicates with the first tag at its resonance
frequency 63 GHz, the first tag is excited at one of its resonant frequencies and reflects a peak much
higher than the reflected signal from the second, as shown from Figure 3. Accordingly, the inter-tag
interference can be neglected with a precise design for the reference tags. Due to the large bandwidth
at mm-wave band, the DR tag design in terms of coding capacity is possible for many chipless DR tags
as in [53–55] and references therein.

In the case of localizing multiple readers in the same environment, the retro-directivity of the
designed tag reduces the interference of RSSI measurements, where the interference can occur when
the objects are close to each other. This can be solved by increasing the number of the reference tags
in the environment in order to decrease the probability of the objects to be connected to the same
reference tags.

3.2. System Configuration

We consider a two-dimensional indoor scenario with dimension w1 ×w2, in which N DR chipless
tags with different resonant frequencies are composed in order to help a reader equipped with a planar
array of M identical antennas to localize itself. Here, only 2D localization is considered, but extension
to the 3D case is straightforward. Let pn = [xn, yn, fn]T ∈ R3, n ∈ {1, 2, ..., N} be the known settings of
the nth tag, where xn and yn are x- and y-coordinates of the tag, respectively; and fn is the resonance
frequency of the tag. A basic requirement for the distribution of the tags is as follows: these reference
tags should be distributed in the environment in order to guarantee that the object is always covered
by at least three reference tags.

Denote by pr = [x̄, ȳ]T ∈ R2 the reader coordinate vector to be estimated, which refers also
to the antenna array centroid, and pm

r = [x̄m, ȳm]T ∈ R2 is the coordinate vector of the mth antenna.

3.3. RSSI Modeling

During the localization process and in order to estimate the distance between the reader
and the nth tag, the backscattered RSSI from the nth tag is measured through two modes.
In the transmitting mode, the reader performs an exhaustive search based on finding the optimal
signal-to-noise ratio (SNR) in order to discover the nth tag by probing in all directions of the reader.
At the receiving mode, if the frequency of the incident signal matches the resonant frequency of the tag
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located within the reader beam, the tag will backscatter RF power towards the reader. On the other
hand, if the frequency of the incident signal does not match the resonant frequency, the tag response will
be very weak compared to the resonance case. At the reader side and contrary to the transmitting mode,
no beamforming is required at the receiving mode, and, hence, the reader has no favored receiving
direction. Moreover, the received signals across the array elements are not combined. In addition
to the tag’s backscatter signals, the reader also receives undesired reflections from the environment.

As the wavelengths of mm-wave radio signals are extremely short, the distances between the
antennas in the array can be made very short, i.e., multiple of wavelengths. As a result, the distance
between the nth tag and the centroid of the reader dn can be approximated using small-angle
approximations to be the distance between the nth tag at the mth antenna dmn. Accordingly, the total
received power backscattered from the nth tag at the mth antenna on the reader at frequency fo with
λo wavelength is [16,56]

P̄ fo
mn =

4π

λ2
o

σnρ2
nPTG fo

R Ḡ fo
R |L̄(dmn, fo)hnhmn|2, (1)

where σn is RCS of the nth tag, and ρn is the polarization loss factor due to the mismatch between the
polarization of a reader antenna and the nth tag antenna. PT is the power transmitted by the RFID
reader, which has total array gain of G fo

R at frequency fo (at transmitting mode), while the single

element antenna gain is Ḡ fo
R at frequency fo (at receiving mode). The term L̄(dmn, fo) is channel path

loss in the free-space propagation environment which is given by

L̄(dmn, fo) =

(
λo

4πdmn

)2
. (2)

The symbol hn is the link fading coefficient between the nth tag and the reader, while hmn is the
link fading coefficient between the nth tag and the mth antenna on the reader. Multipath fading
is generally a challenge for wireless systems, and especially poses great problems for localization
systems [39,57]. Accordingly, many researchers investigated the modeling of hmn to be characterized
by log-normal, Rician, or Rayleigh distributions [16,56–58]. In this work, we used the log-normal path
loss model, which is also extensively used in indoor environments to model the signal attenuation
between DR reference tags and the reader in different frequency bands [16,19,58–67].

Specifically, the work in [64] shows the efficiency of the log-normal path loss model, i.e., also called
close-in free space reference distance (CI), at mm-wave band, which provides simple calculations
of large-scale path loss at different environments and frequency bands. This model is described
as follows:

L(dmn, f )[dB] = L̄(do, fo)[dB]− 10α log10

(
dmn
do

)
−10β log10

(
f
fo

)
+Xmn,

(3)

where L(dmn, f ) is the average large-scale path loss at frequency f and distance dmn, and do is a close-in
reference distance (usually 1 m). α and β are the path loss and frequency exponent, respectively,
and Xmn ∼ N (0, σ2) (in dB) models the shadowing effect. For simplicity and without loss of generality,
we assume that {Xmn} are zero-mean uncorrelated (for different m and n) Gaussian processes with
known and equal variances σ2.

It is worth mentioning here that the effect of the surrounding environment is characterized using
α and Xmn in the log-normal path loss model, where many researchers have reported values for those
parameters depending of measurements as in [63–67] and references therein.

Accordingly, the total backscattered received power at frequency f in (1) can be described using
the log-normal path loss model as [60]

P̄ f
mn[dBm] = P̄ f

don[dBm]− 20α log10

(
dmn

do

)
+Xmn, (4)
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where P̄ f
don is the received power at distance do from the nth tag, which collects all constant factors

in the propagation model in (1). Next, do is assumed to equal 1 m.

4. Large-Scale MIMO-Based RSSI Localization

Unfortunately, the multipath propagation causes fast fluctuations of the reader’s received power
at a given position due to constructive and destructive superposition of multipath signals, which could
result in larger distance estimation errors for more distant tags compared to closer ones. The large
number of antennas at the reader is utilized to increase the accuracy of RSSI localization. It has been
shown that large-scale MIMO technology can overcome the effect of small-scale fast fading on system
performance [33,34].

In this context, we propose large-scale MIMO-based RSSI localization using the backscattered
signals from the DR tags. As the reader is equipped with large-scale MIMO, the received signal at each
antenna is measured in order improve RSSI localization by benefiting from the channel hardening
making the small-scale quickly fade to diminish with the increase in array size. The algorithm
starts from finding the location of each antenna on the reader through two steps [14,15]. The first
step is ranging, in which each antenna on the reader measures the RSSI from all the available tags
and estimates the distances between this antennas and the tags as will be discussed in Section 4.1.
The second step is called lateration or position estimation, in which the position of each antenna
is estimated using the distances obtained from the ranging step by means of the trilateration algorithm,
as will be discussed in Section 4.2 [2,14]. Section 4.3 derives CRLB of the localization error for
the proposed algorithm.

4.1. Ranging

In the localization process, to perform ranging between the mth antenna on the reader and the nth
tag, the mth antenna on the reader broadcasts a signal with the resonance frequency of the nth tag,
i.e., fn. Accordingly, the reader receives three types of signals. The first is the backscattered signal
form the desired tag as discussed in Section 3.1, while the second is the inter-tag interference resulting
from the backscattered signals from the other DR tags, where these signals are highly attenuated
and degraded as mentioned in Section 3.1. The environment response is the third type, which
is modeled using the log-normal channel model as argued in the previous section. In this work,
inter-tag interference is neglected since it is very weak compared to the environment response.

Thus, the ranging between the mth antenna and the DR tags requires broadcasting N signals from
the mth antenna with the different resonant frequencies, which are related to the resonant frequencies
of the DR tags, within different time slots. It is assumed that the time slots are separated far enough
from each other to avoid interference from other transmissions in other time slots. Without loss of
generality and assuming that all tags are in the reader’s interrogation zone, the mth antenna frontend
receives the backscattered signals from the DR tags and obtains the RSSI measurements. The RSSI
vector of the mth antenna on the reader after ranging all DR tags is defined as

rm =
(

P̄ f1
m1, P̄ f2

m2, .., P̄ fN
mN

)
. (5)

Afterwards, the distance vector is evaluated from rm using (4) as [68]

d̃m =
(
d̃m1, d̃m2, .., d̃mN

)
, (6)

where d̃mn is the noise-polluted distance for dmn and expressed as d̃mn = dmn10
Xmn
20α .

Accordingly, those estimated distances follow a log-normal random distribution expressed as

d̃mn ∼ 10
N
(

log10(dmn), σ2

(20α)2

)
∼ eN (µmn ,σ2

s )
(7)
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where µmn = log (dmn) is the mean of the normal distribution of log
(
d̃mn

)
, and its standard deviation

is expressed as σs =
σ log 10

20α . In the following, we use the notation d̃mn∼LN (µmn, σ2
s ) to refer that

log
(
d̃mn

)
is normally distributed with mean µmn and variance σ2

s .
Note that the kth moment of a log-normal random variable of parameters (µmn, σs) is given by [69]

E
[
d̃k

mn

]
= e

(
kµmn+

k2σ2
s

2

)
. (8)

Therefore, the mean of d̃mn is expressed as

E
[
d̃mn

]
= dmne

σ2
s
2 , (9)

and its variance is
var

(
d̃mn

)
= E

[
d̃2

mn

]
−
(
E
[
d̃mn

])2
= d2

mn

(
e2σ2

s − eσ2
s
)

. (10)

4.2. Location Estimation Methods

In literature, there exist many location estimation methods to improve the localization
accuracy, where they differ in the achieved estimation accuracy and computational complexity.
The maximum-likelihood (ML) method achieves the optimal performance with high computational
complexity [8,70]. To reduce the computational complexity of the ML method, it has been relaxed
to a convex optimization problem in the form of a semidefinite program as in [71]. A less complex
algorithm is non-linear least-squares estimation (Non-LSE) as discussed in [72]. Another approach is to
reformulate the nonlinear equations constructed from the noisy RSSI measurements to some linear
forms such as linear least-squares (LLS), as shown in [12,59] and references therein.

It is worth highlighting that the accuracy of the location estimation methods is highly dependent
on the ranging accuracy. Therefore, improving ranging accuracy is vital in order to improve the
localization accuracy. In this work, we developed large-scale MIMO-based RSSI localization framework,
which can be applied to the aforementioned estimation methods. However, due to space limitations,
we consider in this work only the WLLS estimator. Note that it is straightforward to extend the
approach to other estimation algorithms.

In WLLS estimation, the nonlinear relations between the noisy distance vector d̃m and the
unknown position of the mth antenna pm

r are described by [59,73]

d̃2
mn = (xn − x̄m)

2 + (yn − ȳm)
2, n ∈ {1, 2, . . . , N}. (11)

After mathematical manipulation, the nonlinear equations are formulated to be in a linear form
as follows [59,73]

H . pm
r = z̃m, (12)

where

H =

 2(x2 − x1) 2(y2 − y1)
...

...
2(xN − x1) 2(yN − y1)

 , (13)

and

z̃m =

 x2
2 − x2

1 + y2
2 − y2

1 + d̃2
m1 − d̃2

m2
...

x2
N − x2

1 + y2
N − y2

1 + d̃2
m1 − d̃2

mN

 . (14)

The model in (12) can be solved using WLLS estimator to estimate the position of the reader as
follows [73]
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p̂m
r =

(
HTWmH

)−1
HTWmz̃m, (15)

where Wm is the weighting matrix calculated as the inverse of the covariance matrix of the vector z̃m.
With the assumption that the distance estimations are independent, the covariance matrix of zm can
be easily obtained as

Qm =


var

(
d̃2

m1
)
+ var

(
d̃2

m2
)

var
(
d̃2

m1
)

. . . var
(
d̃2

m1
)

var
(
d̃2

m1
)

var
(
d̃2

m1
)
+ var

(
d̃2

m3
)

. . . var
(
d̃2

m1
)

...
...

. . .
...

var
(
d̃2

m1
)

var
(
d̃2

m1
)

. . . var
(
d̃2

m1
)
+ var

(
d̃2

mN
)

 (16)

where var(.) denotes the variance of the term inside the brackets. Accordingly

var
(

d̃2
mn

)
= E

[
d̃4

mn

]
−
(

E
[
d̃2

mn

])2
. (17)

Since d̃mn follows a log-normal random distribution as in (7), it can be derived that

var
(

d̃2
mn

)
= d4

mn

(
e8σ2

s − e4σ2
s
)

. (18)

In a real application, it is mandatory to approximate the real distance dmn by the estimated
distance d̃mn.

As a result, the geometric position of the mth antenna p̂m
r is estimated using WLLS. These steps

are performed for all antennas on the reader, yielding the position estimation vectors p̂1
r , p̂2

r , .., p̂M
r of

all the antennas. Finally, the position of the object p̂r is determined to be the centroid of the estimated
antenna positions.

4.3. Cramér–Rao Lower Bound Derivation

In this part, we derive the CRLB of the localization error for the proposed algorithm. CRLB sets
a lower bound for the variance of any unbiased estimator [8,12]. In this algorithm, the exact location
of the object (reader) is estimated using the measurements obtained at the different antennas from
the N tags. Accordingly, the observation vector is MN-dimensional RSSI collected independently,
where the joint probability density function (PDF) of these RSSI measurements using (4) can be written
as [8]

fpr

(
P̄ f

mn

)
=

M

∏
m=1

N

∏
n=1

10

log 10
√

2πσ2P̄ fn
mn
× exp

(
− b

8

(
log

d2
mn

d̂2
mn

)2)
, (19)

where b =
(

20α
σ log 10

)2
and d̂mn =

(
P̄ fn

don

P̄ fn
mn

) 1
2α

.

Theorem 1. The CRLB of an unbiased position estimator p̂r based on the proposed algorithm and the PDF
in (19) is given by

var (p̂r) =

M
∑

m=1

N
∑

n=1

1
d2

mn

b
M
∑

m=1

N
∑

n=1

M
∑

i=1

N
∑

k=1
Υn,m,i,k

, (20)
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where

Υn,m,i,k =
cos φmn sin φik sin (φik − φmn)

d2
mnd2

ik
.

φmn ∈ [0, 2π] is the angle the mth antenna on the reader makes with respect to the nth tag,
where cos φmn = x̄m−xn

dmn
and sin φmn = ȳm−yn

dmn
.

Proof. The Fisher Information Matrix (FIM) can be written as

J (pr) = −E
{

∂U (pr)

∂pr

}
=

[
J11 (pr) J12 (pr)

J21 (pr) J22 (pr)

]
, (21)

where the gradient of the log-likelihood with respect to x̄m and ȳm is defined as

U (pr) =

(
∂

∂x̄m
log fpr ,

∂

∂ȳm
log fpr

)
. (22)

The log-likelihood of the PDF of fpr

(
P̄ f

mn

)
in (19) is described as

log fpr

(
P̄ f

mn

)
=

M

∑
m=1

N

∑
n=1

(
log

(
10

log 10
√

2πσ2P̄ f
mn

)
− b

8

(
log

d2
mn

d̂2
mn

)2)
. (23)

Recall that dmn =
√
(xn − x̄m)2 + (yn − ȳm)2, the entries of (21) are obtained as

J11 (pr) =
M

∑
m=1

N

∑
n=1

b
(

x̄m − xn

d2
mn

)2
. (24)

Using the relations cos φmn = x̄m−xn
dmn

and sin φmn = ȳm−yn
dmn

, (24) is written as

J11 (pr) =
M

∑
m=1

N

∑
n=1

b
(

cos φmn

dmn

)2
. (25)

Following the same steps, the remaining elements are obtained as

J22 (pr) =
M

∑
m=1

N

∑
n=1

b
(

sin φmn

dmn

)2
, (26)

and

J12 (pr) = J21 (pr) =
M

∑
m=1

N

∑
n=1

b
(

cos φmn sin φmn

d2
mn

)
. (27)

The CRLB is just the inverse of FIM, and described as follows

var (p̂r) ≥ {J (pr)}−1. (28)

Accordingly,
var (p̂r) ≥ 1

|J(pr)| (J11 (pr) + J22 (pr)) (29)

≥
M
∑

m=1

N
∑

n=1

1
d2

mn

b
M
∑

m=1

N
∑

n=1

M
∑

i=1

N
∑

k=1
Υn,m,i,k

, (30)
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where

Υn,m,i,k =
cos φmn sin φik sin (φik − φmn)

d2
mnd2

ik
.

5. The Sub-Optimal Algorithms

Although the proposed algorithm results in the best WLLS estimation for the centroid of the
antenna array, it has high computational complexity since lateration is performed for each antenna.
Therefore, we propose in this part two sub-optimal algorithms aiming at reducing the computational
complexity of the optimal algorithm. The proposed algorithms perform the lateration step only
one time per location. Therefore, the computational complexity is reduced 1/M times compared
to the optimal algorithm. The sub-optimal algorithms are proposed to estimate the position of the
object benefiting from the available RSSI measurements according to the level of processing as follows:
(1) distance-based averaging and (2) power-based averaging.

5.1. Distance-Based Averaging (Dis-Avg) Algorithm

The distance d̃mn can be approximated using small-angle approximations to be the distance
between the reader and the nth tag d̄n, since the wavelengths of mm-wave radio signals are extremely
short. After performing the ranging between the antennas on the reader and the nth tag, the distance
vector d̂n =

(
d̃1n, d̃2n, .., d̃Mn

)
is formed. Utilizing the M measurements contained in d̂n, the distance

between the reader and the nth tag can be approximated to be the average of the distance vector d̂n ,
which is expressed as

d̄n '
1
M

M

∑
m=1

d̃mn. (31)

Consequently, the ranging between the reader and the DR tags can be accomplished forming the
distance vector d̂ =

(
d̄1, d̄2, .., d̄N

)
.

According to the derivation given in Appendix A, d̄n can be approximated by a log-normal
random variable with the parameters d̄n∼LN (µ̂n, σ̂s), where

σ̂s = log

 ∑M
m=1 d2

mn(
∑M

m=1 dmn

)2

(
eσ2

s − 1
)
+ 1

 , (32)

and

µ̂n = log

(
1
M

M

∑
m=1

dmn

)
+

1
2

(
σ2

s − σ̂2
s

)
. (33)

Afterwards, the lateration is executed for the reader. Thus, the lateration step is performed for d̂
to estimate pr. This can be modeled as

H . pr = z̃, (34)

where

z̃ = 2

 x2
2 − x2

1 + y2
2 − y2

1 + d̄2
1 − d̄2

2
...

x2
N − x2

1 + y2
N − y2

1 + d̄2
1 − d̄2

N

 . (35)

The model in (34) can be solved using WLLS estimator to find the estimate of pr as

p̂r =
(

HTWH
)−1

HTWz̃, (36)
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where W is the weighting matrix calculated as the inverse of the covariance matrix of the vector z̃,
which is described in (37), at the top of the next page.

Q =


var

(
d̄2

1
)
+ var

(
d̄2

2
)

var
(
d̄2

1
)

. . . var
(
d̄2

1
)

var
(
d̄2

1
)

var
(
d̄2

1
)
+ var

(
d̄2

3
)

. . . var
(
d̄2

1
)

...
...

. . .
...

var
(
d̄2

1
)

var
(
d̄2

1
)

. . . var
(
d̄2

1
)
+ var

(
d̄2

N
)
 (37)

Therefore, according to (8), the variance of d̄2
n is written as

var
(

d̄2
n

)
= eµ̂4

n
(

e8σ̂2
s − e4σ̂2

s
)

. (38)

As discussed before, the lateration is performed only one time for the approximated averaged
distance, which reduces the computational complexity of localization.

5.2. Power-Based Averaging (Power-Avg) Algorithm

In this sub-optimal algorithm, the received backscattered power at the centroid of the reader
corresponding to the nth tag is approximated to be the average of the received signals at the different
antennas and expressed as

P̄ fn
n =

1
M

M

∑
m=1

P̄ fn
mn. (39)

This approximation is based on the fact that all the antennas are part of the reader, and the
received power at any antenna is related to the position of the reader itself. Therefore, the multiple
RSSI measurements available at the reader are averaged out to overcome the effect of the channel fading.
Accordingly, the distance between the centroid of the reader and the nth tag, i.e., d̄n, can be estimated

from P̄ fn
n according to the considered channel model to be d̄n =

(
P̄ fn

n

P̄ fn
don

)−1
2α

. As a consequence,

the distance vector d̄ =
(
d̄1, d̄2, .., d̄N

)
can be obtained in the same manner. From the channel

model in (4), the measured power P̄ fn
mn follows a log-normal random distribution with the parameters

P̄ fn
mn ∼ LN (µ̄mn, σ̄s), where

µ̄mn = log

 P̄ fn
don

(dmn)
2α

 , (40)

and
σ̄s =

σ log 10
10

. (41)

According to the derivation given in Appendix A, P̄ fn
n can be approximated by a log-normal

random variable with the parameters P̄ fn
n ∼LN (µ̆n, σ̆s), where

σ̆s = log

 ∑M
m=1 (dmn)

−4α(
∑M

m=1 (dmn)
−2α
)2

(
eσ̄2

s − 1
)
+ 1

 , (42)

and

µ̆n = log

 1
M

M

∑
m=1

P̄ fn
don

(dmn)
2α

+
1
2

(
σ̄2

s − σ̆2
s

)
. (43)
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The last step is to execute the lateration algorithm for the distance vector d̄ to estimate pr

by following the steps in (34) to (36). The weighting matrix W for WLLS estimator can be formed as
in (37), where it mainly depends on the variance of d̄2

n as follows

var
(
d̄2

n
)

= E
[
d̄4

n
]
−
(
E
[
d̄2

n
])2

= E

[(
P̄ fn

n

P̄ fn
don

)−2
α

]
−
(

E

[(
P̄ fn

n

P̄ fn
don

)−1
α

])2

=
(

P̄ fn
don

) α
2

(
E
[(

P̄ fn
n

)−2
α

]
−
(

E
[(

P̄ fn
n

)−1
α

])2)
=
(

P̄ fn
don

) α
2 e

2σ̆2
s

α ( 1
α−µ̆n)

(
eσ̆2

s − 1
)

.

(44)

6. Measurements and Simulation Setup

This section considers the measurement validation of the DR tag and a realistic modeling of the
path loss for an indoor environment using 3D ray-tracing. The system is operated in the 63 GHz
frequency range. Unless otherwise stated, the reader has a planer array of 10× 5 antennas (M = 50),
where the gain of the single element at the reader is 2.15 dBi. In the considered indoor area, many
reference DR tags are uniformly located on the ceiling of the room in order to achieve the full
coverage in the considered area and to enable the reader localizing itself using WLLS RSSI algorithm.
However, the reader is assumed to be connected only for N = 8 reference tags to perform localization.
All measurements and simulation parameters are included in Table 1.

Table 1. Large-scale MIMO-based RFID localization system parameters.

Parameter Value

Frequency Range 57–63 GHz

Operating Bandwidth 100 MHz

Transmit Power PT 10 dBm

Reader Antenna Element Gain GT 2.15 dBi

Room Width and Length 10× 10 m2

6.1. Measurements

In this section, the experimental verification is presented for the large-scale-based DR tag based
on the monostatic RCS of 5× 5 and 5× 1 element planar DR arrays with element spacing of λ/2 at
63 GHz (0.8 mm diameter, manufactured by T-Ceram, Czech Republic). The scattering parameter
S11 was measured employing an HP8510 Vector Network Analyzer (VNA) with the HP85104A
mm-wave converter for the 50–75 GHz range, equipped with a 25 dBi standard gain horn antenna.
The DR array was placed on a block of Styrofoam (εr = 1.04) in about 60 cm axial distance from the
horn aperture. Due to the very low level of the scattered power from the DR array, we used background
subtraction to make it visible. First, the scattering coefficient without the DR array in place was recorded
and afterwards subtracted from the scattering coefficient, which was measured with the DR in place.
The conversion of the measured reflection coefficient data of the DR array to RCS magnitudes was
performed by normalization to the reflection coefficient of a metal sphere of 20 mm diameter metal
at the center of the band and multiplication with its RCS magnitude; since the frequency-dependent
gain of the horn antenna is not corrected for, as in the method presented in [74], the RCS magnitudes
provided by this method are only approximate. Figure 4 shows the measurement setup.
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Figure 5 shows a comparison of the measured RCS to the simulation results at the first
resonant frequency. Agreement between measured and simulated monostatic RCS is found across the
full frequency range.

(A) (B)

Figure 4. The measurement setup. (A) Double ridge horn. (B) 5× 5 and 5× 1 DR array configurations.
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Figure 5. Measured RCS magnitudes compared to simulated RCS for 5 × 5 and 5 × 1 DR array
structures.

6.2. Localization Coverage Area

We investigated the impact of the severe path loss on the ranging coverage area. Accordingly,
this coverage area is characterized using the path loss threshold Lth, which is defined as [2]

2Lth(dmn, f )[dB] = PT[dB] + GR[dB] + ḠR[dB] + GP[dB] + 10 log
(

4πρ2
nσn

λ2

)
− Pw − γ, (45)

where GP is the signal processing gain, and γ is the noise figure and other channel and hardware
impairments. The noise power is described as

Pw = 10 log10(kTB) [dBW], (46)

where k is the Boltzmann constant, T is the temperature in Kelvin, and B is the bandwidth. The coverage
area is specified to have path loss smaller than the threshold.

Assuming the resonance frequency is f = 63 GHz, GP = 10 dB, and γ = 10 dB, the path loss
threshold is calculated to be around 83 and 77 dB for 5× 5 and 5× 1 DR tags structures, respectively.
This means that the reader can detect a DR tag as far as up to 5.2 m and 2.6 m as shown from Figure 6
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for the 5× 5 and 5× 1 DR tags structures, respectively. Next, the 5× 5 DR tag is considered due to its
better range coverage.

1 2 3 4 5 6 7 8 9 10

Distance [m]

65
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a
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o
ss

 [
d
B

]

Figure 6. Coverage area of RFID localization system at operating frequency f = 63 GHz.

6.3. Path Loss Model using 3D Ray-Tracing

Since real-world mm-wave measurements are time intensive and expensive, Wireless InSite (WI)
is used as a 3D ray-tracing [75]. It was verified that modeling the propagation channel can be provided
using 3D ray-tracing with high accuracy [76–78]. Moreover, an excellent agreement with measurements
for narrowband and wideband wireless channels was shown in the literature. This model considers
the spatial channel and the environmental effects as path-loss, frequency dependence, scattering,
reflections, transmissions, and diffractions. It considers as well the characteristics of the antennas as
part of the effective channel such as directional gain, matching, and polarization.

The office environment of a 25 × 12 × 3 m area is modeled as seen in Figure 7. The precise
geometry of the office environment was entered into the Ray-Tracer following the ITU recommendations
as described in one of the examples in [75]. The reference tags are nested at the ceiling of the
indoor environment as shown Figure 7. As described in Section 3.3, beamforming is executed
in the transmitting mode contrary to the receiving mode, where there is no favored receiving direction
at receiving mode, and the signals across the array elements are not combined. Moreover, and in order
to consider the properties of the designed tag in channel realizations, the tag designed in Section 6.1
using CST is exported to WI in addition to the reader antenna array.

The deterministic channel realizations are collected using 3D ray tracing for random positions
by moving the reader in this environment randomly.

Tag

Reader

Figure 7. 3D layout of simulated real environment of the office room modeled in Wireless InSite (WI).
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7. Results and Discussion

Here, we evaluate the proposed large-scale MIMO-based localization algorithm using the deterministic
and analytical channels. The optimal algorithm is denoted next by the L-MIMO-RSSI algorithm.
Moreover, the sub-optimal algorithms are evaluated compared to the L-MIMO-RSSI algorithm in order
to examine their localization accuracies. The performances of the proposed algorithms are compared
with a reference system denoted by Ref algorithm, in which the reader is equipped with only one
antenna. All the simulation parameters are included in Table 1.

The reader sweeps the frequency band 5–63 GHz in order to find the reference tags within
its coverage. Such process could be executed using a pulse centered at 60 GHz of bandwith
6 GHz or using a frequency modulation signal sweeping the frequency band during the t-second
pulse duration. After that, the detected tags with the maximum peak resonance are chosen, where
the reader sequentially transmits signals that are centered at their resonance frequencies and cover
the resonance bandwidth. The RSSIs of the backscattered signals from these tags are post-processed
to perform ranging and, then, lateration.

For the sake of comparison, the cumulative distribution function (CDF) curves of the root-mean-
square error (RMSE) of localization error are considered, where RMSE is written as

ermse =
√
E {(x̂− x̄)2 + (ŷ− ȳ)2}. (47)

7.1. Analytical Channels

In order to evaluate the proposed algorithm for different environments and scenarios,
the analytical channels have been generated using the channel model described in (4) within
a room of dimensions w1 = w2 = 10 m. The work in [64] intensively studies the path loss
models in mm-wave band and concludes that the CI log-normal path is efficient as it offers
the simple and accurate calculation for path loss. Moreover, this work presents the modeling of
CI model parameters using measurements. Therefore, we utilized the results of [64] in our work
and reproduced it for 63 GHz. Although the passive RFID system is more reliable and robust in LOS
environments, we considered in our evaluation of the proposed algorithm NLOS indoor environments
in addition to LOS environments for co-polarization, cross-polarization, and combined-polarization
antenna configurations. In order to delete the outlier measurements, a modified Thompson Tau test
was utilized to detect outliers as proposed in [27].

This part evaluates the proposed algorithm in the LOS environment using different antenna
configurations. For this scenario, α and σ are predicted from [64] to be respectively around 1.62 and
3 dB for the co-polarized antenna configuration, 4.5 and 8.4 dB for the cross-polarized case, and 3
and 16 dB for the combined-polarization case.

Figure 8 depicts the CDF of the location error for the proposed algorithms compared to the
reference system for the case of co-polarized antenna configuration. The L-MIMO-RSSI algorithm
achieved the best localization performance yielding a maximum location error of 36 cm at 90%
confidence, while the reference system had 1.9 m at 90% confidence. This illustrates the significant
localization accuracy improvement that can be achieved using the proposed algorithm. The Dis-Avg
algorithm closely approached the L-MIMO-RSSI algorithm with 1/M lower computational complexity.
On the other side, the Power-Avg sup-optimal algorithm had a maximum of 75 cm location error at 90%
confidence. This figure clearly shows that the Dis-Avg algorithm achieved the required performance
similar to the L-MIMO-RSSI algorithm with lower complexity.

Figure 9 plots the instantaneous estimation error with respect to random object positions
for the proposed algorithms for the same case of Figure 8. It is noted from the figure that the
instantaneous estimation error fluctuated with the position changes due to the multipath propagation.
The fluctuations of the reference algorithm were much stronger, which caused deep estimation error
degradation at some positions. However, L-MIMO-RSSI, Dis-Avg, and Power-Avg algorithms presented
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smooth instantaneous estimation errors compared to the reference system, which means that the
large-scale MIMO-based algorithms can decrease the effect of small-scale fast fading and improve
the localization accuracy. Figure 8 also confirms that L-MIMO-RSSI and Dis-Avg algorithms behaved
similarly and achieved the best performance.

0 0.5 1 1.5 2 2.5 3

Location Error [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C

D
F

 o
f 

L
o

ca
ti

o
n

 E
rr

o
r

L-MIMO-RSSI

Dis-Avg

Power-Avg

Ref

Figure 8. The cumulative distribution function (CDF) of localization root-mean-square error (RMSE)
for the proposed algorithms for the line-of-sight (LOS) environment and the co-polarized antenna
configuration.
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Figure 9. Localization errors change with respect to different random object positions for the LOS
environment and the co-polarized antenna configuration.

Figure 10 depicts the CDF of the ranging error for the proposed algorithm compared to the
reference system for the case of co-polarized antenna configuration. The L-MIMO-RSSI algorithm
achieved much better ranging accuracy yielding a maximum location error of 29 cm at 90% confidence,
while the reference system had 1.65 m at 90% confidence. This illustrates the significant ranging
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accuracy improvement that can be achieved using the proposed algorithm, which reflects on the
localization accuracy improvement.
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Figure 10. The CDF of ranging RMSE for the proposed algorithm for the LOS environment and the
co-polarized antenna configuration.

Figure 11 shows the CDF of the location error for the proposed algorithm for the cases of the
cross-polarized and combined-polarized antenna configurations. The L-MIMO-RSSI algorithm highly
improved the localization performance achieving a maximum location error of 37 cm and 1.5 m
at 90% confidence, while the reference system had 90 cm and 7 m at 90% confidence for the cross-
and combined-polarized cases, respectively. It is worth mentioning here that even the localization
accuracy at the combined-polarized case was worse compared to the other cases; the amount of
improvement compared to the reference system was much larger than that of the other cases. In other
words, RSSI localization in the combined-polarized case does not work without our proposed
algorithm, which guides RSSI localization to achieve acceptable localization accuracy.
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Figure 11. The CDF of localization RMSE for the proposed algorithm for the LOS environment
and the cross- and combined polarized antenna configurations.
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In order to evaluate the proposed algorithm in the NLOS environment, α and σ are predicted
from [64] to be, respectively, around 3.3 and 11.5 dB for the co- and combined-polarized antenna
configurations and 4.8 and 10.5 dB for the cross-polarized case. Figure 12 shows the CDF of the
location error performance for the proposed algorithm for these cases. Here, the proposed algorithm
also presents efficient performance, where maximum location errors of 64 cm for the co- and combined
cases and 91 cm for the cross-polarized case were achieved at 90% confidence, while the reference
system had 2.2 and 4 m, respectively.
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Figure 12. The CDF of localization RMSE for different position estimation algorithms for the NLOS
environment and the co-, cross- and combined-polarized antenna configurations.

We further investigated the system and environmental parameters on the proposed algorithm
using the analytical channels for the LOS environment using the co-polarized antenna configuration.

We studied the performance of the localization algorithms using different position estimators,
where WLLS, ML [70], Non-LSE [72], and LLS are considered. WLLS is simulated as discussed
in Section 4, while the ML approach is implemented using the Levenberg–Marquardt method [70]
with a damping factor of 10 and 20 iterations. The resulting CDF of the location error is presented
in Figure 13. We notice that large-scale MIMO-based localization framework was highly satisfactory
in improving the localization accuracy compared to the reference algorithm using the considered
estimators. Even though ML achieved the more robust computation of location estimates compared
to WLLS, LLS, and Non-LS schemes, the ML method involves extensive calculations making its
implementation unfeasible for real time localization. WLLS performed very close to ML with much
lower computational complexity. It is worth mentioning here that the LLS algorithm gains considerably
more benefit from large-scale MIMO compared to the other estimators, where the CDF of the location
error difference between large-scale MIMO-based LLS and WLLS algorithm is 26 cm at 90% confidence,
whereas this difference for the single antenna system is 2 m at the same confidence level.

The influences of antenna array size of the reader on the RMSE of localization accuracy is shown
in Figure 14. We can observe from this figure that the RMSE of the localization error decreased
by adding more antennas at the reader side. It is noted that the significant improvement in localization
accuracy appears when the number of antennas is enlarged from 1 to 30, where RMSE degrades from
1 m to 24 cm for the L-MIMO-RSSI algorithm. Moreover, this figure shows that the Dis-Avg algorithm
behaved very similarly to the L-MIMO-RSSI algorithm and outperformed the Power-Avg algorithm.



Sensors 2020, 20, 3933 21 of 30

0 1 2 3 4 5 6 7 8

Location Error [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F
 o

f 
L

o
c
a
ti

o
n
 E

rr
o
r

L-MIMO-RSSI: WLLS

L-MIMO-RSSI: ML

L-MIMO-RSSI: Non-LS

L-MIMO-RSSI: LLS

Ref: WLLS

Ref: ML

Ref: Non-LS

Ref: LLS

Figure 13. The CDF of localization RMSE for different position estimation algorithms for the LOS
environment and the co-polarized antenna configuration.

Figure 15 evaluates the impact of the number of connected DR tags to the reader on the localization
accuracy, which shows that the localization accuracy improved as the number of reference tags
increased, reaching 30 cm at 90% confidence when N = 16.
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Figure 14. The localization RMSE for the proposed algorithms for different number of antennas on the
reader for the LOS environment and the co-polarized antenna configuration.

The effect of the surrounding environment is characterized by the factor α in the log-normal
path loss model, which can vary over a large range [57,63,64]. Therefore, the effect of the path loss
exponent on the localization accuracy is explored by simulating the RMSE of the proposed algorithms
for different values of α for the system configuration M = 50, N = 8 and σ = 3. The simulation result
is illustrated in Figure 16, where we observe that the localization RMSE decreased with the growth
of the path loss exponent. Moreover, this figure exhibits that large-scale MIMO-based localization
algorithms were more robust against the change of α compared to the reference system. The RMSE of
the reference system changed from 1.8 to 0.2 m when α changed from α = 1 to α = 8, while RMSE of
the L-MIMO-RSSI algorithm changed within the range of 43 to 3 cm for the same path loss exponent
change range.
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Figure 17 exhibits the effect of the shadowing on localization accuracy when M = 50, N = 8,
and α = 1.62. As expected, as the standard deviation of the shadowing increased, the RMSE
of the localization accuracy worsened. However, the L-MIMO-RSSI algorithm presented more
immunity against the shadowing. However, the simplified algorithm Dis-Avg was highly degraded
for larger values of σ due to the averaging before performing localization, which leads to high error
in the lateration step.
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Figure 15. The CDF of the RMSE for different numbers of nested reference tags for the LOS environment
and the co-polarized antenna configuration.
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Figure 16. The RMSE for the proposed algorithms for different path loss exponent values. M = 50,
N = 8, σ = 3.

The influence of the network size on the localization accuracy is investigated in Figure 18 for
different room dimensions w1 = w2 = w. The simulation is performed for LOS and co-polarized
scenarios with M = 50 and N = 8. Although the estimation error degraded with the enlargement
of the room size, the L-MIMO-RSSI algorithm presented more privilege against the increase of the
network size.
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Figure 17. The RMSE for the proposed algorithms for different standard deviation values of shadowing.
M = 50, N = 8, α = 1.62.
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Figure 18. The RMSE for the proposed algorithms for different indoor area dimensions w1 = w2 = w.
M = 50, N = 8, σ = 3, α = 1.62.

Figure 19 presents the comparison between the proposed algorithm and the CRLB for different
path loss exponent and shadowing standard deviation values. It is noted that the proposed algorithm
approached the CRLB in most cases, except when the path loss exponent was below 2 and the the
shadowing standard deviation was greater than 5; to the best of our knowledge, this case was not
observed in the literature. The measurements in the literature [64] conclude that at LoS scenarios,
i.e., path loss exponent below 2, the shadowing standard deviation is also below 5 dB. Therefore,
we conclude that the proposed algorithm is efficient since it presents also a close performance to CRLB.

Figure 20 shows the effect of spatial correlation between the reader antennas on the RMSE
performance for the proposed algorithms for the LOS environment and the co-polarized antenna
configuration, when the reader has M = 50 antennas, and 8 reference tags are distributed
in the environment. Each antenna element on the reader was spatially correlated to the adjacent
one by the factor ρ. The existence of spatial correlation affected adversely the orthogonality of the
channels and, hence, the channel favorability and hardening of large-scale MIMO. As a consequence,
the shadowing was not well averaged as the case of the orthogonal channels leading to the degradation
in localization accuracy. Although a spatial correlation existed, the proposed algorithm improved the
localization accuracy compared to the conventional system.
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Figure 19. Cramér–Rao Lower Bound (CRLB) for different path loss exponent and shadowing standard
deviation values.

Compared with the recent and related works in [16,17,31], the proposed algorithm achieved
significant localization accuracy improvement, where RMSE can reach 16 cm in a room with dimensions
8× 8 m when M = 50 and N = 8. The work in [16] achieved 1 m at 82% confidence in a room with
dimensions 8× 8 m using the best proposed configuration, that is a bistatic reader with a π/2 antenna
elevation angle and with the antennas placed towards the center of the side walls, when the transmitted
power equals 3 W. Similarly, the work in [17] achieved precision of about 90% within 0.5 m in a room
with dimensions 6.5 × 10 m using grid-based pattern of many reference tags. The work in [31],
which considers RSSI at mm-wave band, showed that it is possible to achieve an accuracy of around
1 m in a room with dimensions 8.9× 16 m if a sufficient number of measurement samples is acquired.
However, and for approximately the same area of the work in [31], our proposed approach achieved
an accuracy of 35 cm. Furthermore, the work in [79] summarizes many RSSI algorithms, and our
proposed algorithm outperformed the mentioned algorithms in this work.
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Figure 20. The CDF of the RMSE for the proposed algorithms for different spatial correlation values ρ

for the LOS environment and the co-polarized antenna configuration.

7.2. Deterministic Channels

We present here the performance of the proposed algorithm using deterministic channels.
These channels are collected as described in Section 6.3.
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In order to evaluate the proposed algorithm at different locations in the room, the reader was allocated
at 15 random positions while the tags were placed at fixed positions, as shown in Figure 7. The reader
was connected to the nearest five tags in order to perform localization using the proposed algorithm.
Figure 21 depicts the estimated and real positions of the reader in the considered area. The average
RMSE of the localization estimation was around 75 cm, where a minimum of 25 cm was observed.
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Figure 21. Estimated positions of the reader using deterministic channels, where the L-MIMO-RSSI
algorithm is used.

8. Conclusions

In this paper, we proposed RSSI-based localization with low-complexity DR RFID infrastructure
utilizing the potential of large-scale MIMO technology operated at mm-wave band in order to enhance
the self-localization accuracy. DR tags are designed to act as reference anchors for the infrastructure,
where each DR tag is composed from an array of DR elements with unique resonance frequencies
in order to improve the detectability of the tag and reduce the inter-tag interference. The object to be
localized is also equipped with large-scale antennas in order to reduce the sensitivity of the localization
accuracy against channel fading, which improves the capability of smart objects in estimating their
positions. RSSI as a simple ranging algorithm, and WLLS lateration algorithms are considered
in the proposed algorithm. The proposed algorithm first estimates the position of each antenna on
the object and then finds the centroid point of the antenna array to be the position of the object.
The proposed framework can be combined with most position estimation techniques. In this work,
we have applied the WLLS estimation technique to the proposed large-scale MIMO framework.
The CRLB on the localization accuracy is derived taking into account the large-scale MIMO on
the object. To decrease the computational complexity of performing lateration for all the antennas,
two sub-optimal algorithms are proposed to estimate the position of the object.

Measurement results are presented to validate the design of the reference DR tags concept.
Moreover, simulation results showed that the proposed algorithm improved the accuracy of
localization. The Dis-Avg algorithm was able to achieve a performance very close to that of the
optimal algorithm with much lower computational complexity, so it is recommended to be used
to substitute the optimal algorithm. It is noted that the proposed large-scale MIMO framework
is applicable to different position estimation techniques. Furthermore, simulation results showed that
the proposed algorithms were robust against the channel fading and environment changes.

Succeeding research will realize and evaluate this work in a real environment using the designed
infrastructure and IoT devices.
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Appendix A

In this Appendix, we derive the distribution of the sum of general K independent log-normal
random variables by using the Fenton–Wilkinson approximation [80]. Assume a variable yk follows
a log-normal distribution as yk ∼ LN (µ̃k, σ̃). Define

y =
K

∑
k=1

ỹk. (A1)

According to Fenton–Wilkinson approximation, y can be approximated by a log-normal random
variable, i.e., y∼LN (µ̀, σ̀), where µ̀ and σ̀ satisfy

K

∑
k=1

e
(

µ̃k+
σ̃2
2

)
= e

(
µ̀+ σ̀2

2

)
, (A2)

and
K

∑
k=1

e2µ̃k
(

e2σ̃2 − eσ̃2
)
= e2µ̀

(
e2σ̀2 − eσ̀2

)
. (A3)

By solving (A2) for µ̀, (A2) can be written as

σ2

2
+ log

(
K

∑
k=1

eµ̃k

)
= µ̀ +

σ̀2

2
. (A4)

Accordingly, we obtain

µ̀ = log

(
K

∑
k=1

eµ̃k

)
+

1
2

(
σ̃2 − σ̀2

)
. (A5)

By solving (A3) for σ̂2, (A3) can be written as

K

∑
k=1

e2µ̃k
(

e2σ̃2 − eσ̃2
)
=

e

(
2 log

(
K
∑

k=1
eµ̃k

))
e(σ̃2−σ̀2)

(
e2σ̀2 − eσ̀2

)
. (A6)

Consequentially, (A6) can be simplified to

K

∑
k=1

e2µ̃k
(

eσ̃2 − 1
)
=

(
K

∑
k=1

eµ̃k

)2 (
eσ̀2 − 1

)
. (A7)

Therefore, we can get

σ̀ = log


K
∑

k=1
e2µ̃k(

K
∑

k=1
eµ̃k

)2

(
eσ̃2 − 1

)
+ 1

 . (A8)



Sensors 2020, 20, 3933 27 of 30

References

1. Zheng, F.; Kaiser, T. Digital Signal Processing for RFID; Information and Communication Technology Series;
Wiley: Hoboken, NJ, USA, 2016.

2. El-Absi, M.; Alhaj Abbas, A.; Abuelhaija, A.; Zheng, F.; Solbach, K.; Kaiser, T. High-Accuracy Indoor
Localization Based on Chipless RFID Systems at THz Band. IEEE Access 2018, 6, 54355–54368. [CrossRef]

3. Alhaj Abbas, A.; El-Absi, M.; Abualhijaa, A.; Solbach, K.; Kaiser, T. Dielectric Resonator-Based Passive
Chipless Tag With Angle-of-Arrival Sensing. IEEE Trans. Microw. Theory Tech. 2019, 67, 2010–2017. [CrossRef]

4. Li, C.; Mo, L.; Zhang, D. Review on UHF RFID Localization Methods. IEEE J. Radio Freq. Identif.
2019, 3, 205–215. [CrossRef]

5. Miesen, R.; Ebelt, R.; Kirsch, F.; Schäfer, T.; Li, G.; Wang, H.; Vossiek, M. Where is the Tag? IEEE Microw.
Mag. 2011, 12, S49–S63. [CrossRef]

6. Guidi, F.; Decarli, N.; Dardari, D.; Mani, F.; D’Errico, R. Passive Millimeter-Wave RFID Using Backscattered
Signals. In Proceedings of the IEEE Globecom Workshops (GC Wkshps), Washington, DC, USA,
4–8 December 2016; pp. 1–6. [CrossRef]

7. Pursula, P.; Donzelli, F.; Seppa, H. Passive RFID at Millimeter Waves. IEEE Trans. Microw. Theory Tech.
2011, 59, 2151–2157. [CrossRef]

8. Patwari, N.; Hero, A.O.; Perkins, M.; Correal, N.S.; O’Dea, R.J. Relative location estimation in wireless sensor
networks. IEEE Trans. Signal Process. 2003, 51, 2137–2148. [CrossRef]

9. Patwari, N.; Ash, J.N.; Kyperountas, S.; Hero, A.O.; Moses, R.L.; Correal, N.S. Locating the nodes:
Cooperative localization in wireless sensor networks. IEEE Signal Process. Mag. 2005, 22, 54–69. [CrossRef]

10. Tomic, S.; Beko, M.; Dinis, R. 3-D Target Localization in Wireless Sensor Networks Using RSS and AoA
Measurements. IEEE Trans. Veh. Technol. 2017, 66, 3197–3210. [CrossRef]

11. Moragrega, A.; Closas, P.; Ibars, C. Potential Game for Energy-Efficient RSS-Based Positioning in Wireless
Sensor Networks. IEEE J. Sel. Areas Commun. 2015, 33, 1394–1406. [CrossRef]

12. So, H.C.; Lin, L. Linear Least Squares Approach for Accurate Received Signal Strength Based Source
Localization. IEEE Trans. Signal Process. 2011, 59, 4035–4040. [CrossRef]

13. Zhang, S.; Yang, C.; Jiang, D.; Kui, X.; Guo, S.; Zomaya, A.Y.; Wang, J. Nothing Blocks Me: Precise and
Real-Time LOS/NLOS Path Recognition in RFID Systems. IEEE Internet Things J. 2019, 6, 5814–5824.
[CrossRef]

14. Gentile, C.; Alsindi, N.; Raulefs, R.; Teolis, C. Geolocation Techniques: Principles and Applications; Springer:
New York, NY, USA, 2012.

15. Werner, M. Indoor Location-Based Services: Prerequisites and Foundations; Springer: Berlin, Germany, 2014.
16. Ciftler, B.S.; Kadri, A.; Güvenc, I. IoT Localization for Bistatic Passive UHF RFID Systems With 3-D Radiation

Pattern. IEEE Internet Things J. 2017, 4, 905–916. [CrossRef]
17. Zhao, Y.; Liu, K.; Ma, Y.; Gao, Z.; Zang, Y.; Teng, J. Similarity Analysis-Based Indoor Localization Algorithm

With Backscatter Information of Passive UHF RFID Tags. IEEE Sens. J. 2017, 17, 185–193. [CrossRef]
18. Zhang, Z.; Lu, Z.; Saakian, V.; Qin, X.; Chen, Q.; Zheng, L.R. Item-Level Indoor Localization With Passive

UHF RFID Based on Tag Interaction Analysis. IEEE Trans. Ind. Electron. 2014, 61, 2122–2135. [CrossRef]
19. Gao, Z.; Ma, Y.; Liu, K.; Miao, X.; Zhao, Y. An Indoor Multi-Tag Cooperative Localization Algorithm Based

on NMDS for RFID. IEEE Sens. J. 2017, 17, 2120–2128. [CrossRef]
20. Ciftler, B.S.; Kadri, A.; Guvenc, I. Experimental performance evaluation of passive UHF RFID systems under

interference. In Proceedings of the IEEE International Conference on RFID Technology and Applications
(RFID-TA), Tokyo, Japan, 16–18 September 2015; pp. 81–86. [CrossRef]

21. Zheng, X.; Liu, H.; Yang, J.; Chen, Y.; Martin, R.P.; Li, X. A Study of Localization Accuracy Using Multiple
Frequencies and Powers. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 1955–1965. [CrossRef]

22. Ni, L.M.; Liu, Y.; Lau, Y.C.; Patil, A.P. LANDMARC: Indoor location sensing using active RFID.
In Proceedings of the First IEEE International Conference on Pervasive Computing and Communications.
(PerCom 2003), Fort Worth, TX, USA, 23–26 March 2003; pp. 407–415. [CrossRef]

23. Zhao, Y.; Liu, Y.; Ni, L.M. VIRE: Active RFID-based Localization Using Virtual Reference Elimination.
In Proceedings of the International Conference on Parallel Processing (ICPP 2007), Xi’an, China, 10–17
September 2007; pp. 56–56. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2018.2871960
http://dx.doi.org/10.1109/TMTT.2019.2901447
http://dx.doi.org/10.1109/JRFID.2019.2924346
http://dx.doi.org/10.1109/MMM.2011.942730
http://dx.doi.org/10.1109/GLOCOMW.2016.7848994
http://dx.doi.org/10.1109/TMTT.2011.2141147
http://dx.doi.org/10.1109/TSP.2003.814469
http://dx.doi.org/10.1109/MSP.2005.1458287
http://dx.doi.org/10.1109/TVT.2016.2589923
http://dx.doi.org/10.1109/JSAC.2015.2430172
http://dx.doi.org/10.1109/TSP.2011.2152400
http://dx.doi.org/10.1109/JIOT.2019.2907555
http://dx.doi.org/10.1109/JIOT.2017.2699976
http://dx.doi.org/10.1109/JSEN.2016.2624314
http://dx.doi.org/10.1109/TIE.2013.2264785
http://dx.doi.org/10.1109/JSEN.2017.2664338
http://dx.doi.org/10.1109/RFID-TA.2015.7379802
http://dx.doi.org/10.1109/TPDS.2013.281
http://dx.doi.org/10.1109/PERCOM.2003.1192765
http://dx.doi.org/10.1109/ICPP.2007.84


Sensors 2020, 20, 3933 28 of 30

24. Ni, W.; Xiao, W.; Toh, Y.K.; Tham, C.K. Fingerprint-MDS based algorithm for indoor wireless localization.
In Proceedings of the 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications, Istanbul, Turkey, 26–29 September 2010; pp. 1972–1977. [CrossRef]

25. Kumar, V.; Arablouei, R.; Jurdak, R.; Kusy, B.; Bergmann, N.W. RSSI-based self-localization with perturbed
anchor positions. In Proceedings of the IEEE 28th Annual International Symposium on Personal, Indoor,
and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017; pp. 1–6. [CrossRef]

26. Soro, B.; Lee, C. Joint Time-Frequency RSSI Features for Convolutional Neural Network-Based Indoor
Fingerprinting Localization. IEEE Access 2019, 7, 104892–104899. [CrossRef]

27. Fu, Y.; Chen, P.; Yang, S.; Tang, J. An Indoor Localization Algorithm Based on Continuous Feature Scaling
and Outlier Deleting. IEEE Internet Things J. 2018, 5, 1108–1115. [CrossRef]

28. Hoang, M.T.; Yuen, B.; Dong, X.; Lu, T.; Westendorp, R.; Reddy, K. Recurrent Neural Networks for Accurate
RSSI Indoor Localization. IEEE Internet Things J. 2019, 6, 10639–10651. [CrossRef]

29. Li, H.; Qian, Z.; Tian, C.; Wang, X. TILoc: Improving the robustness and accuracy for fingerprint-based
indoor localization. IEEE Internet Things J. 2020, 1. [CrossRef]

30. Guidi, F.; Decarli, N.; Dardari, D.; Mani, F.; D’Errico, R. Millimeter-Wave Beamsteering for Passive RFID Tag
Localization. IEEE J. Radio Freq. Identif. 2018, 1. [CrossRef]

31. Vari, M.; Cassioli, D. mmWaves RSSI indoor network localization. In Proceedings of the IEEE International
Conference on Communications Workshops (ICC), Sydney, Australia, 10–14 June 2014; pp. 127–132.
[CrossRef]

32. El-Absi, M.; Alhaj-Abbas, A.; Abuelhaija, A.; Solbach, K.; Kaiser, T. Chipless RFID Infrastructure Based
Self-Localization: Testbed Evaluation. IEEE Trans. Veh. Technol. 2020, 1. [CrossRef]

33. Björnson, E.; Larsson, E.G.; Marzetta, T.L. Massive MIMO: ten myths and one critical question.
IEEE Commun. Mag. 2016, 54, 114–123. [CrossRef]

34. Lu, L.; Li, G.Y.; Swindlehurst, A.L.; Ashikhmin, A.; Zhang, R. An Overview of Massive MIMO: Benefits and
Challenges. IEEE J. Sel. Top. Signal Process. 2014, 8, 742–758. [CrossRef]

35. Errington, A.F.C.; Daku, B.L.F.; Prugger, A.F. Initial Position Estimation Using RFID Tags: A Least-Squares
Approach. IEEE Trans. Instrum. Meas. 2010, 59, 2863–2869. [CrossRef]

36. Shirehjini, A.A.N.; Yassine, A.; Shirmohammadi, S. An RFID-Based Position and Orientation Measurement
System for Mobile Objects in Intelligent Environments. IEEE Trans. Instrum. Meas. 2012, 61, 1664–1675.
[CrossRef]

37. Xu, H.; Wu, M.; Li, P.; Zhu, F.; Wang, R. An RFID Indoor Positioning Algorithm Based on Support Vector
Regression. Sensors 2018, 18, 1504. [CrossRef]

38. Xu, H.; Ding, Y.; Li, P.; Wang, R.; Li, Y. An RFID Indoor Positioning Algorithm Based on Bayesian Probability
and K-Nearest Neighbor. Sensors 2017, 17, 1806. [CrossRef]

39. Wang, J.; Ma, Y.; Zhao, Y.; Liu, K. A Multipath Mitigation Localization Algorithm Based on MDS for Passive
UHF RFID. IEEE Commun. Lett. 2015, 19, 1652–1655. [CrossRef]

40. Wang, C.; Shi, Z.; Wu, F. Intelligent RFID Indoor Localization System Using a Gaussian Filtering Based
Extreme Learning Machine. Symmetry 2017, 9, 30. [CrossRef]

41. Koike-Akino, T.; Wang, P.; Pajovic, M.; Sun, H.; Orlik, P.V. Fingerprinting-Based Indoor Localization With
Commercial MMWave WiFi: A Deep Learning Approach. IEEE Access 2020, 8. [CrossRef]

42. Hu, A.; Lv, T.; Gao, H.; Zhang, Z.; Yang, S. An ESPRIT-Based Approach for 2-D Localization of Incoherently
Distributed Sources in Massive MIMO Systems. IEEE J. Sel. Top. Signal Process. 2014, 8, 996–1011. [CrossRef]

43. Savic, V.; Larsson, E.G. Fingerprinting-Based Positioning in Distributed Massive MIMO Systems.
In Proceedings of the IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Boston, MA, USA,
6–9 December 2015; pp. 1–5. [CrossRef]

44. Guidi, F.; Guerra, A.; Dardari, D. Personal Mobile Radars with Millimeter-Wave Massive Arrays for Indoor
Mapping. IEEE Trans. Mob. Comput. 2016, 15, 1471–1484. [CrossRef]

45. Guidi, F.; Guerra, A.; Dardari, D. Millimeter-wave massive arrays for indoor SLAM. In Proceedings of the
IEEE International Conference on Communications Workshops (ICC), Sydney, Australia, 10–14 June 2014;
pp. 114–120. [CrossRef]

46. Garcia, N.; Wymeersch, H.; Larsson, E.G.; Haimovich, A.M.; Coulon, M. Direct Localization for Massive
MIMO. IEEE Trans. Signal Process. 2017, 65, 2475–2487. [CrossRef]

http://dx.doi.org/10.1109/PIMRC.2010.5671598
http://dx.doi.org/10.1109/PIMRC.2017.8292600
http://dx.doi.org/10.1109/ACCESS.2019.2932469
http://dx.doi.org/10.1109/JIOT.2018.2795615
http://dx.doi.org/10.1109/JIOT.2019.2940368
http://dx.doi.org/10.1109/JIOT.2020.2964875
http://dx.doi.org/10.1109/JRFID.2018.2810836
http://dx.doi.org/10.1109/ICCW.2014.6881184
http://dx.doi.org/10.1109/TVT.2020.2990480
http://dx.doi.org/10.1109/MCOM.2016.7402270
http://dx.doi.org/10.1109/JSTSP.2014.2317671
http://dx.doi.org/10.1109/TIM.2010.2046366
http://dx.doi.org/10.1109/TIM.2011.2181912
http://dx.doi.org/10.3390/s18051504
http://dx.doi.org/10.3390/s17081806
http://dx.doi.org/10.1109/LCOMM.2015.2450217
http://dx.doi.org/10.3390/sym9030030
http://dx.doi.org/10.1109/ACCESS.2020.2991129
http://dx.doi.org/10.1109/JSTSP.2014.2313409
http://dx.doi.org/10.1109/VTCFall.2015.7390953
http://dx.doi.org/10.1109/TMC.2015.2467373
http://dx.doi.org/10.1109/ICCW.2014.6881182
http://dx.doi.org/10.1109/TSP.2017.2666779


Sensors 2020, 20, 3933 29 of 30
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