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Abstract: Heart rate variability (HRV), using electrocardiography (ECG), has gained popularity as 
a biomarker of the stress response. Alternatives to HRV monitoring, like photoplethysmography 
(PPG), are being explored as cheaper and unobtrusive non-invasive technologies. We report a new 
wireless PPG sensor that was tested in detecting changes in HRV, elicited by a mentally stressful 
task, and to determine if its signal can be used as a surrogate of ECG for HRV analysis. Data were 
collected simultaneously from volunteers using a PPG and ECG sensor, during a resting and a 
mentally stressful task. HRV metrics were extracted from these signals and compared to determine 
the agreement between them and to determine if any changes occurred in the metrics due to the 
stressful task. For both tasks, a moderate/good agreement was found in the mean interbeat intervals, 
SDNN, LF, and SD2, and a poor agreement for the pNN50, RMSSD|SD1, and HF metrics. The 
majority of the tested HRV metrics obtained from the PPG signal showed a significant decrease 
caused by the mental task. The disagreement found between specific HRV features imposes caution 
when comparing metrics from different technologies. Nevertheless, the tested sensor was successful 
at detecting changes in the HRV caused by a mental stressor. 

Keywords: heart rate variability; pulse rate variability; photoplethysmography; heart rate signal; 
inter-beat intervals; James One; Polar H10; wearable devices 

 

1. Introduction 

Heart rate variability (HRV) is the fluctuation over time of consecutive heartbeats and is 
accepted as a non-invasive biomarker of the activity of the autonomous nervous system [1–3]. The 
analysis of the HRV has been used as a diagnosis and a clinical research tool, since changes in HRV 
have been associated with several cardiovascular, metabolic, and mental disorders [2–5]. This marker 
has also shown potential for the monitoring of stress and pain responses and has been increasingly 
used in the sports field, as a tool to improve athletic performance [3,6–10]. 
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The ECG signal is considered the gold standard from which the R-peaks from the QRS-complex 
can be identified using automatic computerized algorithms. The distance between these peaks is then 
used to create time-series of intervals between successive heartbeats (RR intervals) [4,11,12]. In 
clinical settings, these time records can go as far as 24 h, as they better reflect the natural fluctuations 
that occur on the body during the day. In the research field, a more straightforward approach is often 
taken, and most studies use data from five-minute (short-term) records. Time-domain, frequency-domain, 
and non-linear analysis are then used to extract different HRV metrics from these records [13]. 

PPG is a non-invasive optical method that allows the monitorization of the blood volume 
changes that occur on a micro vascularized tissue each time a heartbeat occurs [14,15]. Even though 
it was invented decades ago, this technique had a resurgence in recent years, as the need for smaller, 
simple, inexpensive, non-invasive methodologies for cardiovascular system assessment has 
increased, as well as major advances in a large array of technologies (e.g., optoelectrical components) 
and signal processing techniques [4,15]. This method has been used on various clinical applications 
like “cardiovascular system assessment, vital sign monitoring and blood oxygen detection.” [14].  

The pulse wave signal generated from a PPG sensor and the pulse cycle intervals (PP intervals) 
extracted from it has been studied as a potential alternative to the ECG for HRV analysis, on what is 
frequently called pulse rate variability (PRV) analysis [4,12,14,16,17]. PPG sensors are generally 
cheaper, more readily available, and unobtrusive when compared to traditional or even portable ECG 
systems. These sensors can be easily placed on the wrist, finger, or ear, making them a hypothetically 
better alternative for the ambulatory monitorization of the HRV [4,12,14,16,17]. However, a 
consensus about the validity of the PRV as a surrogate of HRV has still not been reached. In their 
reviews, Schäfer and Vagedes [4] and Mejía et al. [16] explore this subject in detail, identifying studies 
were total, partial or no agreement was found between the compared metrics. These authors pointed 
out several technical and physiological factors that could impact the PRV analysis and in turn, explain 
the lack of agreement between PRV and HRV metrics. These factors include the sampling rate and 
the wavelength of the light used by the device, the fiducial point chosen to calculated the PP intervals, 
the processing technique used to obtain the frequency domain metrics, factors that have a negative 
impact in the signal quality (making harder the correct detection of the PP intervals) like motion 
artifacts, tone, and temperature of the skin, ambient light, and cardiovascular characteristics of the 
person. Another important factor is the time that it takes for the blood to travel from the heart to the 
place where the pulse wave signal is being recorded—the pulse transit time (PTT). The PTT can be 
influenced by several factors like the posture of the person when the signal is recorded, age, blood 
pressure, breathing rate, underlying heart or autonomic diseases, the execution of a physical or 
mental task, or even the sensor location (incongruences can be found in the PRV obtained from 
different body parts) [4,12–21]. 

The objective of this work is the validation of a recently released Bluetooth PPG sensor—James 
One (MindProber Labs, Porto, Portugal) for the ambulatory monitorization of a set of the most 
commonly used HRV metrics, that will be calculated from PP intervals provided by the sensor. As a 
reference device, we will use the Polar H10 (Polar Electro Oy, Kempele, Finland), a new iteration of 
the previously validated polar chest straps that makes use of ECG to provide RR intervals 
[1,3,6,11,22]. In this study, data will be acquired simultaneously using these two devices, and the 
agreement between the HRV features calculated from the RR and PP intervals will be determined. If 
an agreement is found, the James One PPG sensor can be used interchangeably with the Polar H10 
for the ambulatory monitorization of the collection of selected HRV metrics. Furthermore, data will 
be collected during two different situations: at rest and through the execution of a mental stress-
inducing task—the Stroop Color-Word Test (SCWT). The aim is to find if a mental stressor has an 
impact on the agreement between the data collected using these devices, as a reduced agreement has 
been reported during the execution of this kind of task [4]. The gathered data will also be used to 
determine if, regardless of the presence or absence of agreement among the HRV metrics obtained 
from two different technologies (ECG and PPG), the data obtained from the James One can still be 
used to detect changes that occur in HRV parameters instigated by the execution of a mentally 
stressful task. 
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2. Materials and Methods 

2.1. Participants 

Twenty-two volunteers were initially recruited. Exclusion criteria included the use of medication 
or any health condition that could induce abnormal changes in the heart rate signal. Data from four 
participants had to be excluded, as the collected signal had artifacts that would render the HRV analysis 
impossible, leaving our study with a total of 18 participants (age 31.1 ± 7.19 years old, 11 females and 7 
males). 

2.2. Software and Scripts Development 

All the software and scripts developed for the data acquisition, visualization, processing, statistical 
analysis, and the computerized version of the SCWT were created using the Python programming 
language (Python Software Foundation, Version 3.7.4, available at https://www.python.org/) and the 
packages and modules that are part of the SciPy ecosystem [23–27]. 

2.3. Experimental Setup and Data Acquisition 

The main steps of the experimental setup and data acquisition are represented in Figure 1. The 
experiment consisted of two five-minute tasks, separated by a one-minute break. Both tasks were 
performed with the participants in a sitting position. Participants could breathe freely. During the first 
task, the volunteers were asked to rest for five minutes. After a one-minute break, the participants were 
requested to perform a computerized version of the SCWT, developed specifically for the task. This test 
was used because it is easy to implement and has been shown to be an adequate mental stressor by 
previous studies, in which feelings of increased distress, heart rate, and the galvanic skin response have 
been reported [3,28–30]. 

 

 

Figure 1. Representation of the experimental setup that was used for data acquisition. The experiment 
entailed two tasks with a duration of five minutes, separated by a one-minute break. Data was 
acquired and transmitted to a computer via Bluetooth low energy (BLE) using the Polar H10 and 
James One heart rate sensors, simultaneously. 

Data acquisition took place during both tasks and was performed simultaneously using a Polar 
H10 ECG sensor with the original Pro Strap and the James One PPG sensor (Figure 2). Both devices 
have a sampling rate of 1 kHz and proprietary algorithms embedded in their microcontrollers, that can 
detect when a heartbeat occurs, conveying directly via BLE the inter-beat intervals. To obtain the PP 
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intervals, the James One sensor initially filters the PPG signal using a low-pass filter at 5 Hz 
(Butterworth, 2nd order) to avoid high-frequency noise. Its interval detection algorithm is applied to 
the first derivative of the filtered PPG signal to avoid baseline drifts. Then, the derivative signal is 
squared to increase the signal-to-noise ratio. The intervals are detected between derivative peaks, which 
are identified as the maximum values of the squared derivative signal above a dynamic threshold. 

Following the guidelines provided in the Polar H10 instructions manual, the electrode area of the 
strap was moistened to improve signal acquisition and was adjusted under the chest. To minimize 
movement artifacts, the James One sensor was placed in the left earlobe, held in place with a magnet. 
The data from both devices was transmitted via BLE to a computer containing a software application 
specifically developed for the task. This application includes a graphical user interface and allows data 
to be recorded, timestamped, and visualized in real-time. 

 

(a) 

 

(b) 

 
 

Figure 2. (a) James One held in place with a magnet on an earlobe. (b) Representation of the main 
components of the James One PPG sensor. 

2.4. Data Processing 

2.4.1. Intervals Synchronization 

Although the same application was used to receive and timestamp the PP and RR intervals, real-
time synchronization of the data was not possible. One of the possible factors for this 
asynchronization is the different way these devices transmit data using the BLE protocol. Every 
second, the Polar H10 sends an array that contains the RR intervals that occurred in that time window. 
On the other hand, James One sends a PP interval each time a heartbeat occurs. This, allied with other 
uncontrollable factors, like potential delays in data transmission, the fact that BLE protocol does not 
provide timestamped intervals (data is timestamped when it is received on the acquisition software), 
and the delay originated from the different nature of the signals (PTT), makes it necessary to align 
the intervals before data analysis takes place. A script was created that performs this task 
automatically, by finding the position where the minimum variance and the maximal cross-
correlation between the two time-series (RR and PP intervals) are present. 

2.4.2. Artifacts correction 

Software was developed to detected and correct potential artifacts, either originated from technical 
problems (e.g., motion artifacts) or from a physiological origin (e.g., ectopic beats), in the obtained 
intervals to improve the overall quality of the HRV analysis. A PP or RR interval would be considered 
abnormal if its value was outside the 350–1350 milliseconds range or if it deviated 20% from the mean 
of the preceding and the subsequent interval [31,32]. Following other studies' recommendations, 
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abnormal intervals were replaced with values interpolated from adjacent intervals using linear 
interpolation (Figure 3) [2,32,33]. 

 

 

Figure 3. The interface of the software developed for the detection and correction of abnormal intervals. 

2.4.3. HRV Features Calculations 

Time and frequency domain and non-linear HRV measurements were calculated from the 
PP and RR intervals of each participant. The following time-domain features were used to 
quantify the amount of HRV in the five-minute time windows (short-term measurement): the 
mean of the intervals, the standard deviation of the intervals (SDNN), the percentage of adjacent 
intervals that differ more than 50 milliseconds (pNN50), and the root mean square of successive 
differences between heartbeats (RMSSD) “obtained by first calculating each successive time 
difference between heartbeats in ms. Then, each of the values is squared and the result is 
averaged before the square root of the total is obtained.” [13]. All the chosen time-domain 
features are expressed in milliseconds, except for the pNN50, which is represented in percentage 
[1–3,13,34]. To obtain the frequency–domain features, power spectral density was estimated 
using the Lomb–Scargle periodogram method. Only two of the three distinguishable core 
spectral components were used as features: the low frequency (LF; 0.04–0.15 Hz) and the high 
frequency (HF; 0.15–0.4 Hz) bands. The very-low-frequency band (0.003–0.04 Hz) was not 
included since short-term records were used. All the frequency domain measures are expressed 
in milliseconds squared (ms2) [1–3,13,35]. For the non-linear HRV analysis, where the 
unpredictability of the five-minute records is evaluated, scatter plots were created by plotting 
the current interval against the next interval—Poincaré plot. An ellipse centered on the average 
of the intervals was plotted. From this ellipse, the following HRV parameters were extracted: 
standard deviation 1 (SD1) that represents the ellipse width and standard deviation 2 (SD2) that 
represents its length. All the non-linear metrics are expressed in milliseconds [13,36]. Some 
studies use RMSSD and SD1 as independent metrics, apparently unaware that one can be 
obtained from the other using a constant multiplication. Even though these metrics produce 
similar results, we decided to include both, but we will refer to these two metrics as (one) 
RMSSD|SD1 in the discussion [37]. 
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2.5. Data and Statistical Analysis 

2.5.1. Interbeat Intervals Description 

To get a better understanding of the obtained intervals using the James One and the Polar H10 
during the execution of the required tasks, all the participants' intervals were pooled together and 
spread into four groups, called James One—Rest, Polar H10—Rest, James One—SCWT, and Polar 
H10—SCWT. For each of these groups, a histogram with the intervals was plotted, and descriptive 
statistics were performed. 

2.5.2. Determination of the Agreement between HRV Features 

For the analysis of the agreement between the HRV features extracted from the intervals we 
followed a mixed approach and combined a set of different methods to determine the agreement. 

First, we compared the relative variability between the HRV metrics extracted from the intervals 
using the James One and the Polar H10. This comparison was performed using the differences between 
the coefficients of variation (CV) calculated from the means and standard deviations (SD) of each pair of 
HRV features (e.g., SDNN of James One at rest is paired with SDNN of Polar H10 at rest for comparisons).  

As a measure of effect size, we included Cohen’s d. This value was calculated using the differences 
between the means for each pair of HRV metrics divided from their pooled SDs. Since we had a small 
sample size, we had to apply a correction factor, in what is normally called the Hedges’s g (Hg). Using 
Cohen’s guidelines (that depend on the situation), an Hg value equal to 0.2 represents a small effect, 0.5 
a medium effect, and 0.8 a large effect [38,39]. 

Lin’s Concordance Correlation Coefficient (LCCC) was used to measure the agreement between 
the HRV metrics when normal distribution was present (Shapiro–Wilk test, p > 0.05) [40,41]. The 
following criteria for the interpretation of the LCCC was proposed by McBride [42]: almost perfect 
agreement if LCCC > 0.99, substantial agreement if 0.99 > LCCC > 0.95, moderate agreement if 0.95 > 
LCCC > 0.90, and poor agreement if LCCC < 0.9 [41,42]. However, and since these are merely a 
suggestion, we applied a more conservative approach, and considered that there was a poor agreement 
if LCCC < 0.95. 

Another recommended procedure to assess the agreement between two methods is the Bland–
Altman analysis [4,43–45]. This method does not require that the measurements obtained from the 
methods follow a normal distribution, but it assumes that the differences between the measures do [44,45]. 
Not all the differences between the HRV metrics obtained followed a normal distribution (Shapiro–
Wilk test, p < 0.05). Even though a non-parametric approach is described by Bland et al. and used by 
the British Hypertension Society, its implementation was not possible as we could not find reference 
values for the maximum acceptable values to build the limits for each of HRV metric [40,45,46]. 
Nevertheless, Bland et al. suggest that “a non-normal distribution of differences may not be as serious 
here as in other statistical contexts”, so we decided to include the parametric approach of the Bland–
Altman analysis [45]. In this approach, the average of the HRV metrics from both devices was plotted 
against the difference between methods. The mean of the differences between measurements, also 
known as bias or systematic error, was calculated and plotted, as well as the associated upper and lower 
limits of agreement (LoA, bias ± (1.96 × SD of the bias)) and the associated confidence intervals (CI, 95%) 
[43–45]. The Bland–Altman ratio (BA ratio) was calculated dividing half the range of the LoA by the 
mean of the pair of means of each HRV metric. Some authors suggest that a ratio lower than 0.1 indicates 
a good agreement, values higher than 0.1 and lower than 0.2 a moderate agreement, and higher than 
0.2 a poor agreement [13,34,47]. 

An additional employed strategy was to plot all the pairs of HRV metrics against a 45° line (that 
would represent a perfect agreement) to visually evaluate how they deviate from it. 

2.5.3. Comparison of HRV metrics during Rest and SCWT 

To determine if James One could be used to detect changes in the HRV metrics caused by a 
mental stressor, we compared the data obtained from the resting task with the one from the SCWT. 
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This comparison was also performed with the data obtained from the Polar H10, making a total of 
two comparison groups: (1) James One—Rest vs SCWT; and (2) Polar H10—Rest vs SCWT. 

All the time and frequency domain features described in Section 2.4.3 were used. The use of 
absolute values for HF and LF alone can lead to an incorrect interpretation of results, so we also 
included the LF/HF ratio [30,48]. Only the nonlinear feature SD2 was included as using both RMSSD 
and SD1 is redundant [37]. 

Box plots were used to display the calculated HRV features (Rest vs SCTW). Each box plot is 
divided by a bar that represents the median (50th percentile). The spaces between the middle bar and 
the top and the bottom of the box indicate the 75th and 25th percentiles, respectively. The 
interquartile range (IQR) is the distance between the 75th and 25th percentiles. The whiskers that 
extend from the boxes represent the maximum (75th + 1.5 × IQR) and the minimum (25th - 1.5 × IQR) 
limits, in which a value is not regarded as an outlier. Values plotted outside these whiskers are 
considered outliers and are shown as ♦. Wilcoxon signed rank was used to compare the HRV metrics, 
as not all of them had a normal distribution. A p < 0.05 was considered significant. As a measure of 
effect size, we included the common-language effect size (CLES), that will tell us “the probability that 
a score sampled at random from one distribution will be greater than a score sampled from some other 
distribution.” [49]. 

3. Results 

All the participants completed the required tasks. After the data was processed, four of the 22 
participants had to be excluded due to anomalies (signal artifacts and abnormal PP/RR intervals) in 
the collected data that would render the HRV analysis and comparison impossible. Two of the 
participants had one gap at the end of their records using the James One, which could not be fixed 
with interpolation, so these gaps and the corresponding RR intervals obtained from the Polar H10 
were removed so both data records could have the same length. For one of the participants, this gap 
was located at the end of task 1 (rest) and accounted for 20 seconds. The other’s participants' gap was 
present at the end of task 2 (SCWT) and accounted for 30 seconds. From the 18 participants, a total of 
14,296 intervals were obtained using the devices during the required tasks, 6976 at rest, and 7320 
during the SCWT. 

As shown in Table 1, the developed software detected 12 (0.17%) and 7 (0.1%) abnormal intervals 
in the James One and Polar H10 recordings during the task 1 (rest), respectively. During task 2 
(SCWT), 9 (0.12%) errors were found in the James One intervals and 2 (0.03%) in the Polar H10. 

Table 1. The number of intervals obtained using both devices during the required tasks and errors 
detected using the developed software. 

 Number of Intervals 
Errors in the Intervals (%) 

James One Polar H10 
Rest 6976 12 (0.17) 7 (0.10) 

SCWT 7320 9 (0.12) 2 (0.03) 
Total 14,296 21 (0.15) 9 (0.06) 

The minimum, maximum, mean, SD, skewness, kurtosis, and the CVs of the obtained PP and 
RR intervals are reported in Table 2. Both devices displayed similar CVs during the proposed tasks. 
The histograms in Figure 4 show the density of the distribution of the intervals from both devices 
during the required tasks. The intervals acquired at rest appear to have a unimodal distribution while 
during the SCTW the plot gives the idea of a bimodal distribution. 
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Table 2. Descriptive statistics of the intervals obtained from the James One and Polar H10 at rest and 
during the SCWT. 

 Nº. of 
Intervals 

Min. 
(ms) 

Max. 
(ms) 

Mean 
(ms) 

SD 
(ms) 

Skewness Kurtosis 
CV 
(%) 

James One—Rest 6976 555 1180 770 94 0.34 –0.33 12.2 
Polar H10—Rest 6976 563 1180 774 93 0.34 –0.31 12.0 

James One—
SCWT 

7320 536 1012 732 88 0.042 –0.81 12.1 

Polar H10—
SCWT 

7320 547 1013 736 88 0.039 –0.82 11.9 

 

 
 

Figure 4. Histograms with a fitted kernel density estimation of the intervals obtained from the devices 
at rest and during the SCWT. 

3.1. Agreement of the HRV metrics at rest 

Table 3 shows the mean and the associated SD, differences between the CVs of the James One 
and the Polar H10, Hg value, LCCC, the mean of the differences between measurements (bias) and 
the associated SD, LoA from the Bland–Altman analysis, and the BA ratio for all the pairs of HRV 
metrics obtained at rest. The criteria used to interpret the data are also shown. Figure 5 shows the 
pair of HRV metrics at rest plotted against a 45° line (that would represent a perfect agreement). The 
Bland–Altman plots are shown in Figures A1 and A2 (Appendix A). 
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Table 3. Mean and the associated SD, differences between the CVs of the James One (CVJ) and the Polar 
H10 (CVP), Hg value, mean differences (bias) and the associated SD, for all the pairs of HRV metrics 
obtained at rest. Using Cohen’s guidelines, an Hg value equal to 0.2 represents a small effect, 0.5 a 
medium effect, and 0.8 a large effect [38,39]. The agreement between the parameters is shown as LCCC. 
Values higher than 0.99 represent an almost perfect agreement, substantial and moderate agreement 
when lower than 0.99 and higher than 0.95, and a poor agreement if lower than 0.95 [41, 42]. BA ratios 
lower than 0.1 represent a good agreement, higher than 0.1 and lower than 0.2 represent a moderate 
agreement, and higher than 0.2 a poor agreement [13,34,47]. 

 
Mean ± 

SD 
James One 

Mean ± 
SD 

Polar H10 

CVJ – 
CVP 
(%) 

Hg LCCC Bias ± SD  
LoA  

Upper; 
Lower 

BA 
Rati

o 

Mean int. (ms) 778 ± 80.8 782 ± 81.1 0.015 −0.046 0.998 
−3.80 ± 

0.45 
−2.93; −4.68 0.005 

SDNN (ms) 49.6 ± 17.3 47.4 ± 17.4 −1.70 0.123 0.989 2.19 ± 1.38 4.88; −0.50 0.055 
pNN50 (%) 16.2 ± 14.3 11.5 ± 13.4 −27.0 0.327 - 4.64 ± 4.58 13.6; −4.33 0.648 

RMSSD (ms) 35.8 ± 15.9 31.0 ± 16.2 −7.34 0.292 0.944 4.80 ± 2.48 9.65; −0.060 0.145 

LF (ms2) 593 ± 606  566 ± 575 0.64 0.0436 - 
 26.4 ± 

45.2 
115; −62.3 0.153 

HF (ms2) 462 ± 443  350 ± 398 −17.1 0.2581 - 111 ± 68.7 246; −23.4 0.331 
SD1 (ms) 25.4 ± 11.3 21.9 ± 11.4 −7.34 0.292 0.944 3.40 ± 1.75 6.84; −0.04 0.145 
SD2 (ms) 65.1 ± 22.7 63.1 ± 23 −1.00 0.088 0.994 2.04 ± 1.38 4.74; −0.67 0.042 

 

Figure 5. Pairs of HRV metrics obtained at rest plotted against a 45° line (that would represent a 
perfect agreement). The HRV metrics obtained from the James One are represented on the x-axis and 
the ones from the Polar H10 on the y-axis. 

3.2. Agreement of the HRV Metrics during the SCWT 

Table 4 shows the mean and the associated SD, differences between the CVs of the James One 
and the Polar H10, Hg value, LCCC, the mean of the differences between measurements (bias) and 
the associated SD, LoA from the Bland–Altman analysis, and the BA ratio for all the pairs of HRV 
metrics obtained during the SCWT. The criteria used to interpret the data are also shown. Figure 6 
shows the pair of HRV metrics during the SCWT plotted against a 45° line (that would represent a 
perfect agreement). The Bland–Altman plots are shown in Figures A3 and A4 (Appendix A). 

Table 4. Mean and the associated SD, differences between the CVs of the James One and the Polar 
H10, Hg value, mean differences (bias) and the associated SD, for all the pairs of HRV metrics obtained 
during the SCWT. Using Cohen's guidelines, an Hg value equal to 0.2 represents a small effect, 0.5 a 
medium effect, and 0.8 a large effect [38,39]. The agreement between the parameters is shown as 
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LCCC. Values higher than 0.99 represent an almost perfect agreement, substantial and moderate 
agreement when lower than 0.99 and higher than 0.95, and a poor agreement if lower than 0.95 [41,42]. 
BA ratios lower than 0.1 represent a good agreement, higher than 0.1 and lower than 0.2 represent 
moderate agreement, and higher than 0.2 a poor agreement [13,34,47]. 

 
Mean ± 

SD 
James One 

Mean ± 
SD 

Polar H10 

CVJ – 
CVP 
(%) 

Hg LCCC Bias ± SD  
LoA  

Upper; 
Lower 

BA 
Rati

o 

Mean int. (ms) 741 ± 77.5 744 ± 77.8 0.013 −0.046 - 
−3.68 ± 

0.44 
−2.81; −4.55 0.005 

SDNN (ms) 42.5 ± 13.7 41.0 ± 13.6 −0.85 0.106 0.992 1.48 ± 0.90 3.25; −0.29 0.042 
pNN50 (%) 10.9 ± 10.1 8.3 ± 8.8 −13.8 0.274 - 2.65 ± 3.65 9.80; −4.51 0.744 

RMSSD (ms) 30.7 ± 11.3 27.3 ± 11.5 −5.16 0.289 0.941 3.36 ± 2.01 7.29; −0.57 0.136 
LF (ms2) 463 ± 389 444 ± 370 0.51 0.049 - 19.0 ± 28.2 74.2; −36.2 0.121 
HF (ms2) 279 ± 214 220 ± 186 −7.14 0.286 - 58.7 ± 45.4 148; −30.4 0.357 
SD1 (ms) 21.7 ± 7.97 19.3 ± 8.1 −5.16 0.289 0.941 2.38 ± 1.42 5.16; −0.405 0.136 
SD2 (ms) 55.6 ± 18.9 54.3 ± 18.7 −0.31 0.070 0.996 1.35 ± 0.93 3.17; −0.47 0.033 

 

Figure 6. Pairs of HRV metrics obtained during the SCWT plotted against a 45º line (that would 
represent a perfect agreement). The HRV metrics obtained from the James One are represented on the 
x-axis and the ones from the Polar H10 on the y-axis. 

3.3. Comparison between HRV Metrics at Rest and SCWT 

Figure 7 and Table 5 show the results of the comparison between the HRV metrics obtained 
during the rest task and the SCWT. Overall, there was a decrease in all of the metrics for both devices 
when comparing the values obtained from the resting task with the values from the SCWT, except 
for the LF/HF ratio, which increased in James One. For James One, this decrease was significant for 
the mean intervals, SDNN, pNN50, RMSSD, HF, and SD2. As for the Polar H10, the decreases were 
significant for the mean intervals, SDNN, HF, and SD2. 
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Figure 7. Box plots of the comparison between the HRV metrics obtained during the rest task and the 
SCWT. Each boxplot is divided by a bar that represents the median (50th percentile). The spaces 
between the middle bar and the top and the bottom of the box indicate the 75th and 25th percentiles, 
respectively. The IQR is the distance between the 75th and 25th percentiles. The whiskers that extend 
from the boxes represent the maximum (75th + 1.5 × IQR) and the minimum (25th - 1.5 × IQR) limits, 
in which a value is not regarded as an outlier. Values plotted outside these whiskers are considered 
outliers and are shown as ♦. 

Table 5. Comparison of the HRV metrics obtained during the resting stage and the SCWT. A ↓ 
indicates a decrease in the HRV metrics and ↑ an increase. A p-value lower than 0.05 indicates that 
the differences between the rest and the SCTW were significant. The effect size is reported as CLES. 

 Mean int. SDNN pNN50 RMSSD LF HF LF/HF SD2 

James One 
Rest → 
SCWT 

↓; p = 0.002 
CLES = 
0.633   

↓; p = 0.005 
CLES = 

0.623 

↓; p = 0.008 
CLES = 
0.602   

↓; p = 0.017 
CLES = 

0.611   

↓; p = 0.082 
CLES = 
0.556   

↓; p = 0.003 
CLES = 
0.651   

↑; p = 
0.408 

CLES = 
0.602   

↓; p = 
0.009 

CLES = 
0.633     

Polar H10 
Rest → 
SCWT 

↓; p = 0.002 
CLES = 

0.636 

↓; p = 0.015 
CLES = 
0.623   

↓; p = 0.171 
CLES = 
0.528   

↓; p = 0.055 
CLES = 

0.571   

↓; p = 0.117 
CLES = 
0.571   

↓; p = 0.008 
CLES = 

0.605 

↓; p = 
0.931 

CLES = 
0.556 

↓; p = 
0.017 

CLES = 
0.620 

4. Discussion 

The need for unobtrusive, simple, inexpensive methodologies for cardiovascular system 
monitoring, as well as the recent boom in the wearables market, has made the PPG methodology 
resurface in the last years [3,4,10,15,50]. Even though several commercially available wearable 
devices can monitor the heart rate signal using the PPG technology, they present one or several of 
the following drawbacks: low quality of the acquired data, lack of access to the data or no information 
of the used algorithms to process the data, privacy concerns (e.g., data sold to third party companies), 
high cost, proprietary software required to obtain the data, and technical problems [3,50–52]. The 
James Ones, however, has a low price and it allows direct access to its data, which can be obtained 
using standard BLE protocols giving the developers the freedom to create their algorithms for data 
processing and analysis. 

The pulse wave signal generated by the PPG technology has been studied as a potential 
surrogate of the ECG signal for HRV analysis, but a consensus about its validity has an alternative 
has still not been reached. At resting conditions and using young and healthy participants, the 
available studies propose that this technology is a viable alternative, while others suggest that this 
technology as a tendency to overestimate some short-term variability metrics (pNN50, RMSSD, and 
HF) [4]. Several technical and physiological factors, on which the execution of mentally stressful tasks 
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is included, have been suggested as potential sources of disagreement between the PRV and HRV 
metrics [4,16]. 

In our work, we aimed to validate for the first time the HRV measurements calculated from the 
PP intervals obtained from the heart rate sensor, James One, under two different conditions, at rest 
and during a mental stress-inducing task. As a reference, we used the RR intervals provided by a 
Polar H10 chest strap, an improved version of previously validated heart rate chest straps 
[1,3,6,11,22]. Regardless of the presence or absence of agreement between the HRV metrics obtained 
from these two devices, we tried to determine if the data extracted from the James One could be used 
to detect changes caused by the execution of a mentally stressful task. 

Overall, the signal obtained from the James One and the Polar H10 appears to be good for both 
tasks, as a low number of abnormal intervals were detected. This was expected for the data collected 
from the Polar chest straps, where high signal quality is reported, even on physically demanding 
activities [1,11,22]. The motion generated artifacts are one of the most common problems in the pulse 
wave signal, but other factors like skin tone or temperature can hurt the signal quality [4,15,19,20]. 
Due to the nature of our experiment (lack of physical exertion), alike experimental conditions (e.g., 
similar skins tones and ambient temperatures), and the location of the sensor (left earlobe as opposed 
to the wrist or finger), this problem seems to have been mitigated. 

Person’s Correlation Coefficients or mean comparisons (e.g., paired t-tests) are commonly used 
in the literature for the assessment of the agreement between the intervals and the HRV metrics 
obtained from two different devices. It is important to note however that the results obtained from 
these approaches can be highly misleading and their use to evaluate the agreement between methods 
has been deflated in previous works, where better alternatives are suggested (Bland–Altman analysis 
and Lin’s Concordance Correlation Coefficient) [4,41,43–45]. The use of these (occasionally wrong) 
methodologies makes the comparison of the results between articles hard, as sometimes the authors 
suggest that there is a good agreement between methods when in fact, there is only a good 
correlation. As we mentioned in our methodology, we decided to combine different methodologies 
to study the agreement between the HRV features extracted from the PP and RR intervals as we felt 
that a single simple approach could give misleading results. 

At rest task and looking at the plots of the pairs of HRV metrics in Figure 5, it is possible to see 
that some features like the pNN50, RMSSD|SD1, and HF are overestimated by the James One, in 
comparison to the correspondent features calculated from Polar H10. The SDNN and SD2 seem to be 
slightly overestimated, the mean intervals somewhat underestimated, and the LF (although higher 
values look slightly overestimated) appears to fit the 45°. These observations are corroborated by the 
values of the bias, reported in Table 3. The mean intervals, LF and SD2 display small differences in 
their CVs, low Hg values, and, when possible to calculate, LCCC values that represent almost perfect 
agreement, and BA ratios that report a good agreement (except for the LF feature that indicates a 
moderate agreement). The pNN50 and HF metrics appear to have considerable differences in the CVs 
and Hg values. Their BA ratios seem to indicate a poor agreement. Although not high as the previous 
metrics, the differences in the CVs of the RMSSD|SD1 are still relevant when compared to the values 
from the mean intervals, LF, and SD2 metrics. This metric also shows an Hg value higher than 0.2. Its 
LCCC value suggests a poor agreement while its BA ratio a moderate agreement. The SDNN metric 
shows relatively low differences in the CVs, a small but still considerable Hg value, substantial to a 
moderate agreement in its LCCC, and a good agreement in its BA ratio. Taking all of this into account 
we considered that the mean intervals, LF, and SD2 metrics show good agreement between the James 
One and Polar H10. The SDNN appears to have a moderate agreement and the pNN50, RMSSD|SD1, 
and HF a poor agreement. 

Regarding the HRV metrics calculated from the PP and RR intervals obtained during the SCWT, 
is once again possible to see (using the plots in Figure 6) that the James One tends to overestimate the 
pNN50, RMSSD|SD1 and HF, slightly overestimate the SDNN and SD2, and marginally 
underestimate the mean intervals. Again, the LF band appears to fit the 45° (even though higher 
values look slightly overestimated). The values of the bias from Table 4 seem to support these 
observations. The mean intervals, SDNN, LF, and SD2 appear to have similarly low differences in 
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their CVs, Hg values lower than 0.2, LCCC values that indicate a perfect agreement (when available), 
and BA ratios that suggest good agreement (except for the LF that is branded as a moderate 
agreement). Although not as noticeable as in the rest task, the pNN50, RMSSD|SD1, and HF show 
noticeable differences in their CVs (in comparison to the mean intervals, SDNN, LF, and SD2 metrics) 
and Hg values. The RMSSD|SD1 LCCC value suggests a poor agreement. The BA ratios show a poor 
agreement for the pNN50 and the HF, and a moderate agreement for the RMSSD|SD1. Taking all of 
this into account we considered that the mean intervals, SDNN, LF, and SD2 metrics show a good 
agreement between the James One and Polar H10 and a poor agreement for the pNN50, RMSSD|SD1, 
and HF metrics. 

Our findings are in line with other studies that suggest a tendency for the overestimation of 
certain HRV metrics when using a PPG sensor, a disagreement between short-term variability 
parameters such as the pNN50, RMSSD|SD1, and HF, and an agreement in metrics like the mean 
intervals, SDNN, LF, and SD2 [4,16,53]. It is unlikely that the disagreement found between the metrics 
is due to technical factors, as the overall quality of the signal obtained from the James One appears 
to be good (as we have previously reported) and the sensor has a high sampling rate (1 kHz). The 
lack of agreement in the short-term variability metrics could be explained by the variations in the 
PTT caused by the unconstrained breathing rates of our participants, as suggested by Schäfer and 
Vagedes [4]. This idea is supported by other studies, like the one conducted by Chen et al. [53], where 
a comparison of the impact of different respiration modes on the agreement between PRV and HRV 
metrics was performed. They found that during paced breathing, almost all the tested metrics (mean 
intervals, SDNN, RMSSD|SD1, LF, HF, and SD2) had a moderate/good agreement. However, with 
intermittent breath holding, short-term variability metrics like the RMSSD|SD1 and HF had an 
insufficient agreement. They suggested that the maintenance of a steady breathing pace was 
translated into a reduction in the variation of the PTT, potentially decreasing the differences between 
the PRV and HRV parameters. They concluded that, regardless of the tested respiratory mode, 
parameters like means intervals, SDNN, LF, and SD2 showed a satisfactory agreement, as opposed 
to short-term metrics [53]. Weinschenk et al. [34] also reported stronger agreements between PRV 
and HRV metrics when the breathing conditions were controlled in comparison to spontaneous 
breathing rates. Although the execution of a mentally stressful task had an impact on the values of 
some of the tested HRV features (Table 5), the agreement between the metrics did not appear to suffer 
any alteration apart from the SDNN metric, which improved from a moderate to a good agreement. 
As previously shown in another study and has seen in our results, reporting RMSSD and SD1 is 
redundant, as both metrics show similar results [37]. 

As shown in Table 5 and Figure 7, the HRV metrics extracted from the PP intervals obtained 
from the James One seem to present adequate sensitivity to detect changes in the HRV caused by a 
mental stressor. Almost all the tested metrics had a decrease that was deemed significant (mean 
intervals, SDNN, pNN50, RMSSD, HF, and SD2). For these metrics, an average of CLES ≈ 0.63 
indicates that there is a 63% chance that if a value is randomly taken from the rest task, it will be 
greater than a value randomly sampled from the SCTW task [49]. Although there was a decrease in 
the LF and an increase in the LF/HF ratio, these alterations were not significant. These results are in 
line with evidence from other studies that use mental stressors, where decreases in the heartbeat 
intervals, SDNN, pNN50, RMSSD, absolute values of HF and LF and increases of LF/HF ratios are 
reported [8,30,54,55]. Even though the data obtained from the Polar H10 indicates a decrease in all 
the tested metrics due to the execution of the SCWT, these changes were only significant for the mean 
intervals, SDNN, HF, and SD2 (CLES ≈ 0.62). Oddly enough, the LF/HF suffered a slight (non-
significant) decrease. Interestingly, although all metrics with moderate to good device agreement 
present similar differences between tasks, the features pNN50 and RMSSD, poorly congruent among 
devices, seems to discriminate tasks clearly when calculated from James One. 

It is worth noticing that a poor agreement among some of the tested metrics does not mean that 
the signal obtained from the James One sensor lacks quality or is devoid of use for the monitoring of 
changes in HRV metrics with poor concordance. This only tells us that these metrics cannot be used 
interchangeably with the ones obtained from the Polar H10. Furthermore, the poor agreement in 
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some metrics seems to result from the nature of the signal itself, as other studies report similar results 
[4,16]. In fact, considering that anxiety and stress states have been described as having a decreasing 
effect on HRV, the metrics calculated from James One seem to be often more sensitive to the stress-
induction of the SCWT task, as seen in the results of Table 5, were the James One was able to 
significantly detect changes in the pNN50 and RMSSD, whilst the Polar H10 was not [8]. 
Nevertheless, some features extracted from the intervals provided from the James One, like the mean 
intervals, LF, and SD2, and, to a certain degree, the SDNN, can be used interchangeably with the 
features obtained from the Polar H10, that uses ECG. 

5. Conclusions 

At rest and during the execution of the SCTW, there was good agreement between the mean 
intervals, LF, and SD2 metrics extracted from the PP intervals provided by the James One and the RR 
intervals obtained from the Polar H10. As for the SDNN metric, there was a good agreement during 
the SCTW and a moderate agreement at rest. Metrics that reflect short-term variability, like the 
pNN50, RMSSD|SD1, and HF appear to have a poor agreement between sensors and seem to be 
overestimated when using PP intervals, in comparison to the correspondent features calculated from 
RR intervals. The execution of a mental task did not appear to negatively affect the agreement. 

As previously reported, some incongruence was observed between specific HRV metrics 
calculated from RR and PP intervals which imposes some caution when comparing HRV metrics 
calculated from different technologies. Nevertheless, the data extracted from James One could be 
successfully used to detect changes in the HRV caused by the execution of a mentally stressful task. 
The mental stressor caused a significant decrease in the mean intervals, SDNN, pNN50, RMSSD|SD1, 
HF, and SD2. Considering its low-cost and usage flexibility, the reported results suggest that James 
One may be a promising, yet robust, sensor for measuring stress induction through HRV metrics. 
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Appendix A 

 

  

Figure A1. Bland–Altman plots for the pairs of time-domain metrics obtained at rest. The blue line 
and the green area represent the mean of the differences between measurements and the associated 
confidence interval. The red lines and the associated area represent the upper and lower LoAs and 
the associated confidence intervals. 

 

  

Figure A2. Bland–Altman plots for the pairs of frequency-domain and non-linear metrics obtained at 
rest. The blue line and the green area represent the mean of the differences between measurements 
and the associated confidence interval. The red lines and the associated area represent the upper and 
lower LoAs and the associated confidence intervals. 
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Figure A3. Bland–Altman plots for the pairs of time-domain metrics obtained during the SCWT. The 
blue line and area represent the mean of the differences between measurements and the associated 
confidence interval. The red lines and the associated area represent the upper and lower LoA and the 
associated confidence intervals. 

 

  

Figure A4. Bland–Altman plots for the pairs of frequency-domain and non-linear metrics obtained 
during the SCWT. The blue line and area represent the mean of the differences between 
measurements and the associated confidence interval. The red lines and the associated area represent 
the upper and lower LoA and the associated confidence intervals. 
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