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Abstract: Multi-focus image fusion has become a very practical image processing task. It uses multiple
images focused on various depth planes to create an all-in-focus image. Although extensive studies
have been produced, the performance of existing methods is still limited by the inaccurate detection
of the focus regions for fusion. Therefore, in this paper, we proposed a novel U-shape network which
can generate an accurate decision map for the multi-focus image fusion. The Siamese encoder of our
U-shape network can preserve the low-level cues with rich spatial details and high-level semantic
information from the source images separately. Moreover, we introduce the ResBlocks to expand
the receptive field, which can enhance the ability of our network to distinguish between focus and
defocus regions. Moreover, in the bridge stage between the encoder and decoder, the spatial pyramid
pooling is adopted as a global perception fusion module to capture sufficient context information for
the learning of the decision map. Finally, we use a hybrid loss that combines the binary cross-entropy
loss and the structural similarity loss for supervision. Extensive experiments have demonstrated that
the proposed method can achieve the state-of-the-art performance.

Keywords: multi-focus image fusion; U-shape network; Siamese encoder; spatial pyramid pooling;
hybrid loss

1. Introduction

Obtaining an all-in-focus image of a scene is essential for many computer vision and image
analysis tasks. However, due to the limited depth of field (DoF) of the optical lens and the various
depth of objects in a scene, it is difficult to capture an image where all objects are focused in one shot.
Multi-focus image fusion is a common method used to solve this issue by the way of image processing.
It fuses multiple images of the same scene taken with different focal parameters to create an all-in-focus
image with all objects in the scene clear, as shown in Figure 1.

The existing multi-focus image fusion methods can be divided into two categories, i.e.,
the transform domain methods and the spatial domain methods [1,2]. The transform domain methods
are usually based on the multi-scale transformation (MST) theories which generally contain three
stages. First, the source images are decomposed into a special domain according to a certain transform
method. Then, the transformed coefficients are fused based on artificially designed fusion criteria.
Finally, the fused coefficients are transformed back to the original image domain by an inverse
transform to generate the final fused image. There are many well-known methods such as laplacian
pyramid (LP) [3], ratio of low-pass pyramid (RP) [4], the sparse representation (SR) [5], discrete wavelet
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transform (DWT) [6], dual-tree complex wavelet transform (DTCWT) [7], curvelet transform (CVT) [8],
and nonsubsampled contourlet transform (NSCT) [9], etc. Due to the imperfect selections of transform
domains and fusion rules, the fusion results of these algorithms are often indistinct.

Spatial domain methods can be divided into block-based methods, region-based methods and
pixel-based methods. The block-based methods, such as spatial frequency [10], decompose the source
image into blocks of a certain size, and then detects clear image blocks by a designed focus level
measurement. Since both focus and defocus pixels may appear in one block, the performance of
block-based algorithms is related to whether the block size is set appropriately. Some improved
methods [11-13] try to solve this problem by adaptively adjusting the block size, but the fusion results
still inevitably have block effects. The region-based methods [14,15] use various image segmentation
algorithms to extract focus regions. The effectiveness of these methods is limited by the accuracy of
the image segmentation. The pixel-based methods generate a decision map pixel-by-pixel to guide the
fusion processing. Typical examples of this type of method are the guided filtering (GF) [16], the dense
SIFT (DSIFT) [17] and the multi-scale weighted gradient (MWG) [18].

Source B Fusion image
Figure 1. Examples of multi-focus image fusion with two source images. Source A focuses on the

foreground and Source B focuses on the background. Fusion image is the fusion result obtained by
our method.

In the above-mentioned methods, both transform domain methods and spatial domain methods,
the focus level measurements and the fusion rules are two important factors that affect the fusion
quality. However, they usually need to be designed manually. Due to the complexity and diversity of
real-world scenarios, it is difficult to get a perfect design that considers all factors that affect the quality
of fusion.

Recently, inspired by the successful application of deep learning (DL) in image processing
fields, some multi-focus image fusion methods based on convolutional neural network (CNN) have
emerged. Liu et al. [19] first proposed a CNN-based multi-focus fusion scheme, which generates an
initial decision map through a binary classification network, and then the precise decision map
is obtained through a series of post-processing refinements for guiding fusion. Tang et al.[20]
proposed a pixel-level convolutional neural network (P-CNN) to distinguish between focus and
defocus pixels. Guo et al.[21] used the fully convolutional neural network for multi-focus image
fusion. However, the initial decision map generated by the network still needs to be refined by the
fully connected conditional random field (CRF). The initial decision maps obtained by the above
CNN-based and FCN-based methods usually have a large number of blurs and errors, and are
inaccurate at the boundaries of the focus and defocus regions, so they cannot be used directly to guide
the fusion of multi-focus images. Therefore, the quality of the final focus decision map depends largely
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on various post-processing techniques, such as small region removal, edge preservation filtering,
Consistency Verification (CV), CRF optimization, etc. Amin-Naji et al. [22] continued to propose a new
FCN-based multi-focus image fusion network, which can provide a relatively clean initial decision
map. However, it uses a patch-based strategy, which results in redundant calculations in the inference
process and difficult segmentation at the boundaries of the focus and defocus regions. Besides
generating decision maps for fusion, some works attempted to generate the fused image directly.
Parbhakar et al. [23] proposed an unsupervised CNN-based network called DeepFuse for fusing
multiple-exposed images. Zhao et al. [24] developed a multi-level deep supervised network (MLCNN)
to directly fuse and enhance multi-focus images by combining multi-level features. Yan et al. [25]
proposed an unsupervised CNN-based approach for fusion. However, these methods usually have
some blurred effects and may have artifacts that are unrelated to the source images due to the lack of
precise focus regions detection.

To solve the above problems, in this work, we propose a novel U-shape Siamese network
architecture for multi-focus image fusion. The main contributions of this article can be summarized
as: (1) A novel U-shape model with Siamese encoder is proposed to generate a satisfactory decision
map for guiding fusion; (2) ResBlocks are introduced to expand the receptive field, which can make
our network distinguish between focus and defocus regions in the source images well; (3) ResBlocks
are introduced to expand the receptive field, which can make our network distinguish between focus
and defocus regions in the source images well; (4) The outputs of each level in the decoder are
deeply supervised by a hybrid loss function combining binary cross-entropy (BCE) loss and structural
similarity (SSIM) loss.

The rest of the paper is organized as follows. Section 2 reviews related works. Section 3 describes
the proposed multi-focus image fusion method in detail. Section 4 verifies the effectiveness of our
proposed method through experimental results. Finally, we conclude in Section 5.

2. Related Work

2.1. Deep Learning for Multi-Focus Image Fusion

With the success of deep learning in computer vision and image processing, some recent works
have applied it to the multi-focus image fusion task. The key to most DL-based methods is to
accurately detect the focus regions from the source multi-focus images. Liu et al. [19] first attempted
to introduce convolutional neural network (CNN) to this task. They designed a Siamese CNN and
trained it with labeled focus and defocus image patches. The features of the two source images
respectively extracted through the Siamese architecture are cascaded and input to the fully connected
layers for binary classification. Du et al. [26] regarded the task of multi-focus image fusion as image
segmentation, and obtained the coarse segmentation result by constructing a multi-scale CNN which
takes image patches with different size as input, then adopted some image process techniques to refine
the segmentation result. Tang et al. [20] proposed a pixel-level convolutional neural network (P-CNN),
which can measure the focus levels on each pixel of the source image. It classifies each pixel of the
source image into three categories: focus, defocus and the unknown to generate an initial decision
map. Guo et al. [21] adopted full convolutional neural network (FCN) for multi-focus image fusion.
Compared with other methods, it uses a very deep network to achieve semantic segmentation of the
focus and defocus regions from the source images. However, it still uses a fully connected conditional
random field as post-processing to refine the initial decision map. Recently, Guo et al. [27] attempted
to build a mapping from source images to decision maps through conditional generative adversarial
networks (cGAN). Farid et al. [28] used a content adaptive blurring (CAB) algorithm to distinguish
the focus and defocus regions. Theoretically, the quality of the focus patches would be degraded
obviously after several blurring; however, the defocus patches have little changes. According to the
absolute difference of the original image and the CAB-blurred image, the initial segmentation map was
obtained. Then the morphological operators and graph-cut techniques were introduced to improve
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the segmentation result. In the above methods, the network can only provide an undesirable initial
decision map with many errors. The final satisfactory decision map can only be obtained after a series
of post-processing steps for refinement, such as small region removal, guided filters, Consistency
Verification (CV), CRF optimization, etc.

2.2. U-Shape Networks

Since U-Net [29] was first proposed by Ronneberger et al. for biomedical image segmentation,
it has received widespread attention for its ability to construct rich feature maps by the top-down
pathways. The key to the good performance of U-shape network in the field of semantic segmentation is
that its architecture can combine low-level cues with spatial details and high-level semantic information.
In addition, compared to FCN which requires a lot of memory and calculation time, U-shape network
has the advantages of small memory and fast inference speed because of its simple structure. Inspired
by these, in this paper, we design a U-shape structured network for multi-focus image fusion and
deeply supervise its coarse-to-fine outputs at different stages of decoder.

3. The Proposed Method

3.1. Method Overview

Generally speaking, the framework of multi-focus image fusion can be summarized by the fusion
process of two images. Specifically, the final fusion result of multiple images can be obtained by fusing
the source images one by one in sequence. Therefore, the proposed method only takes into account the
case of dual focus images.

A schematic diagram of the proposed method is shown in Figure 2. First, a synthetic method
is used to generate pairs of foreground-focused and background-focused images for training. Then,
the proposed network receives the pair of multi-focus images as the input and generates a high-quality
decision map. Finally, in the fusion stage, without post-processing steps such as small region removal,
guided filters, Consistency Verification (CV), CRF optimization, etc., the fusion results are produced by
directly applying the decision map according to the following formula:

F=1I,xM+Igx(1-M), )

where F is the fused image, I4 and Ip are the source images, and M is the decision map generated by

the network.
) ‘ —

Figure 2. The schematic diagram of the proposed method. Source A and Source B are input into the

network

Fused F

Source B

network to get a decision map that can be used to guide image fusion.
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3.2. Network Architecture

The architecture of our network for multi-focus fusion is shown in Figure 3. In contrast to those
existing methods which divide the source images into patch pairs and always generate inaccurate
decision maps by classifying the clear and unclear patches, our proposed networks accepts two source
images as the inputs and directly outputs a decision map with the full resolution. By this way, we can
obtain a more accurate decision map especially in the boundaries of the focus and defocus regions.
In addition, since the proposed network can directly consume the whole image instead of the image
patches, the computation source can be effectively reduced, and the entire fusion process is efficient.

To accurately generate a high-quality decision map for multi-focus image fusion, we propose
three improvements based on the U-shape network backbone, which are (1) using the Siamese encoder
in our U-shape network to retain the multi-level features from two source images, (2) introducing
ResBlocks to better perceive the focus characteristics of the images, and (3) adding a global perception
fusion module to capture context information. We will explain them in detail.

256x256x16

128x128x32
64x64x64
32x32x128

% 16x16x256

yyrrid.d
| [ aalENRN

Supl Sup2 Sup3 Sup4

Conv ResBlock ’ Global Perception Fusion Module ﬁ Bilinear Upsampling H Supervision

Figure 3. The architecture of our proposed U-shape multi-focus image fusion network with a Siamese
encoder. The Siamese encoder extracts the features of two input images simultaneously, and fuses
them through the global perception fusion module in the bridge stage of the network. Each stage of the
decoder cascades the feature maps from the corresponding stage of the Siamese encoder and outputs a
decision map, which participates in the supervision of the training. ResBlocks are added in each stage
of the encoder and decoder.

3.2.1. U-Shape Siamese Network

Inspired by the success of U-Net [29] in semantic segmentation and other fields, we apply the
similar symmetrical U-shape structure as the backbone of our network. The input images are fed
into the encoder to generate the low-level features with spatial details in the high-resolution and the
high-level features with semantic information in the low resolution. Then, the skip connections are
used to transmit the low-level features with rich details from the encoder to the decoder. By this way,
we can make good use of the features from the encoder with both semantic information and spatial
details. Moreover, the skip connections can improve the propagation of the gradient information and
thus speed up the convergence during training.



Sensors 2020, 20, 3901 6 of 20

It is worth noticing that our network takes two images as the inputs, so the typical single-branch
encoder—decoder structure needs to be modified for our multi-focus fusion task. Therefore, we adopt
the Siamese network as the encoder of our network, which consists of two weight-shared encoder
branches to process the input images, respectively. Then, the output features of the Siamese network are
further fused through the global perception fusion module which will be described in Section 3.2.3 and
fed into the decoder. Compared with feeding the combined input images to a single-branch network
structure, our network with the Siamese encoder is more interpretable as it forces to perceive the focus
characteristics of two source images in the same way. Moreover, the Siamese encoder structure can
well preserve the multi-level features of the input images separately, which can be further fused in the
decoder to benefit the learning of the decision maps. To improve the learning process, we produce
the decision maps both in the final stage and the medial stages of the decoder. In particular,a 7 x 7
convolution layer followed by a bilinear upsampling operation and a sigmoid operation is applied to
the output of each stage of the decoder to generate the decision maps during training. The decision
maps with the same spatial resolution as ground truths are all involved in the loss calculation as
described in Section 3.3.

3.2.2. Encoder/Decoder ResBlocks

In the typical structure of the U-Net, several flat convolutions are used in each stage. However,
for the task of decision map generation, such structure is not enough to generate a good result. This
is because that the network needs to learn to measure the focus levels of the images which cannot
be well carried out by a small receptive filed. One solution is to stack more stages in the encoder.
However, too many stages will make the spatial size of the encoder features too small to retain enough
geometric information for the decoder to recover the high-resolution feature maps. Another solution
is to use more flat convolutions in each stage to enlarge the receptive field. However, this scheme
will increase the depth of the network and make the convergence difficult. Thus, in this paper, we
borrow the idea of the ResNet [30] and form a deep network with large receptive field by replacing the
flat convolution with more ResBlocks at each stages of the encoder and the decoder. As described in
the ResNet [30], the ResBlock can improve the gradient propagation and enable the training of deep
networks. Specifically, three ResBlocks are introduced at each stage of the encoder and decoder as
shown in Figure 3.

3.2.3. Global Perception Fusion Module

It is a big challenge to distinguish the focus or defocus regions in the homogeneous area, because
the texture is usually lacking in these places so that there is almost no difference in appearance whether
be focus or defocus. In addition, the presence of focus or defocus objects with different sizes in a real
scene also requires the network to be invariant to different object scales. Therefore, to solve these
problems, we adopt the spatial pyramid pooling as used in [31] to serve as a global perception fusion
module (GPFM) in the bridge stage of our network, as shown in Figure 4. In this way, when the
features from the two branches of the Siamese encoder are fused, the global prior constraint and
multiple scale information can be preserved simultaneously, which helps to get reliable classification
results for homogeneous regions and multi-scale objects. Specifically, the two feature maps with 256
channels from the Siamese encoder will be cascaded into a feature map with 512 channels and pooled
into 4 scales: 1 x 1,2 x 2,3 x 3, 6 x 6. Then we upsample them to the same spatial resolution and
finally cascade them together.
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Figure 4. The proposed global perception fusion module based on spatial pyramid pooling. When the
features from the two branches of the Siamese encoder are fused, four scale (1 x 1,2 x 2,3 x 3,6 X 6)
pooling operations follow. Then these feature maps are upsampled to the same spatial resolution and
cascaded together.

3.3. Loss Function

The proposed network can get different resolution outputs at the decoder stages, so the model
can be supervised by them together. Our training goals are the summation of losses at all stages:

K
L=Y wxI, )
k=1

where I¥ is the loss of the k-th stage output, wy, is the weight of the loss, and K is the number of outputs.
Here wy is all set to 1 and K is 4 according to our network.
The loss ¥ of each stage is a hybrid loss function containing two parts. It can be defined as:

1% = Igep + s ®3)

where ZI{?CE is the BCE loss and lés v is the SSIM loss.
BCE [32] loss is a binary cross-entropy loss function, which is commonly used in image
classification and segmentation tasks. It can be calculated using the following formula:

M,N
Ipce = — Y, (GijlogM;;+ (1—Gj;)log(1— M), 4)
=11

where G;; is the ground truth label at pixel (i,j) and M;; is the predicted probability value of the
output decision map at pixel (i, j).

SSIM [33] is used for image quality assessment from the perspective of the human visual system.
It can capture spatial structure information in an image. Therefore, we add SSIM loss to the objective
to enhance the structural constraints of the decision map.

The SSIM loss of two images x and y is defined as:

(2pxpy + C1) (20xy + C2)
uz +ui+Ci) (0 + 07 +C)’

©)

lssim=1~—
(

where p; and pi, are the mean of x and y, 0y and 0y denote the standard deviations of x and y, and 0y,
is their covariance. C; and C; are two small constants used to avoid dividing by zero.
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4. Experiments and Analysis

4.1. Data Preparation

It is well known that supervised deep learning methods require large amounts of labeled training
data. For our proposed network that generates a decision map to guide the fusion process, a large
amount of multi-focus image pairs with binary decision maps are needed. However, the publicly
available Lytro [34] dataset has only 20 pairs of multi-focus images, without corresponding all-in-focus
images and binary decision maps. Therefore, we use a synthetic method to generate a sufficient
number of multi-focus images as our training dataset.

We adopt the method introduced by Guo et al. [27] to synthesize 5092 pairs of multi-focus image
pairs on the PASCAL VOC 2012 image dataset [35]. We select 4092 pairs as the training set and 1000
pairs as the validation set to select the optimal model. Please note that images in the validation set are
not included in the training set. This method of synthesizing multi-focus image pairs uses a normalized
disk point spread function (PSF) to simulate blur and the PSF Hy;, is formulated as

1

— 2 +2 <R

H,, = TR2 rrys
0,4/x2+y* >R,

where x and y are coordinate indexes and R denotes the disk radius. Different levels of blur can be
simulated by PSF with different disk radius.

(6)

4.2. Experimental Setup

To verify the effectiveness of the proposed method, we selected a public dataset Lytro [34] with 20
pairs of multi-focus images as the test data. The size of the images is 520 x 520, and some of which are
showed in Figure 5.

Figure 5. Examples of the source image pairs from the Lytro color multi-focus dataset.

In the following experiments on Lytro dataset, we compare the proposed method with many
well-known multi-focus image fusion methods, including the Laplacian pyramid (LP) [3], the ratio
of low-pass pyramid (RP) [4], the nonsubsampled contourlet transform (NSCT) [9], the discrete
wavelet transform (DWT) [6], dual-tree complex wavelet transform (DTCWT) [7], the sparse
representation (SR) [5], the curvelet transform (CVT) [8], the multi-scale weighted gradient (MWG) [18],
the dense SIFT (DSIFT) [17], the DeepFuse [23] and the CNN-based [19]. In addition, the parameters
of these methods are set to the recommended values consistent with their original papers.
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4.3. Implementation

During the training phase, each pair of training images are resized to 256 x 256. We use Adam [36]
optimizer to train our network with parameters B =0.9, B2 =0.999, eps = 1 x 10~ and weight decay = 0.
The initial learning rate is 1 x 10~% and it is decreased by 0.8 times every two epochs. The weights in
all layers are initialized by uniform distribution function. The batch size is set to 8 and the total epochs
are set to 50. During the test phase, the input images are resized to 256 x 256 and then fed into the
network. As the size of the output decision map is also 256 x 256, it will be resized back to the spatial
resolution of the original input images. Please note that we use bilinear interpolation for resizing.

We implemented our network using the public deep learning framework PyTorch [37]. A GTX
1080ti GPU with 11GB of memory is used for training and testing.

4.4. Quantitative Evaluation Metrics

As we all know, due to the lack of corresponding all-in-focus images as ground truth, it is difficult
to quantitatively evaluate the quality of multi-focus image fusion. Therefore, to comprehensively
evaluate the performance of the fusion algorithms, multiple different evaluation indicators should be
used. Commonly used fusion metrics can be divided into four categories: information theory-based,
image feature-based, image structure similarity-based and human perception-based metrics. We adopt
4 kinds of metrics, covering the above 4 categories, namely Qnmi, QAB/F Oy, QOcpg. Please note that
for these metrics, higher values indicate better fusion quality. Next we introduce these metrics in detail.

4.4.1. Normalized Mutual Information Qnum

Mutual information is a metric based on information theory, which indicates how much
information in the original image is contained in the fused image. The normalized mutual
information [38] overcomes the instability of the traditional one. The definition of Qny is as follows:

Ml,r MIgr

=2x
Qnmi (HA + Hr Hp+ Hf

), @)

where MI4r and MIpr are the mutual information between images A and F, B and F respectively; Hg4,
Hp and HF are the entropy of images A, B and F respectively.

4.4.2. Gradient-Based Fusion Metric Q4B/F

QAB/F [39] is an image gradient-based metric used to evaluate the edge information retained
from the source image to the fused image. It is defined as follows:

/¥ — Lt Enma (QF (mn)w (mn) + QP (mm)wP (mm))
Lo Xl (wA (mn) +wb (mn))

, ®)

where

QM (x,y) = Q¢ (x, 1) QI (x,v), ©)

QgF (x,y) and QZF (x,y) represent the edge strength and orientation preservation values at coordinates
(x,y), respectively. The calculation of QBF is similar to Q4. w? (m,n) and w®(m,n) are the weight
coefficients of the source image A and B.
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4.4.3. Yang’s Metric Qy

The structural similarity-based metric Qy [40] can evaluate how much image structure information
from the source image is retained in the fused image. Its formula is as follows:

A(w)SSIM(A, Flew)+(1—A(w))SSIM(B, Flw), SSIM(A, Flw) > 0.75,
Qy = (10)

max(SSIM(A, F|w), SSIM(B, F|w)), SSIM(A, Blw) < 0.75.

where SSIM is the image structure similarity, w is the local window, A(w) and (1 — A(w)) are the
weights of two source images under the local window:

_ s(Alw)
~ s(A|lw) +s(Blw)’

AMw) (11)

where s(A|w) and s(B|w) are the variances of the source images A and B on the local window w.

4.4.4. Chen-Blum Metric Qcp

The human perception-based metric mainly uses human visual features to measure the fused
image. The formula of Qcp [41] is:

Qcs = Qcom, (12)

Qcowm is a global quality map, which is calculated as follows:

Qcom(x,y) = Aa(x,y)Qar(x,y) + As(x,y)Qar(x, ), (13)

where Q 4r and Qpr are the contrasts retained in the fused image F from the source image A and the
source image B, respectively. A4 and Ap are saliency maps for Q 4r and QpF, respectively.

4.5. Visual Results

As shown in Figure 6, we visualize a part of the decision maps generated by our network and
the final fusion results. Please note that these decision maps do not go through any post-processing
steps, such as consistency verification (CV), small region removal, morphological operations, guided
filters and conditional random field optimization (CRF). In addition, we directly use the decision maps
generated by the proposed network to guide the fusion process. As we can see, the decision maps
are clean enough without obvious misclassification regions, and the boundaries between focus and
defocus regions are clear. It means that the designed network can completely and clearly detect the
focus regions from the source images.

We selected 3 pairs of multi-focus images from the Lytro dataset to compare the performance of
our method with other methods more intuitively. The fusion results of different methods are visualized
in Figures 7-9. In addition, for better comparison, we also show the difference image obtained by
subtracting one source image from the fused image, as shown in Figures 10-12. It is worth noting that
if the focus regions are completely detected, there should be no residuals in the corresponding regions
on the difference image.

Figures 7 and 10 are visualization results of a beer bottle. We can see that the LP, RP, NSCT,
DWT, DTCWT, SR, CVT and DeepFuse methods cannot get desirable fusion results, which is shown
as residual information. The DSIFT, MWG and CNN methods can distinguish the focus and defocus
regions well, but the boundary between the focus and defocus regions are still slightly curved or
unclear that is shown in red box. Our method can get desirable results both inside and at the boundaries
of the focus regions.

Figures 8 and 11 show a doll dog on a flat floor. The results of LP, RP, NSCT, DWT, DTCWT,
SR, CVT and DeepFuse are not satisfactory, since there are many residuals in the focus regions of the
difference image. DSIFT, MWG and CNN have better results, but CNN still has residuals in the lower
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two red boxes, while our method can completely detect these focus regions. In addition, our method
performs better in the near focus boundaries of the toy dog shown in the upper red box.

RORIPON

Figure 6. Visualization results of our method on Lytro dataset. Columns 1, 2, 5, 6 show the source
multi-focus image pairs, columns 3, 7 show the decision map generated by the proposed network, and
columns 4, 8 are the corresponding fusion results.
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DWT [6] TZZWT [7] SR [5]

DSIFT [17] MWG [18]  DeepFuse [23]  CNN [19] Ours

Figure 7. The fusion results of ‘Lytro-09” using various methods.
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CVT [8] DSIFT [17] MWG [18] DeepFuse [23] CNN [19] Ours

Figure 8. The fusion results of ‘Lytro-17’ using various methods.

DWT [6]

DTCWT [7]

CVT [8] DSIFT [17] MWG [18] DeepFuse [23] CNN [19]
Figure 9. The results of 'Lytro-14" using various methods.

LP [3] RP [4] NSCT [9] DWT [6] DTCWT [7] SR [5]

CVT [8] DSIFT [17] MWG [18] DeepFuse [23] CNN [19] Ours
Figure 10. The difference images obtained by subtracting one source image from each fused image (see
Figure 7).
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RP [4] NSCT [9] DWT [6]

DTCWT [7]

CVT [8] DSIFT [17] MWG [18] DeepFuse [23] CNN [19] Ours

Figure 11. The difference images obtained by subtracting one source image from each fused image (see

Figure 8).

RP [] DWT[6] DTCWT [7] SR []

CVT [8] DSIFT [17] MWG [18] DeepFuse [23] CNN [19] Ours

Figure 12. The difference images obtained by subtracting one source image from each fused image (see
Figure 9).

In Figures 9 and 12, it is a postcard. From the difference images of different methods, we can see
that LP, RP, NSCT, DWT, DTCWT, SR, CVT and DeepFuse have more or less residual information in
the focus regions such as the hand and postcard, which indicates that they cannot perfectly extract the
focus area as a whole. DSIFT, MWG and CNN have good ability to distinguish between the focus and
defocus. However, MWG is not clear at the boundary between the focus and defocus regions, which
appears as distinct halo artifacts at the edges of the postcard on the difference image. As shown in
red box, CNN does not perform well at the curved edges of the upper part of the postcard, where
there are rich details. Our method has no error residuals inside the focus regions and is clear at the
boundary. It can even detect a defocus region with a small area between fingers which is marked out
by the yellow box.

We also do experiments on multi-focus image series fusion. Figure 13 shows the visualization
results of applying our method to fuse the triple source images one by one in sequence. We can see
that the final fused image merges the respective focus regions of the source images well, proving that
our solution can be widely applied in practical scenarios.
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Source A Source B Source C Fusion image

Figure 13. Fusion results of triple source images. Source A, Source B and Source C are images focused
on three different distances: near, middle and far. Fusion image is the final fusion result.

4.6. Quantitative Results

To quantitatively evaluate the performance of the proposed method, we use the four metrics
described in Section 4.4 to comprehensively evaluate the fusion results of different methods in the
Lytro dataset. The individual data and the means values and standard deviation of the test data for
various methods under these metrics are listed in Figure A1 of Appendix A. Table 1 lists the average
scores and the highest score is shown in bold. After quantitative comparison, we can see that our
method achieves the highest score in three metrics compared to other competitive methods and ranks
second in Qi behind only DSIFT. The result is consistent with the visual comparison in the previous
section. It is still worth noting that our fusion results are obtained directly by the decision map without
any post-processing.

Table 1. Average scores of various methods on the four metrics.

Metric QnmI QABIE Qv Qcs

LP [3] 0.964121 0.696484 0.963407 0.761294
RP [4] 0.955103 0.680854 0.954156 0.749155
NSCT [9] 0.938377 0.685822 0.959748 0.742968
DWT [6] 1.036022 0.659993 0.928359 0.713734
DTCWT [7] 0.924234 0.685467 0.963587 0.742712
SR [5] 1.032391 0.690457 0.959032 0.762765
CVT [8] 0.893955 0.653854 0.949585 0.724333
DSIFT [17] 1.153657 0.723525 0.982763 0.805893
MWG [18] 1.097503 0.710108 0.982625 0.792728
DeepFuse [23] 0.679645 0.433013 0.740159 0.572617
CNN [19] 1.125989 0.722936 0.982505 0.805273
Ours 1.152118 0.724572 0.984148 0.806813

Compared with DSIFT, the lower Qnp; means that the less information in the source images
is contained in the fused image of our method. However, our method is superior to DSIFT in other
metrics, i.e., it has slight advantages in structured information and human perception quality, such
as the boundary between the focus and defocus regions, which can be observed in the red box in
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Figures 10 and 11 and in the yellow box in Figure 12. Moreover, our method has an advantage in terms
of time efficiency over DSIFT.

4.7. Ablation Study

In this section, we verify the effectiveness of key components in the proposed model through
ablation experiments. We will validate in two aspects: the proposed network architecture and the loss
function.

4.7.1. Architecture Ablation

As described in Section 3.2, there are three key parts of our proposed architecture: (1) using
a Siamese-based encoder to accept dual inputs; (2) Resblocks are used in the encoder and decoder;
(3) Global perception fusion module is introduced into the bridge stage of the network. To verify the
effectiveness of these three components, we removed them separately from the full implementation
and reported their results on quantitative experiments. In particular, we concatenate the two images at
the input stage to replace the Siamese encoder. The individual data and the means values and standard
deviation of the test data for various network architectures are listed in Figure A2 of Appendix A and
the average scores of this architecture ablation are shown in Table 2. It illustrates the effectiveness of
these three components, and our full implementation achieves the best performance. Specifically, the
lack of Siamese encoder makes each metric value drop significantly, which indicates that the Siamese
encoder is the most important module. Moreover, we can observe that the biggest change brought
by Siamese encoder is in the image visual quality. Similarly, the absence of the ResBlocks results in a
decrease in each metric value, which demonstrates the effectiveness of the ResBlocks. Lacking GPFM
results in a slight increase in Qnp;, but a significant decrease in the QAB/F and Qcp, indicating that
the GPFM module reduces the information of the source image contained in the fusion results but
focuses on the edge information and overall visual performance in the output. To illustrate the effect of
these components more intuitively, Figure 14 shows the decision maps generated by different network
architectures. It is obvious that our complete architecture achieves desirable qualitative results.

Source A Source B

w /o Siamese w /o ResBlocks w/o GPFM

A 4

Ice Issim Ours
Figure 14. Decision maps generated by different architectures and loss functions. Here, w/o Siamese,

w /o ResBlocks and w/o GPFM denote that the Siamese encoder, ResBlocks and the global perception
fusion module are removed from the fully implemented network respectively, then train it with the
hybrid loss function. Ipcr and I denote that the fully implemented network is trained with the
BCE loss and the SSIM loss, respectively.
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Table 2. The effectiveness of our different key components in the proposed model.

Metric ONMI QABIE Qy Qcs

w /o Siamese encoder 1.074588 0.663860 0.966375 0.725558
w /o ResBlocks 1.145299 0.719667 0.982705 0.801229
w/o GPFM 1.157074 0.718634 0.983470 0.799175
full implementation 1.152118 0.724572 0.984148 0.806813

4.7.2. Loss Ablation

To verify the effectiveness of our proposed hybrid loss combining the BCE loss and the SSIM
loss, we conduct comparative experiments on models trained with only the BCE loss, only the SSIM
loss and the hybrid loss. The individual data and the means values and standard deviation of the
test data for various loss functions are listed in Figure A3 of Appendix A. The average quantitative
results in Table 3 illustrate that the proposed hybrid loss can effectively improve the performance of
our network. Specifically, we can observe that the lack of the SSIM loss in the second row of this table
makes the value of each metric drop, i.e., the SSIM loss is very important. As can be seen in line 3,
lacking the BCE loss results in a slight increase in Qnpr and a decrease in other metrics, indicating
that the BCE loss focuses on the overall structure and visual quality of the image while reducing the
mutual information between the source images and the fused image. Comparing the value of Qy, we
can see that the lack of the SSIM loss brings a greater decrease than the lack of the BCE loss, indicating
that the SSIM loss does pay attention to structural information. Figure 14 also shows the decision maps
generated by our network model trained with different loss functions. As we can see, the proposed
hybrid loss function achieves the best qualitative results.

Table 3. The effectiveness of our hybrid loss function.

Metric QNMmI QABIE Qy Qcs

Igck 1.148848 0.722299 0.983650 0.805042
lssim 1.152751 0.721329 0.984072 0.804851
I5CE+SSIM 1152118 0.724572 0.984148 0.806813

4.8. Computational Efficiency

To evaluate the computational efficiency, we list the average running time of various algorithms
on the Lytro dataset in Table 4. Obviously, the time consumption of our method is only 0.06 s, which is
faster than other algorithms. It shows that our method can have good usage in practice.

Table 4. Average running time of various methods. (Unit:Seconds).

Method LP [3] RP [4] NSCT [9] DWT [6] DICWT[7]  SRI[5]
Time 14.60 14.59 25.29 14.70 15.20 226.82

Method CVT [8] DSIFT [17] MWG [18] DeepFuse [23] CNN [19] Ours
Time 17.29 30.92 20.42 0.74 142.97 0.06

5. Conclusions

In this paper, we propose a novel U-shape network with a Siamese structured encoder for the
multi-focus image fusion task. The U-shape Siamese network can preserve multi-level features from
two source image to enhance the generated decision map. ResBlocks are introduced in the network
to increase the receptive field, which helps to better perceive the focus characteristics of the image.
In addition, a global perception fusion module based on spatial pyramid pooling is added to obtain
context information. A hybrid objective combining BCE loss and SSIM loss is used to train our
model on a multi-focus image dataset, which is synthesized on the VOC 2012 natural image dataset.
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Experimental results show that our proposed method achieves the start-of-the-art performance both in
visual perception and quantitative evaluation.
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Appendix A

The four metric values of each method in each image, namely all the data, are shown in
Figures A1-A3.
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Figure A1. The quantitative results of different methods in the test data (20 pairs of images).
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Figure A2. The quantitative results of different network architectures in the test data (20 pairs
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