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Abstract: Various action recognition approaches have recently been proposed with the aid of
three-dimensional (3D) convolution and a multiple stream structure. However, existing methods
are sensitive to background and optical flow noise, which prevents from learning the main object
in a video frame. Furthermore, they cannot reflect the accuracy of each stream in the process of
combining multiple streams. In this paper, we present a novel action recognition method that
improves the existing method using optical flow and a multi-stream structure. The proposed method
consists of two parts: (i) optical flow enhancement process using image segmentation and (ii) score
fusion process by applying weighted sum of the accuracy. The enhancement process can help the
network to efficiently analyze the flow information of the main object in the optical flow frame,
thereby improving accuracy. A different accuracy of each stream can be reflected to the fused score
while using the proposed score fusion method. We achieved an accuracy of 98.2% on UCF-101 and
82.4% on HMDB-51. The proposed method outperformed many state-of-the-art methods without
changing the network structure and it is expected to be easily applied to other networks.
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1. Introduction

Action recognition is one of the representative tasks in the video understanding field. It aims to
recognize human actions from the frames of video, and it is mainly applied to intelligent surveillance
systems using closed-circuit television (CCTV) to detect abnormal behaviors, such as assault and theft.
Because action recognition uses video instead of a single image as input, it generally requires a huge
amount of computation. For the same reason, analysis of spatial information is not easy because
the view point can change over time. To solve these problems, it is necessary to analyze temporal
information across multiple frames in order to understand the relationship between adjacent frames.

Various conventional action recognition algorithms have been proposed in the literature using:
(i) spatial analysis by convolution for each frame and temporal analysis using a long short-term
memory (LSTM) [1], (ii) three-dimensional (3D) convolution neural network with a spatio-temporal
kernel extended to the time axis [2], and (iii) two-stream method using RGB frames and optical flow
frames [3,4]. In the field of action recognition, most state-of-the-art methods use both 3D convolution
and multi-stream structure [5–9]. In addition, they use a pre-trained network on large video dataset,
such as Kinetics [10]. Recently, various methods using human pose information with three or more
multi-streams were proposed [6,9]. These conventional methods using optical flow estimation make
the network difficult to learn flows of the main objects in input frames, because the flow images contain
a lot of noise and flows of background. Alternatively, various attention-based methods have been
proposed to make the action recognition network focus the on main region while training [11,12].
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In this paper, we present a method that helps to efficiently train the network by emphasizing the
movements of the main objects by applying image segmentation using DeepLabV3 [13]. In addition,
we present a combination method using a weighted sum that can be applied instead of concatenation
or summation in the conventional multi-stream network structure. Because the proposed method is
not based on human-based information, its application can extend in many areas, such as video action
recognition. The proposed method can be easily applied to many other existing networks to increase
the accuracy without major modification of the baseline network.

2. Related Works

2.1. Action Recognition

Although traditional action recognition methods used various image processing techniques, such
as histogram of optical flow or oriented gradients, deep neural networks recently replaced the role
of extracting features, and end-to-end recognition [14–16]. In the field of deep learning-based action
recognition, various studies have been conducted to effectively analyze both spatial and temporal
information. Karpathy et al. analyzed temporal information of video using long short-term memory
(LSTM) after analyzing space information by convolution for each frame [1]. Tran et al. proposed a deep
three-dimensional convolutional networks (3D ConvNets) that can help the convolution kernel to learn
not only spatial information, but also temporal information at the same time using the spatio-temporal
feature kernels [2]. Simonyan et al. proposed a two-stream network using both RGB and optical flow
as input [4]. Feichtenhofer et al. proposed a three-dimensional fused two-stream network that applies
3D ConvNets to two-stream two-dimensional (2D) ConvNets results [17].

Optical flow estimation was used to visualize the motion of objects in a video based on information
of adjacent frames. Frames created using optical flow estimation can greatly help the network to
analyze temporal information, thereby improving the accuracy. Therefore, most of the latest action
recognition techniques are based on both multi-stream structures and 3D ConvNets.

Weakly-supervised learning-based methods have also been proposed for action recognition and
localization. Nguyen et al. proposed a method using attention-model based on weakly-supervised
learning [18]. Nguyen’s method uses an attention model to distinguish between foreground and
background. Liu et al. proposed a contrast-based localization evaluation network with an action
proposal evaluator to generate pseudo-labels [19]. Zhang et al. proposed a knowledge transfer
framework using an encoder-decoder network [20].

2.2. Trend of Advanced Deep Learning-Based Action Recognition Techniques

Joao Carreira et al. proposed Inflated 3D ConvNet (I3D) and released huge datasets, called
Kinetics [5,10]. The overall architecture of conventional I3D is shown in Figure 1. In addition,
the authors proposed a method to pre-train 3D ConvNets with a 2D image dataset, such as ImageNet
by inflating the convolution kernel after training a 2D network [21]. I3D applies a two-stream structure
for RGB and optical flow to the Inception-v1 along with the 3D convolution [22]. Similar to other
multi-stream methods, it adds the results of each stream to form a final score, and finally performs
action recognition based on the final score. Although I3D outperforms most conventional methods,
it is not reasonable to combine them one-on-one, ignoring the different accuracy of the RGB and optical
flow streams.

Vasileios Choutas et al. proposed a Pose MoTion Representation (PoTion) using I3D as the base
network [6]. PoTion first estimates the poses in each frame through the pose estimation model, and then
visualizes the flows of the main parts of the person, such as hand, head, and foot. The visualized flow
was added to the input of I3d to construct three-stream for improved performance. Because this method
requires additional calculation of human pose, its application is limited to human action recognition.

Wang et al. also proposed an I3D-based action recognition method, where the four-stream,
including the 1st order Fisher vector, 2nd order Fisher vector, bag-of-words, and high abstraction
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feature, takes the results of the two-stream I3D as input, and performs the normalization process [7].
The normalized feature vectors are concatenated and enters the prediction network as input to perform
action recognition. Because four streams and one prediction networks were added, Wang’s method
showed the state-of-the-art performance on HMDB-51 datasets at the cost of increased amount of
computation [23].

Figure 1. The overall architecture of I3D.

Crasto et al. proposed motion-augmented RGB Stream (MARS) that performed self-training using
a teacher–student method to mimic an optical flow image by itself using only RGB images [8]. Crasto’s
method requires optical flow images to train the imitated model to provide high-accuracy inference
without optical flow computation.

Stroud et al. also proposed distilled 3D network(D3D) using the teacher-student method without
optical flow during the inference process [24].

Yan et al. proposed Pose-Action 3D Machine (PA3D) that first creates different pose modalities of
pose heat maps (joints, part affinity fields, convolutional features) through spatial pose CNN from the
input [9]. For each generated pose heatmap, the spatio-temporal pose heatmap is calculated through
temporal pose convolution. Finally, Action CNN takes the result as input, generates three scores, and
then fuses the scores.

2.3. Attention-Based Action Recognition Techniques

Attention mechanism makes the network focus on the main regions of the input data.
The attention mechanism with Encoder-Decoder structure was originally proposed for machine
translation [25,26]. Later, Xu et al. divided a visual attention into hard attention and soft attention for
image captioning [27]. Unlike hard attention, soft attention is a deterministic mechanism that uses all
of the features in the image for end-to-end learning [28].

In the field of action recognition, various methods have been proposed to apply soft attention
so that the network can focus on main regions. Sharma et al. proposed a method that performs
action recognition based on the soft attention by applying a structure using Recurrent Neural Network
(RNN) and LSTM [11]. Sharma’s method could enhance the accuracy, but it is difficult to apply to
other networks, and the use of LSTM decreases the accuracy. Girdhar et al. proposed a method for
the network to focus on specific parts while training [12]. Girdhar’s method combined a bottom-up
saliency with a top-down attention to provide factorization of the attentional processing. Li et al.
proposed an attention mechanism-based deformable module to efficiently analyze long-term time
information [29].

Unlike the conventional attention-based methods, we present a method to help the network focus
on the main region by using image segmentation rather than attention module. The proposed method



Sensors 2020, 20, 3894 4 of 13

is applied to optical flow frames rather than RGB frames to enhance not only spatial information of the
main object, but also temporal information.

2.4. Image Segmentation

Various image segmentation approaches are classified into semantic and instance segmentations.
The former classifies all of the pixels of an image into a specific class without object classification,
whereas the latter performs object classification. DeepLabV3 is one of the representative methods
proposed in the field of semantic segmentation [13]. It consists of three types: encoder using atrous
convolution to Resnet, decoder using atrous spatial pyramid pooling, and bilinear upsampling.

In this paper, we present a method that can enhance the flow information of the main objects in
the optical flow frame based on semantic segmentation process while using the DeepLabV3 model.

3. Proposed Methods

In this section, we present a method to emphasize the flow of the main objects in optical flow
frames using Image Segmentation to improve the performance of action recognition. Additionally,
we present a simple but effective score fusion method that can be applied to conventional methods that
are based on multi-stream structure. Figure 2 shows the overall architecture of the proposed method.

Figure 2. The overall architecture of proposed method.

3.1. Optical Flow Enhancement

Recently, most of deep learning based action recognition methods use optical flow, such as TV-L1,
as an additional input so that the network can effectively analyze temporal information of video [3].
Optical flow is effective for analyzing the temporal information of video, but it has a disadvantage in
that the background flow, including noise, makes it difficult to identify main objects in an optical flow
image as shown in Figure 3. Figure 3a,d show two original RGB images from the HMDB-51 dataset.
Figure 3b,e show TV-L1 optical flow images representing x-axis motions, and Figure 3c,f show y-axis
motions. In this subsection, we propose a novel method that can emphasize the flow of main objects to
overcome the shortcomings of optical flow.

The proposed method first segments the main objects from the original RGB frame while using
DeepLabV3 [13]. Next, the segmented frame is compared with the optical flow frame, and the pixels in
the main object region are then located in the optical flow frame that is enhanced by the α value. Pixels
where the main objects are not located or where there is no flow are maintained without enhancement.
The proposed method is expressed as

Ei,x,y =


Fi,x,y, if Si,x,y = 0 or Fi,x,y = 128

Fi,x,y · (1 + α), else if Fi,x,y > 128

Fi,x,y · (1 − α), otherwise

(1)



Sensors 2020, 20, 3894 5 of 13

where Si represents the segmented image of frame i, Fi represents the optical flow image of frame i,
and Ei represents the enhanced flow image of frame i.

Figure 4 shows enhanced optical flow images while using the proposed method. The first and
second columns show the original RGB images and the segmented images by DeepLabV3, respectively.
The third column shows the original TV-L1 optical flow images, and columns 4 and 5 show enhanced
optical flow images using the proposed method with alpha values set to 0.1 and 0.3, respectively. We
can see that the pixels of the main objects are enhanced proportional to alpha value.

(a) (b) (c)

(d) (e) (f)
Figure 3. Images of TV-L1 optical flow. (a,b) shows original RGB images. (d,e) shows x-axis TV-L1
optical flow images. (c,f) shows y-axis images
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Figure 4. Enhanced images by proposed method.

Figure 4. Cont.
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3.2. Score Fusion Method

Most of deep learning based action recognition methods have applied a multi-stream structure
to effectively analyze spatio-temporal information. In the multi-stream structure, after training
each stream, a score fusion process is performed in order to calculate a single score. In most of
conventional methods, score fusion was performed by summation or averaging individual stream [4].
This conventional method has a problem of fused one-on-one while ignoring the different accuracy of
each stream.

Many different methods have been proposed to give an appropriate weight to each stream when
multiple-streams are fused together [30]. Nandakumar et al. proposed a method using the likelihood
ratio [31]. Srivastava et al. proposed a method using deep Boltzmann machines [32]. Neverova et al.
proposed a method using the modality dropping process [33]. Because these conventional methods
are based on training, there are many calculations required. The proposed score fusion method simply
calculates relative weights. We can perform inference with a single trained stream before score fusion
process. The graph in Figure 5 shows the inference results on the HMDB-51 and UCF-101 validation
set for each individual stream [23,34]. C-1 and C-2 represent the results of HMDB-51, and C-3 and C-4
represent the results of UCF-101. C-2 and C-4 were pre-trained on both ImageNet and kinetics, and the
rest trained from scratch [10,21]. From the graph, we can see the deviation of accuracy between each
stream is large, which should be sufficiently considered in the score fusion process.
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Therefore, the proposed method performs score fusion with different rates by referring to the
accuracy of each stream. The proposed method does not require an additional training process and it
can be easily applied to all conventional multi-stream based network.

The proposed method first trains network streams in the same way as conventional methods,
such as I3D [5]. Next, accuracy is calculated by performing inference on validation sets for each trained
stream. When performing inference in a multi-stream method, score fusion is performed by weighted
sum of accuracy as the weight for each stream result. Equation (2) shows the case where the proposed
score fusion method is applied to the conventional two-stream network.

ScoreRGB+Flow = (AccuracyRGB · ScoreRGB) + (AccuracyFlow · ScoreFlow) (2)

Figure 5. Inference result on UCF-101 and HMDB-51.

4. Results

4.1. Datasets and Metrics

To evaluate the performance of the proposed methods, training and testing were performed
on action recognition datasets including UCF-101 [34] and HMDB-51 [23]. UCF-101 consists of 101
action classes with 13,320 videos collected from YouTube. HMDB-51 consists of 51 action classes
with 7000 videos, mostly from movies. UCF-101 and HMDB-51 both provide three test/train splits.
All experimental results are averaged over three splits. To apply the proposed methods for experiments,
we need to construct a validation set. To this end, we randomly constructed 15% of the train set as
a validation set. To perform image segmentation in the proposed method, we used the DeepLabV3
model trained with PASCAL VOC 2012 [35]. PASCAL VOC 2012 consists of 20 object classes,
including human.

For ImageNet and Kinetics, we used the pre-trained model provided by I3D [5,10,21]. Therefore,
all models in this section are pre-trained by the conventional I3D with α = 0.

4.2. Comparison on Various Alpha Values

We evaluated the method proposed in Section 3.1 by applying it to Two-Stream I3D [5]. We used
the value of Alpha of 0, 0.1, 0.15, and 0.3 and recorded the corresponding accuracy measure. Tables 1
and 2 show top-1 and top-3 accuracies, depending on the alpha value, dataset, and the pre-training
status. The pre-trained network in both ImageNet and kinetics dataset and whose alpha value was set
to 0.1 showed the highest accuracy with 98.1% in UCF-101 and 82.2% in HMDB-51 [23,34].

In the experiment of the pre-trained network, when the alpha value was set to 0.3 or 0.15,
the proposed method gave a lower accuracy than the conventional method. However, all of the
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networks trained from scratch showed higher accuracy than the conventional method. When the
alpha value was set to 0.1, regardless of whether it was pre-trained, it showed the highest accuracy.
Experiments show that the flow of the main object is emphasized while maintaining the information
of other flows when the alpha value is properly set.

Table 1. Experimental result of changing alpha value on UCF-101.

Alpha pre-train Acc-Top1 Acc-Top3

0 (I3D) ImageNet, Kinetics 98.0 99.9
0.1 ImageNet, Kinetics 98.1 99.9

0.15 ImageNet, Kinetics 97.8 99.8
0.3 ImageNet, Kinetics 97.9 99.9

0 (I3D) - 74.4 89.0
0.1 - 76.1 90.7

0.15 - 75.3 90.2
0.3 - 75.6 90.7

Table 2. Experimental result of changing alpha value on HMDB-51.

Alpha pre-train Acc-Top1 Acc-Top3

0 (I3D) ImageNet, Kinetics 81.8 93.1
0.1 ImageNet, Kinetics 82.2 93.6

0.15 ImageNet, Kinetics 81.5 93.3
0.3 ImageNet, Kinetics 81.2 93.3

0 (I3D) - 54.5 76.3
0.1 - 57.3 77.4

0.15 - 56.4 77.4
0.3 - 56.3 77.0

4.3. Experiment about Proposed Score Fusion Method

We evaluated the score fusion method proposed in Section 3.2. For experiments, inference was
performed on validation set for individual streams (RGB, α = 0, 0.1, 0.15, 0.3) to set the weights
by computing accuracy. Tables 3 and 4 show the experimental results of applying the proposed
score fusion method to two-stream I3D, and column 2 shows the weights that are based on their
validation accuracy. Averaging was used for the score fusion method of the conventional method in
both Tables 3 and 4. As a result of the experiment, the proposed method can obtain a proper set of
weights by reflecting the accuracy of an individual stream, which proves that the proposed method
outperforms conventional methods. As a result of the experiment, the proposed method outperformed
conventional methods in most cases. In some cases, top-1 accuracy was not improved, but top-3
accuracy was improved. Therefore, it can be proved that the proposed score fusion method more
effectively reflects the accuracy of each stream than the conventional method.

Table 3. Experiment about Score Fusion on UCF-101.

Alpha Weight (RGB/FLOW) pre-train Acc-Top1 Acc-Top3

0 1/1 ImageNet, Kinetics 98.0 99.9
0 0.96/0.91 ImageNet, Kinetics 98.1 99.9

0.1 0.96/0.93 ImageNet, Kinetics 98.2 99.9
0.15 0.96/0.93 ImageNet, Kinetics 97.8 99.8
0.3 0.96/0.93 ImageNet, Kinetics 97.9 99.9
0 1/1 x 74.4 88.9
0 0.54/0.66 x 74.8 89.7

0.1 0.54/0.66 x 76.5 91.2
0.15 0.54/0.65 x 75.6 90.8
0.3 0.54/0.65 x 76.4 91.2
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Table 4. Experiment about Score Fusion on HMDB-51.

Alpha Weight (RGB/FLOW) pre-train Acc-Top1 Acc-Top3

0 1/1 ImageNet, Kinetics 81.8 93.1
0 0.79/0.68 ImageNet, Kinetics 82.1 93.4

0.1 0.79/0.73 ImageNet, Kinetics 82.4 93.7
0.15 0.79/0.71 ImageNet, Kinetics 81.7 93.9
0.3 0.79/0.68 ImageNet, Kinetics 81.2 93.3
0 1/1 x 54.5 76.3
0 0.34/0.45 x 55.2 76.7

0.1 0.34/0.51 x 57.3 78.5
0.15 0.34/0.51 x 57.1 77.8
0.3 0.34/0.52 x 57.6 77.9

4.4. Comparison with State-of-the-Art Methods

We evaluated two action recognition data sets, including UCF-101 and HMDB-51, in order to
compare the proposed methods with conventional state-of-the-art methods. In the proposed method,
the alpha value was set to 0.1 as shown in Table 5. The accuracy of the comparison target was referenced
from the corresponding paper.

Table 5. Ablation Study.

Ablation Study
(Averaged Score Fusion/ Proposed Score Fusion Method)

DATASET Alpha Value

0 0.1 0.15 0.3

UCF-101
pre-trained 98.0/98.1 98.1/98.2 97.8/97.8 97.9/97.9

HMDB-51
pre-trained 81.8/82.1 82.2/82.4 81.5/81.7 81.2/81.2

UCF-101 74.4/74.8 76.1/76.5 75.3/75.6 75.6/76.4

HMDB-51 54.5/55.2 57.3/57.3 56.4/57.1 56.3/57.6

We have achieved higher accuracy than conventional methods on UCF-101 dataset. Table 6 shows
comparison results with conventional methods on the UCF-101 dataset. LGD-3D Two-stream and
PoTion + I3D showed similar accuracies to that of the proposed method, but the accuracy of the
proposed method was higher on other datasets [6,36].

The proposed method showed higher accuracy than most other conventional methods on
HMDB-51 dataset. Table 7 shows the accuracy (averaged over three splits) comparison with
conventional methods on HMDB-51. The proposed method was applied to two-stream I3D, recording
82.4% accuracy, showing a similar result to HAF + BoW/FV halluc, a method with more streams [7].
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Table 6. Comparison with State-of-the-Art Methods on UCF-101 (Accuracy Top-1).

UCF-101

Metric Accuracy

Two-Stream [4] 88.0
Two-Stream Fusion + IDT [17] 93.5

STDA-ResNeXt-101 [29] 95.5
AE-I3D [37] 95.9

STM [38] 96.2
CMA iter1-S [39] 96.2

Hidden Two-Stream [40] 97.1
CCS + TSN [41] 97.4

D3D Ensemble [24] 97.6
HATNet [42] 97.8

Two-Stream I3D [5] 98.0
MARS + RGB + Flow [8] 98.1

PoTion + I3D [6] 98.2
LGD-3D Two-Stream [36] 98.2

Ours 98.2

Table 7. Comparison with State-of-the-Art Methods on HMDB-51 (Accuracy Top-1).

HMDB-51

Metric Accuracy

Two-Stream [4] 59.4
Two-Stream Fusion + IDT [17] 69.2

Sharama’s Method [11] 71.3
STDA-ResNeXt-101 [29] 72.7

AE-I3D [37] 74.7
HATNet [42] 76.5

Hidden Two-Stream [40] 78.7
LGD-3D Two-Stream [36] 80.5

D3D Ensemble [24] 80.5
Two-Stream I3D [5] 80.9

MARS + RGB + Flow [8] 80.9
PoTion + I3D [6] 80.9
CCS + TSN [41] 81.9

EvaNet [43] 82.1
PA3D [9] 82.1

HAF + BoW/FV halluc. [7] 82.48
Ours 82.4

5. Discussion and Conclusions

In this paper, we presented an optical flow enhancement method while using image segmentation
that can be used in the field of video analysis, including action recognition. The proposed method
enhances the flow of the main object in the optical flow frame and helps the network to focus on
the main object. Unlike the conventional attention-based method, the proposed method is applied
to optical flow frames to make the network analyze both spatial and temporal information. In
addition, the enhancement of the main object region can be adjusted by setting the alpha value.
Furthermore, we presented a validation accuracy-based score fusion method that can be applied
to many conventional multi-stream-based networks. The proposed method can easily compute the
weight and gives a higher accuracy than conventional methods. As a result of using the proposed
method on conventional I3D, the proposed method outperformed most conventional action recognition
methods in the sense of an accuracy measure. Because the proposed method does not need to change
the network structure, its application is not limited to I3D.
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