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Abstract: To diagnose neurodegenerative diseases (NDDs), physicians have been clinically 
evaluating symptoms. However, these symptoms are not very dependable—particularly in the early 
stages of the diseases. This study has therefore proposed a novel classification algorithm that uses 
a deep learning approach to classify NDDs based on the recurrence plot of gait vertical ground 
reaction force (vGRF) data. The irregular gait patterns of NDDs exhibited by vGRF data can indicate 
different variations of force patterns compared with healthy controls (HC). The classification 
algorithm in this study comprises three processes: a preprocessing, feature transformation and 
classification. In the preprocessing process, the 5-min vGRF data divided into 10-s successive time 
windows. In the feature transformation process, the time-domain vGRF data are modified into an 
image using a recurrence plot. The total recurrence plots are 1312 plots for HC (16 subjects), 1066 
plots for ALS (13 patients), 1230 plots for PD (15 patients) and 1640 plots for HD (20 subjects). The 
principal component analysis (PCA) is used in this stage for feature enhancement. Lastly, the 
convolutional neural network (CNN), as a deep learning classifier, is employed in the classification 
process and evaluated using the leave-one-out cross-validation (LOOCV). Gait data from HC 
subjects and patients with amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD) and 
Parkinson’s disease (PD) obtained from the PhysioNet Gait Dynamics in Neurodegenerative disease 
were used to validate the proposed algorithm. The experimental results included two-class and 
multiclass classifications. In the two-class classification, the results included classification of the 
NDD and the HC groups and classification among the NDDs. The classification accuracy for (HC 
vs. ALS), (HC vs. HD), (HC vs. PD), (ALS vs. PD), (ALS vs. HD), (PD vs. HD) and (NDDs vs. HC) 
were 100%, 98.41%, 100%, 95.95%, 100%, 97.25% and 98.91%, respectively. In the multiclass 
classification, a four-class gait classification among HC, ALS, PD and HD was conducted and the 
classification accuracy of HC, ALS, PD and HD were 98.99%, 98.32%, 97.41% and 96.74%, 
respectively. The proposed method can achieve high accuracy compare to the existing results, but 
with shorter length of input signal (Input of existing literature using the same database is 5-min gait 
signal, but the proposed method only needs 10-s gait signal). 

Keywords: gait analysis; pattern visualization; neurodegenerative diseases; deep learning; feature 
extraction; recurrence plot; vertical ground reaction force (vGRF) data 
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1. Introduction 

Neurodegenerative diseases (NDDs), such as amyotrophic lateral sclerosis (ALS), Huntington’s 
disease (HD) and Parkinson’s disease (PD), are caused by malfunctioning neurons in different regions 
of the nervous system [1]. PD, the second most common NDD, is approximately 0.3% prevalent in 
the general population; in the elderly people over 60 years, it is ~1%, and ~3% in elders over 80 years 
[2]. The PD incidence rate is 8–18 person per 100,000 people per year [2]. The median age at onset is 
60 years, and the mean duration of the disease progression, from diagnosis to death, is around 15 
years [2]. This disease and its incidence rate are 1.5–2 times prevalent in men than in women [2]. 
Moreover, PD costs 2500 USD each year for medical treatments and up to 100,000 USD per patient 
for therapeutic surgery [3]. ALS, the third most common NDD and most common motor neuron 
disease, has an incidence about rate of 1.9 people per 100,000 people per year [4,5]. In America, 30,000 
people suffer from ALS, 30,000 from HD and o million from PD [6]. Because NDDs develop primarily 
in mid-to-late life, the incidence rate is expected to rise with the increasing aging population. By 2030, 
one of five Americans are expected to be over the age of 65, and over 12 million Americans may suffer 
from NDDs 30 years from 2020 [7]. Thus, early screening and treatments for NDDs should be 
achieved to meet the growing demand on preventive medicine. NDDs can influence many kinds of 
body activities, such as heart regulation, respiration, speech, mental functioning, balance and 
movement. Because general motions such as flexion and extension of the two lower limbs are 
controlled by the central nervous system, especially basal ganglia, the gait of the patient with an NDD 
may become abnormal (different gait pattern from the healthy subject) owing to a malfunctioning 
motor neuron [8]. ALS, also called motor neuron diseases, causes the death of neurons that control 
voluntary muscles; this condition results in stiff muscles, muscles twitching and gradually worsening 
weakness attributable to muscles decreasing in size [9–11]. HD is a hereditary disorder that results in 
the death of brain cells; thus, lack of coordination, an unsteady gait and uncoordinated and jerky 
body movements will become more apparent [12–14]. PD is a long-term degenerative disorder of the 
central nervous system; it mainly affects the motor system, and its early symptoms include shaking, 
rigidity, slow movement and difficulty of walking [15–17]. Thus, the gait is affected by NDDs. As a 
result, information about gait is used to analyze movement in HC (HC) subjects and other subjects 
with different kinds of diseases. The gait analysis is very useful in understanding movement 
disorders caused by NDDs and it can be potentially used in presenting the non-invasive automatic 
classification method for NDDs. 

Gait analysis is used to assess and treat individuals with conditions that affect their ability to 
walk, such as health, age, size, weight and speed. In previous studies, as shown in Table 1, research 
on gait analysis has been developed using the series of stride, stance or swing intervals, ground 
reaction force (GRF) and foot force. Wei Zeng and Cong Wang presented the gait dynamics method 
to classify NDDs via the deterministic learning theory [18]. Using statistical features and different 
classification models, Xia et al. proposed a classification method for gait rhythm between patients 
with neurodegenerative diseases and control subjects [19]. Ertug෬rul et al. developed shifted one-
dimensional local binary patterns to detect PD based on a vertical GRF (vGRF) [20]. Wu et al. 
measured signal fluctuations in the gait rhythm time series of patients with PD using entropy 
parameters to compute the approximate entropy (ApEn), normalized symbolic entropy and signal 
turns count parameter for stride fluctuations measurement [21]. Generalized linear regression 
analysis and support vector machine (SVM) were applied to perform nonlinear gait pattern 
classifications. Zhao et al. implemented dual-channel long short-term memory (LSTM)-based multi-
feature extraction on gait for diagnosis of NDDs [22]. They designed a dual-channel LSTM model to 
merge time series and force series recorded from NDDs patients for whole gait understanding. 
Suleyman Bilgin researched about the impact of feature extraction to classify ALS patients among 
those with NDDs and the HC subjects [23]. Compound force signal, the input signal, was utilized for 
feature extraction using a 6-level discrete wavelet transform with different types of wavelet 
techniques. The obtained features were validated using 20 trials for 5-fold cross-validation in linear 
discriminant analysis (LDA) and Naïve Bayesian classifier (NBC). Pham (2017) proposed a novel 
method for gait analysis by transforming time series data sequence into images from which texture 
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analysis methods and texture features of a gait can be extracted [24]. In addition, the existing 
literature only focused on two-classification (e.g., HC vs. ALS, HC vs. HD, HC vs. PD), multiclass 
classification (e.g., HC vs. ALS vs. HD vs. PD) at the same time had never been studies before. This 
study not only focused on two-class gait classification, but also focused on multiclass (four-class) gait 
pattern classification. 

Less involvement of the raw physiological signal analysis during gait analysis and adoption of 
state-of-the-art deep learning classifiers can be noted in the existing studies. In some literature reports 
(presented in Table 1), NDDs gait classifications were developed using features such as series of 
stride/stance/swing intervals, which are the processed features of the raw physiological signal 
[18,19,21]. To investigate new differences among HC and NDDs (ALS, HD and PD) was the first 
research aim of this study. Deep learning classifiers, which can automatically construct 
representations of the data, was an appropriate technology to investigate the difference in the raw 
physiological signal between HC and NDDs (ALS, HD and PD). To transform the raw physiological 
signal into image-like features and then to utilize deep learning classifiers to develop the NDDs 
classification algorithm was the second research aim of this study. Thus, the recurrence plot was used 
to transform the vGRF into a recurrence plot image. Convolutional neural network (CNN), a famous 
deep learning classifier, was used to extract the features from the recurrence plots and classify the 
features of HC and NDDs (ALS, HD and PD) gaits. The utilization of existing methods combination 
in the proposed method, such as recurrence plot and CNN, is for transforming the raw physiological 
signal from 1-dimensional space (time domain) to 2-dimensional space (spectrogram, time–frequency 
domain) and performing the feature extraction in order to bring out the most important pattern 
visualization. 

Table 1. Summary of the neurodegenerative diseases (NDDs) gait classification literatures. 

Literature 
Summary of the Classification Algorithm 

Feature Extraction Classifier Cross-
Validation 

[18] Radial basis function (RBF) 
neural networks RBF neural networks 

All training all 
testing and 

LOOCV 

[19] 

Mean, standard deviation, max, 
min, skewness, kurtosis, 

Lempel-Ziv complexity, fuzzy 
entropy and Teager–Kaiser 

energy feature 

Support vector machine 
(SVM), random forest 
(RandF), multilayer 

perceptron (MLP) and k-
nearest neighbor (KNN) 

LOOCV 

[20] shifted 1D-LBP 

Bayes Network (BayesNT), 
naïve Bayes (NB), logistic 

regression (LR), MLP, Partial 
C4.5 decision tree (PART), 
RandF and functional tree 

(FT) 

10-fold cross-
validation 

[21] 
Approximate entropy (ApEn), 
normalized symbolic entropy 

(NSE), signal turns count (STC) 

Generalized linear regression 
analysis (GLRA) and SVM LOOCV 

[22] Dual channel LSTM Dual channel LSTM LOOCV 

[23] Discrete wavelet transform 
(DWT) 

Linear discriminant analysis 
(LDA) and NBC 

All training all 
testing and 

LOOCV 

[24] 
Fuzzy recurrence plot (FRP) + 

Gray-level co-occurrence 
matrix (GLCM) 

Least squares support vector 
machine (LS-SVM) and LDA LOOCV 

 



Sensors 2020, 20, 3857 4 of 22 

Although some existing methods were employed in this research, the proposed method came 
out with novel concept in gait analysis for NDDs identification based on extracted pattern 
visualization of a raw physiological signal. The novelty of this research was to develop a sophisticated 
approach for the NDDs classification using recurrence plot’s pattern visualization and a deep 
learning algorithm instead of the statistical features [19–21] and machine learning algorithm [19–
21,23,24] as previously stated. The extracted pattern features were automatically generated using the 
deep learning algorithm. Contrasting with the extracted statistical features, over the pattern 
visualization of the recurrence plot, the gait abnormalities within the NDDs patients can be directly 
and effectively identified and distinguished from the gaits of the HC. The main objective of this study 
is to develop a classification method to help physicians in screening NDDs patients based on the 
vGRF data. In particular, this method will help determine if any of the three types of NDDs (ALS, 
HD and PD) can interfere with the patient’s ability to manage the propulsion of two feet. The method 
will also help determine if the significant differences in vGRF denote specific diseases the patient 
suffers. The right foot (RF), left foot (LF) and compound foot (CF) is obtained from the summation of 
RF and LF) force data of NDDs and HC subjects are used as the input to the algorithm. Then, feature 
transformation using a recurrence plot is applied to the input to create new features (gray-level 
texture image of recurrence plot) using the existing ones. For classification improvement, the 
principal component analysis (PCA) was applied to the gray-level texture image of recurrence plot 
by choosing the principal components (PCs) of the features. The PCs of HC and NDDs subjects are 
divided into training and testing sets. The estimators were built by training the training sets and by 
comparing the estimators with a test set of HC or NDDs to be classified; some parameters of 
classification were generated. CNN has successfully been applied in this study to extract the features 
and classify HC and NDDs in the classification stage (training and testing phase). The proposed 
method can effectively classify gait patterns among HC, ALS, HD and PD groups in 
neurodegenerative diseases. 

2. Materials and Methods 

In the proposed algorithm, the vGRF data of NDDs from the database of PhysioNet was utilized 
[25]. The raw data were obtained using force-sensitive resistors, with the output roughly proportional 
to the force under the foot [26]. The RF/LF/CF force data of HC, ALS, PD and HD was used as the 
input of the algorithm. In the proposed algorithm, the first step was to perform data preprocessing, 
remove corrupt data, and separate the original 5-min data into 10 s of consecutive data. Thereafter, 
the feature transformation method was applied to transform the signal into the image-like recurrence 
plot to emphasize and visualize the existing features. PCA was used to select and enhance the 
important features to improve the classification result. The deep-learning-based algorithm was 
applied to classify NDDs. A CNN was chosen as the classification model because it is efficient and 
robust in image classification. Lastly, a cross-validation method was employed to validate the trained 
model, leave-one-out cross-validation (LOOCV). Figure 1 shows the flowchart of the proposed 
method. 

Figure 1. Flowchart of the proposed NDD detection algorithm using recurrence plot as the feature 
transformation. 
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2.1. Neurodegenerative diseases Gait Dynamics Database 

The vGRF database used in this research (PhysioNet Gait Dynamics in Neurodegenerative 
disease) was made available online in the PhysioNet database by Hausdorff et al. [25]. The database 
comprised 64 recordings of information from 13 patients with ALS, 15 with PD, 20 with HD and from 
16 HC subjects. There were two types of data recorded in this database: 1) raw data of gait vGRF 
series and 2) gait cycle patterns derived from the vGRF. The vGRF signal comprised LF force and RF 
force data. Within the gait cycle patterns, the contents were left stride interval(s), right stride 
interval(s), left swing interval(s), right swing interval(s), left swing interval (percent of stride), right 
swing interval (percent of stride), left stance interval(s), right stance interval(s), left stance interval 
(percent of stride), right stance interval (% of stride), double support interval(s) and double support 
interval (percent of stride). Only the vGRF signal data were used in the analysis since the main 
research purpose is to investigate new features from raw data. The classic processed gait patterns 
(such as left stride interval) are not considered. 

Table 2 shows the demographics of the database subjects, including gender, age, height, weight, 
gait speed, and a measure of disease duration for ALS or severity for PD and HD. For the HC subjects, 
an indicator of 0 is used. For the ALS patients, the value describes the duration in months since the 
disease diagnosis. For the PD patients, the Hoehn and Yahr scale stages 1 through 5 is used [27], 
where a higher scale represents more severe disease. For the HD patients, the total functional capacity 
measure is applied, where a lower score exhibits more advanced functional impairment. 

Table 2. Demographics of the subjects in PhysioNet Gait Dynamics in Neurodegenerative disease 
database [25]. 

Class Gender Ages (Year) Height (m) Weight (kg) Gait Speed (m/s) Severity/Duration 

 
Male/ 

Female 
(<50)/(50–70)/(≥70)     

HC 2/14 11/4/1 1.83 ± 0.08 66.81 ± 11.08 1.35 ± 0.16 0 
ALS 10/3 4/7/2 1.74 ± 0.10 77.11 ± 21.15 1.05 ± 0.22 18.31 ± 17.82 1 
PD 10/5 1/7/7 1.87 ± 0.15 75.07 ± 16.9 1.0 ± 0.2 3 2 
HD 6/14 13/5/2 1.84 ± 0.09 73.47 ± 16.23 1.15 ± 0.35 8 3 

1 Duration in months since the disease diagnosis. 2 Hoehn and Yahr scale stages (1–5) in median 
quartile. 3 Total functional capacity scale (0–13) in median quartile. 

The vGRF signal data in this database was obtained using force-sensitive resistors in the insole, 
with the output proportional to the force under the foot. The transducer of the insole was a conductive 
polymer layer sensor with altered resistance when loaded. The sensor was selected based on various 
reasons: thickness of < 0.05 in, temperature insensitivity, a fast-dynamic response, the ability to 
restrain an overload and an electronically easy interface. Two 1.5 in2 force-sensitive resistors were 
used and the sensors were taped to an insole used to place them inside the shoe. The insole was made 
from the manila folder by tracing an outline of the foot onto it and then cutting out the tracing. One 
sensor was located to the anterior portion of the insole, under the toes and the metatarsals, and the 
other sensor was at the opposite end, under the heel. The two footswitches were connected in parallel 
and served as one large sensor (the outputs from these two footswitches were added up). Then, the 
analog signal was digitized and analyzed using software [26]. 

2.2. Data Preprocessing 

Time-Windowing Process (10-s Window Length) 

The original data were collected for 5-min per subject. To eliminate the impact of the initial 
walking period of each subject, the first 20-s length of data was removed. In the proposed algorithm, 
window function, as a mathematical term that is zero-valued outside some selected interval to 
separate the original data into several consecutive data sets, was used. In this step, the rectangular 
window function [28], as denoted in and overlapping two neighboring time windows for 6.66-s, as 
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depicted in Figure 2,were applied to an original 5-min-long signal to obtain the 10-s-long successive 
signals. The overlapping time window method was successfully applied in several studies [29–32]. 

Figure 2. Illustration of overlapping 10-s time-window size for 6.66 s (2⁄3 of time-window size), 
including the corresponding recurrence plot of each 10-s window length compound foot (CF) vertical 
ground reaction force (vGRF) signal of healthy controls (HC) subject. 

Table 3. Number of vGRF data before and after data preprocessing. 

Class 
Number of vGRF Data 

Number of Subjects 
(Original) Samples of Time-Windowing Process (10-s) 

HC 16 1312 
ALS 13 1066 
PD 15 1230 
HD 20 1640 

Total 64 5248 
 
The total number of subject data was 64, with 16 data for HC, 13 data for ALS, 15 data for PD 

and 20 data for HD. However, after this time-windowing process was employed, 1312 data for HC, 
1066 data for ALS, 1230 data for PD and 1640 data for HD were obtained, which meant that 5248 data 
were available for the training model, as shown in Table 3. The number of vGRF data samples (𝑛) 
after data preprocessing can be calculated as: 𝑛 ൌ ൬ℓ − 𝑇𝑊𝑑 ൅ 1൰ ൈ 𝑇 (1) ℓ is the data length, 𝑇𝑊 indicates the time window length (10-s), 𝑑 is the distance between two 
windows data (2/3 of time-window size as the result of overlapping two neighboring time windows 
for 6.66-s) and 𝑇 is each group total samples. Each of HC, ALS, PD and HD subject has 5-min (300-s) 
length of data and the first 20-s of data were removed. The remaining data length is 280-s for each 
subject (ℓ ൌ  280). The time window length is 10-s (𝑇𝑊 ൌ 10) and the distance between two windows 
data is 3.33-s, since the overlap window for each signal is 6.66-s. There are ሺଶ଼଴ିଵ଴ሻଷ.ଷଷ ൅ 1 ൌ 82 data 
samples for each subject and finally, the total samples are 82 ൈ 16 ൌ 1312 data samples for HC (16 
subjects), 82 ൈ 13 ൌ 1066 data samples for ALS (13 patients), 82 ൈ 15 ൌ 1230 data samples for PD 
(15 patients) and 82 ൈ 20 ൌ 1640 data samples for HD (20 patients). 

There were several benefits regarding the use of the time-windowing process. First, it was useful 
to obtain more data for the deep learning model to obtain an accurate prediction. Second, use of the 
time-windowing process meant shorter signal data were gained. In the real-life situation, this is 
related to the patient’s convenience while performing data collection. If a 5-min length of data is used 



Sensors 2020, 20, 3857 7 of 22 

to obtain sufficient data, the patients need to walk for at least 5 min, which can be time-consuming 
and inconvenient for NDDs patients. The potential for the patient to be injured, because of the fall 
risk factor, is increased if the data collection time is longer. In case of the 10-s-long data, patients will 
only need to walk for 10 s and will also get the reliable prediction of the disease faster (rapid NDDs 
detection algorithm). Third, in shorter vGRF signals, more detailed texture and pattern visualization 
of gait abnormalities can be observed. 

2.3. Recurrence Plot 

A recurrence plot was utilized as the feature transformation method. The recurrence plot is a 
good visualization tool for capturing hidden dynamics of nonlinear time series. The original signal 
was transformed into a two-dimensional image by the recurrence plot [33]. The useful and important 
information from a complex signal or complex system can be displayed, and the texture patterns can 
also be further analyzed. For the recurrence plot used in the proposed algorithm, the principle is 
explained as follows: Let 𝑿 = { 𝑥ଵ ,  𝑥ଶ, … ,  𝑥௡ିଵ , 𝑥௡ } be a set of force series in a record of gait force 
signal, where n denotes the data point. A recurrence plot can be constructed as follows: 𝑷ሺ𝑖, 𝑗ሻ = ห𝑥௜ − 𝑥௝ห𝑚𝑎𝑥 (𝑿) (2) 

where 𝑷(𝑖, 𝑗)  is a pixel with the coordinates (𝑖, 𝑗)  in a recurrence plot, for 𝑖 = 1, 2, … ,𝑛 , and 𝑗 =1, 2, … ,𝑛. 𝑷(𝑖, 𝑗) is similar or close to a state pair (𝑥௜ , 𝑥௝) in meaning. The data were normalized by 
dividing with the maximum value of 𝑿 so that all the pixel values will be ranged from 0 and 1. If the 
value of 𝒙௜ and 𝒙௝ are more similar, the pixel shown on the recurrence plot will be closer to black; in 
contrast, if the value of 𝒙௜ and 𝒙௝ differ, the pixel shown on the recurrence plot will be closer to white. 
With the recurrence plot, a gray-level image can be obtained, which represents the complexity and 
regularity of the input signal by the rendered colors and the texture pattern. The not-so-obvious 
periodic features of the original signal can also be emphasized and visualized. 

The data of each subject in each group that had already been processed by the time-windowing 
process as the input signal to construct a recurrence plot. As shown in Figure 3, the different texture 
patterns can be observed through the recurrence plots of different types of groups (HC, ALS, PD and 
HD), which indicate that the generated images were suitable to be classified by deep learning 
algorithms. 
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Figure 3. Image feature extracted using the recurrence plot of the right foot vGRF signal of healthy control and neurodegenerative diseases subjects at 10-s time-windowing 
size (image resolution: 227 ൈ 227). (a) Healthy subject (HC); (b) amyotrophic lateral sclerosis patient (ALS) ; (c) Parkinson’s disease patient (PD) ; (d) Huntington’s disease 
patient (HD). 



Sensors 2020, 20, 3857 9 of 22 

2.4. Principal Component Analysis 

The main idea of a PCA is to perform dimensionality reduction of a dataset containing a major 
number of interrelated variables while resisting as much as possible of the variation present in the 
dataset [34]. This is acquired by transforming the dataset into a new set of variables, the principal 
components (PCs), which decorrelates the variables that are ordered. 

The PCA method in this research is defined mathematically using the following steps 
(described as a flowchart in Figure 4): Consider that a matrix, 𝑿 = ሾ𝑷ଵ;𝑷ଶ;𝑷ଷ; . . . ;𝑷௜ሿ், is constructed 
by the gray-level texture images of all NNDs and HC, where 𝑷 is a row vector consisting of the pixels 
of a gray-level texture image of NDDs or HC and 𝑖 is the number of gray-level texture images of all 
NDDs and HC. The PC is built using the equation: 𝑪 = 𝑿்𝑿 (3) 

It is also called a covariance matrix of the matrix 𝑿  to subsequently find its eigenvalues and 
eigenvectors. Then, the 𝑾 matrix, an 𝑚 ൈ𝑚 matrix of weights whose columns are the eigenvectors 
of 𝑪 , is obtained. Finally, the matrix of extracted feature 𝑭  can be described as the full PCs’ 
decomposition of 𝑿 and can, therefore, be shown as: 𝑭 = 𝑿𝑾 (4) 

Because PCA was applied as the feature enhancement and the input was an image, the full PCs of 
each sample was selected to maintain the important texture and pattern features for visualization. 
The purpose of using PCA as the feature enhancement in this proposed method is to enhance the 
between-class separability and minimize the within-class separability of datasets. It was intended to 
improve the classifier performance in classifying the data points into the correct group. 

Figure 4. Flowchart of new feature extracted reconstruction using principal component analysis 
(PCA) as feature enhancement purpose. 

2.5. Convolutional Neural Network 

A CNN is composed of one or more convolutional layers (often with subsampling and pooling 
layers), which is then followed by one or more fully connected layers as in a basic multilayer neural 
network (deep learning) [35]. The architecture of a CNN is built to benefit from the 2D structure of 
the input (image or signal). This is accomplished by local connections and involves weights followed 
by any pooling function that results in translation-invariant features. Another advantage of CNN is 
that it is simpler to train and has significantly fewer parameters than other fully connected networks 
with the same number of hidden layers. The main reason for using a CNN in the proposed method 
is to distinguish the difference between the gray-level texture image representation of vGRF from HC 
and NDDs (ALS, HD and PD) subjects. The concept of using recurrence plot and CNN to extract 
and classify NDDs vGRF data are never found in our literatures. A pre-trained AlexNet [36] 
was used in this study in order to meet a balance point between classification accuracy 
performance (significant improved compare to the classical CNN such as LeNet [37]) and 
computation time (much less time consumption compared to the state-of-the art CNN such 
as GoogLeNet [38] or ResNet [39]). 

A pretrained AlexNet CNN was utilized from MATLAB R2018a Deep Learning ToolboxTM in 
the system [36]. Kirzhevsky et al. trained a large and deep convolutional neural network, called 
pretrained AlexNet, with 1.2 million high-resolution images into 1000 different labels on multiple 
GPUs. The error rate was approximately 1.7%. As the result, the pretrained AlexNet has learned rich 
feature representations for a wide range of images as the input. The architecture comprises 25 layers, 
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including an input layer, five convolution 2D layers, seven ReLU (activation function) layers, two 
cross-channel normalization layers, three max-pooling 2D layers, three fully connected layers, two 
dropout layers (for regularization), a softmax layer (normalized exponential function) and an output 
layer. The input of the pretrained AlexNet in the proposed method is the gray-level texture images 
of the vGRF data yielded by the recurrence plot. There are two methods in fine-tuning a pretrained 
AlexNet: transfer learning and feature extraction. The feature extraction method was selected because 
it is an easy way to apply the pretrained networks without spending much time (i.e., faster than the 
transfer learning method) and many attempts for training. This method only applies to earlier fully 
connected layers and uses an SVM for classification. Earlier layers characteristically extract fewer, 
shallower features, have higher spatial resolution and a larger total number of activations. On the 
contrary, deeper layers contain higher-level features, constructed by the lower-level features of earlier 
layers. The proposed feature extraction method only utilized 20 layers out of 25 layers’ pretrained 
AlexNet CNN, from input layer (total input = 5248 images) to the fully connected layer ‘fc7′, in order 
to get the higher-level features (depicted in Figure 5). 

 
 

Figure 5. Architecture of the proposed method convolutional neural network (CNN). 

The convolutional layer plays the most important role in how CNNs work. This layer is 
composed of a set of kernels (learnable filters) as parameters, which contain a small receptive field, 
but are prolonged through the full depth of the input. When the data pass through the convolutional 
layer, each kernel is convolved across the spatial dimensionality of the input (width and height of the 
input volume), calculating the dot product and producing a 2D activation map. The filters in the 
convolutional layers are edge detectors and color filters. The ReLu (rectified linear unit) layer utilizes 
the non-saturating activation function 𝑓(𝑥) = max (0, 𝑥), such as sigmoid 𝜎(𝑥) = (1 ൅ 𝑒ି௫)ିଵ, to the 
output of the activation generated by the previous layer. Another vital concept in CNNs is pooling, 
which is usually referred to as nonlinear downsampling. The aim of the pooling layer is to perform a 
dimensionality reduction and to minimize the number of parameters and the complexity of model 
computation. This layer takes action in the input of each activation map and scales the input 
dimension using the “MAX” function, hereafter called the max-pooling layer. Eventually, after some 
convolutional and max-pooling layers, the fully connected layers will attempt to generate class scores 
from the previous activations to be used for classification; the same roles that they play in traditional 
forms of artificial neural networks. Neurons in this layer have connections to all activations from the 
previous layer. 

2.6. Cross-Validation. 

Cross-validation is a statistical method used to assess and compare learning algorithms by 
dividing data into two groups: one used to learn or train a model (training set) and the other used to 
validate the model (testing or validation set) [40]. The training and testing sets must cross over in 
consecutive rounds such that each data point has an opportunity to be validated. There are two main 
purposes for applying cross-validation: First, the performance of the learned model from available 
data using one algorithm can be investigated. In other words, it is used to quantify the 
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generalizability of an algorithm. The second purpose is to evaluate the performance of two or more 
different algorithms to discover the best algorithm for the available data or, alternatively, to compare 
the performance of two or more variants of the parameterized model. Leave-one-out cross-validation 
(LOOCV) is a special case of 𝑘-fold cross-validation, where 𝑘 equals the number of data points. In 
other words, in each iteration, almost all the data points, except for a testing data point, are used for 
learning (training), and the model is validated on that single data point. An accuracy estimation 
obtained using LOOCV is known to be almost unbiased, but it has high variance, inferring unreliable 
estimates. 

3. Experimental Results 

The experiments were executed using MATLAB R2018a software on an NVIDIA GeForce GTX 
1060 6 GB computer with 24 GB RAM. The experiment results consist of included two-class and 
multiclass classifications. Two-class classification results are classification of the NDD and the HC 
groups and classification among the NDDs. The classification accuracy for (HC vs. ALS), (HC vs. 
HD), (HC vs. PD), (ALS vs. PD), (ALS vs. HD), (PD vs. HD) and (NDDs vs. HC) The multiclass 
classification, a four-class gait classification among HC, ALS, PD and HD was conducted. The 
classification algorithm in this study comprises three processes: a preprocessing, feature 
transformation and classification. In the preprocessing, two different window length: 10-s and 5-min 
were selected as the time window of the gait signal for classification. The objective of selecting a 10-s 
window is to develop an NDDs gait classification with short observation signal length; the objective 
of selecting a 5-min window is to compare the performance to that of the existing literature. In the 
feature transformation process, the time-domain vGRF data are modified into an image using a 
recurrence plot. The principal component analysis (PCA) is used in this stage for feature 
enhancement. Lastly, the convolutional neural network (CNN), as a deep learning classifier, is 
employed in the classification process and evaluated using the leave-one-out cross-validation 
(LOOCV). The average execution time of this study is shown in Table 4. The accuracy (acc.), 
sensitivity (sens.), specificity (spec.) and an AUC value of the proposed method were measured as 
the parameters for evaluation. The definition of the evaluation parameters is provided in [41]. 

Table 4. Average execution time of the proposed method. 

Proposed Action Methods 
Execution Time (s) 

10-s Length 
(5248 Input Samples) 

5-min Length 
(60 Input Samples) 

Feature transformation using recurrence plot 51.676 1.381 
Feature enhancement using PCA 550.350 1.945 

AlexNet CNN model training and testing using LOOCV 38,198.402 23.702 

When selecting between two or more diagnostic tests, Youden’s index is generally applied to 
evaluate the effectiveness of an overall diagnostic test [42]. Youden’s index is a function of sensitivity 
and specificity, where the index ranges between 0 and 1, with a value close to 1 means that the 
diagnostic test effectiveness is relatively high and the test is perfect, and a value close to 0 represents 
limited effectiveness, where the test is useless. The Youden’s index (J) is described as the sum of the 
two fractions indicating the measurements correctly diagnosed for the diseased group (sensitivity) 
and HC (specificity). 𝐽 = (𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) − 1 (5) 

This index was employed to select better classification results among the LF, RF and CF of vGRF 
data. The classification results are given in two parts: 1) two-class classification and multiclass 
classification. In two-class classification, the results include classification of the NDD and HC group, 
classification among the NDDs and classification among the NDDs. The multiclass classification 
includes the classification among the HC, ALS, PD and HD at the same time. Even though the 
application of the CNN in the multiclass classification has been used in different domains of medical 
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research such as in [43–47], the multiclass classification is the novelty of this study and existing 
literature did not do the multiclass classification. 

3.1. Two-Class Classification 

The two-class classification in this study includes three sub-study. There are (1) classification of 
the NDD and healthy controls group, (2) classification among the NDDs, (3) classification of All 
NDDs in one group and healthy controls Group. The purpose of studying classification of the NDD 
and healthy controls group is to examine the performance of the proposed algorithm to certain NDD 
(ALS, HD, PD). The objective of classification among the NDDs is to check how the proposed method 
perform with various NDDs classification. Finally, all NDDs data were combined into one class and 
discriminate with that of the HC class. 

3.1.1. Classification of the NDD and healthy controls Group 

In this classification situation, there were three kinds of different classification tasks, such as ALS 
vs. HC, HD vs. HC and PD vs. HC. There were 12 ALS, 20 HD and 14 PD patients as well as 16 HC 
subjects who were observed in all classification situations, but the input signal for the proposed 
method was dependent on the window size in the time-windowing process. For the 10-s time-
window size, there were 1312 data windows of HC, 984 data windows of ALS, 1148 data windows of 
PD and 1640 data windows of HD, which was a total of 5084 data. For the purpose of comparison, 
the 5-min time-window size was also employed. The detailed classification results are given in Tables 
5 and 6.
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Table 5. Summary results for all two-class classification using leave-one-out cross-validation (LOOCV) for 10-sec time-window size. 

Classification 
Tasks 

10-sTime Window Size 
Acc. (%) Sens. (%) Spec. (%) AUC 𝑱 (Youden’s Index) 

LF RF CF LF RF CF LF RF CF LF RF CF LF RF CF 
ALS vs. HC 100 100 100 100 100 100 100 100 100 1 1 1 1 1 1 
HD vs. HC 98.41 98.04 97.56 98.54 97.59 98.51 98.25 98.60 96.41 0.9839 0.9810 0.9746 0.9679 0.9619 0.9492 
PD vs. HC 100 100 100 100 100 100 100 100 100 1 1 1 1 1 1 

ALS vs. HD 100 100 100 100 100 100 100 100 100 1 1 1 1 1 1 
PD vs. ALS 95.64 95.95 94.21 94.07 94.59 92.95 97.63 97.65 95.78 0.9585 0.9612 0.9437 0.9170 0.9224 0.8873 
HD vs. PD 97.11 97.25 94.98 96.81 96.54 93.54 97.51 98.24 97.14 0.9711 0.9739 0.9534 0.9432 0.9478 0.9068 

NDD vs. HC 98.86 98.91 98.93 99.01 99.04 99.44 98.38 98.53 97.43 0.9870 0.9878 0.9844 0.9739 0.9757 0.9687 
Note: bold and underlined were selected by Youden’s index criteria as the best classification result and model. 

Table 6. Summary results for all two-class classification using LOOCV for 5-min time-window size. 

Classification 
Tasks 

5-min Time Window Size 
Acc. (%) Sens. (%) Spec. (%) AUC 𝑱 (Youden’s Index) 

LF RF CF LF RF CF LF RF CF LF RF CF LF RF CF 
ALS vs. HC 96.55 96.55 86.21 100 100 90.91 94.12 94.12 83.33 0.9706 0.9706 0.8712 0.9412 0.9412 0.7424 
HD vs. HC 77.78 83.33 77.78 83.33 93.75 92.86 72.22 75 68.18 0.7778 0.8438 0.8052 0.5555 0.6875 0.6104 
PD vs. HC 93.55 90.32 80.65 100 100 90.91 88.89 84.21 75 0.9444 0.9211 0.8295 0.8889 0.8421 0.6591 

ALS vs. HD 87.88 90.91 81.82 100 100 100 83.33 86.96 76.92 0.9167 0.9348 0.8846 0.8333 0.8696 0.7692 
PD vs. ALS 71.43 71.43 71.43 76.92 73.33 70.59 66.67 69.23 72.73 0.7179 0.7128 0.7166 0.4359 0.4256 0.4332 
HD vs. PD 82.86 77.14 68.57 79.17 75 69.57 90.91 81.82 66.67 0.8504 0.7899 0.6812 0.7008 0.5682 0.3624 

NDD vs. HC 89.06 92.19 85.94 97.67 95.74 93.33 71.43 82.35 68.42 0.8455 0.8905 0.8088 0.6910 0.7809 0.6175 
Note: bold and underlined were selected by Youden’s index criteria as the best classification result and model. 
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3.1.2. Classification among the NDDs 

In this study, a concept for classification among the NDDs was developed, for example, ALS vs. 
HD, PD vs. ALS and HD vs. PD. The main purpose of this classification was to provide intra-class 
separation efficiency (the NDD group: ALS, HD and PD), i.e., whether ALS, HD and PD could be 
easily separated or not. It was concluded that the ALS group could be readily distinguished from the 
HD and PD groups. HD and PD were not easy to separate. The HD vs. PD classification performance, 
accuracy, sensitivity, specificity and AUC value, were less compared to ALS vs. HD and PD vs. ALS 
in 5-min time-window size. This occurred because HD and PD disorders are caused by the 
degeneration of basal ganglia, and the gait abnormality symptoms of HD and PD patients are almost 
identical [48]. However, this issue can be surmounted by the proposed algorithm using 10-s time-
window size. The complete classification results of this classification situation are shown in Tables 5 
and 6. Tables 5 and 6 can reveal that the proposed algorithm can perform good in the classification 
between HC and any one of NDDs or classification between NDDs. 

3.1.3. Classification of All NDDs in One Group and healthy controls Group 

In NDDs vs. HC classification, the ALS, HD and PD patients’ vGRF datasets were merged in one 
group, for which the total number of NDD datasets was dependent on the time-windowing size. The 
experimental results for this classification situation are shown in Tables 5 and 6. 

3.2. MultiClass Classification 

The multiclass classification is closer to the clinical application, since the physician will not have 
preliminary information about whether the patient is suffering from ALS, HD or PD. The whole vGRF 
dataset was divided into four classes, based on the patients with the diseases (ALS, HD and PD) and 
healthy subjects. LOOCV was also applied in the multiclass classification for evaluation and 
validation approaches. The detailed classification results are presented in Table 7 and Figure 6. 

 

Table 7. Summary results for multiclass classification using LOOCV. 

Classification 
Tasks 

LF + 10-s Time Window Size RF + 10-s Time Window Size CF + 10-s Time Window Size 
Acc. 
(%) 

Sens. 
(%) 

Spec. 
(%) 

AUC 
Acc. 
(%) 

Sens. 
(%) 

Spec. 
(%) 

AUC 
Acc. 
(%) 

Sens. 
(%) 

Spec. 
(%) 

AUC 

HC 98.99 97.26 99.57 0.9841 99.10 97.56 99.62 0.9859 98.51 97.79 98.76 0.9827 
ALS 98.32 93.81 99.47 0.9664 98.15 92.68 99.55 0.9611 97.90 92.59 99.26 0.9592 
HD 97.41 97.68 97.28 0.9748 97.45 97.80 97.28 0.9754 96.21 95.24 96.65 0.9595 
PD 96.74 93.17 97.83 0.9550 96.49 93.09 97.54 0.9531 95.60 90 97.31 0.9366 

Note: ALS = amyotrophic lateral sclerosis, HC = healthy control, HD = Huntington’s disease and PD = 
Parkinson’s disease 
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Figure 6. Confusion matrix for multiclass classification using LOOCV. 
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4. Discussion 

The gait analysis of different subjects is discussed in this section based on the texture analysis of 
the recurrence plot. In the original vGRF signal data, it was not easy to observe some key features by 
naked eye. However, after the signal was transformed into the recurrence plot, different periodic 
features in the original signal could be extracted and shown as different texture patterns on the plot. 
The different texture patterns between each kind of NDD and HC subjects can be easily pointed out. 
With the method of recurrence plotting, the special features of the original vGRF signal in each type 
of subject can be emphasized and visualized into a plot. It brings the benefit of the follow-up deep 
learning algorithm CNN, which is outstanding for image recognition. 

4.1. Healthy Control 

The texture patterns in the recurrence plots of HC subjects depicted in Figure 3 a are orderly and 
regular. As shown in figure, there are roughly two different kinds of black squares in the plot, one is 
a bigger black square and the other is the smaller black square. The larger black squares represent the 
stance phase during the gait cycle, and the smaller black squares represent the swing phase. Both 
kinds of squares appear repeatedly and regularly in the plot, and the side length is almost the same 
in the whole the plot, whether the squares are bigger or smaller. This means that each stance interval 
and each swing interval of the original signal are consistent and regular, which corresponds with the 
characteristics of healthy people. 

4.2. Amyotrophic Lateral Sclerosis 

The texture patterns are much more complicated in the recurrence plots of ALS subjects, as 
shown in Figure 3 b. There are also two kinds of black squares, a bigger one and a smaller one, which 
represent the stance phase and the swing phase, respectively. However, in the plots of ALS subjects, 
the size of bigger black squares is obviously bigger than those of HC subjects, which means that the 
stance intervals of ALS subjects are longer than the stance interval of HC subjects in comparison. 
Furthermore, there are clear “cross-like” patterns appearing in the bigger black squares, showing the 
feature of a double peak in the stance phase of the original signal. 

4.3. Parkinson’s Disease 

The recurrence plots of PD subjects, shown in Figure 3 c, are similar to those of HC subjects. 
However, by careful observation, it can be seen that the black square in the plot of HD patients is 
irregular. There are no obvious two kinds of black squares that can be pointed out. This means that 
the stride intervals and the swing intervals of PD subjects are more irregular than the HC subjects. 

4.4. Huntington’s Disease 

The recurrence plots of HD subjects are the most arbitrary and irregular plots of the NDDs, 
indicated in Figure 3 d. There are also two kinds of squares that can be observed. The first kind has a 
clear cross-like pattern within. It represents the stance phase with the feature of a clear double peak. 
The other kind, without the cross-like pattern, represents the swing phase. The size of these two kinds 
of squares is similar, which shows that there is no clear difference between the length of the stance 
interval and the length of the swing interval for the HD subjects. 

4.5. Classification Performance comparison to other literature based on PhysioNet Gait Dynamics in 
Neurodegenerative Disease Database 

In order to examine performance of the proposed algorithm, four literatures [18,19,22,24] are 
selected to compare the algorithm performance. [18,19,22,24] adopted PhysioNet Gait Dynamics in 
Neurodegenerative disease [26] which is the same as this study. [18] employed stance and swing 
intervals series of left and right foot to do the two-class classifications (including classification of ALS 
vs. HC, HD vs. HC and PD vs. HC). [22] utilized two kinds of data as input, gait pattern data (stance 
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and swing intervals series of left and right foot) and gait force data (vGRFs). Two-class classification 
including HC vs. ALS, HC vs. HD, HC vs. PD and NDDs vs. HC were compared using LOOCV as 
the cross validation. [19] adopted five independent gait parameters including, stance interval of LF 
and RF, stride interval of LF and RF and double support interval, were selected. Two-class 
classification comparison of ALS vs. HC, PD vs. HC, HD vs. HC and NDD vs. HC using LOOCV 
were presented. In [24], only RF gait force signal was chosen as the input of the algorithm. [24] 
presented sensitivity, specificity, AUC value, and the accuracy of HC vs. HD, HC vs. PD and HC vs. 
ALS classifications using LOOCV as the evaluation method. The comparison of [18,19,22,24] to the 
proposed algorithm is given in Figures 7–10. The proposed method obtained a satisfactory 
performance of NDDs classification compared with [18,19,22,24]. In summary, the proposed method 
outperforms [18,19,22,24] in HC vs. ALS, HC vs. PD and NDDs vs. HC classification. In HC vs. HD 
classification, the proposed method cannot achieve the accuracy as high as that of the [19,24] (98.85% 
vs. 100%). However, for the length of the input data, the proposed method only used 10-s length data 
with high classification performance, it indicates that the proposed method can be categorized as an 
effective and rapid NDDs screening algorithm. It is also more appropriate for patient data collecting, 
the patients do not need to walk in a certain long period of time (5-min) so the fall incidence can be 
minimized. 
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Figure 7. HC vs. ALS comparison result between the proposed method and existing literature. (1) 5-min data length; (2) 10-s data length; (3) 5-min data length; least 
squares support vector machine (LS-SVM). 

 

Figure 8. HC vs. HD comparison result between the proposed method and existing literature. (1) 5-min data length; (2) 10-s data length; (3) 5-min data length, LS-
SVM. 
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Figure 9. HC vs. PD comparison result between the proposed method and existing literature. (1) 5-min data length; (2) 10-s data length; (3) 5-min data length, LS-
SVM, (4) 5-min data length, linear discriminant analysis (LDA). 

 
Figure 10. HC vs. NDD comparison result between the proposed method and existing literature. (1) 5-min data length, (2) 10-s data length.
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4.6. Limitations of the Proposed Method 

Even though the proposed method obtained importance-performance evidence, there are some 
limitations that has to be improved. Limited number of data were used as the input of the proposed 
method and it was from the existing online database, to collect clinical data from HC and NDDs 
subjects is the future work of this study. The other major drawback is the deployment of the patients’ 
age and disease severity level were not investigated well. These factors will influence the emergence 
of different gait abnormalities that affect the gait pattern visualization and the classification 
performance of deep learning algorithm. Based on these limitations, there are several major directions 
for improvement that could be carried out. First, since the performance obtained using the proposed 
method used an existing database, clinical data should also be obtained for the purpose of verification 
and to resolve the limitations of the current database (the limited number of NDD patients). Second, 
long-term data collection for monitoring NDDs progression is meaningful for the treatment of the 
NDD patient since the gait pattern of NDD patients should be changed in the long-term disease 
progression. Third, in order to assure the clinical meaning, the NDD gait phenomenon based on a 
gray-level texture image should be discussed with physicians. Fourth, other input data (such as 
kinetic data, temporal data, step length and cadence) and classifiers should be applied in order to 
confirm and compare the effectiveness of pattern visualization and recognition based on the use of a 
gray-level texture recurrence plot image in NDD detection applications. 

5. Conclusions 

A novel deep-learning-based NDD detection algorithm using a recurrence plot based on vGRF 
signal data were developed. Pattern visualization and recognition of the recurrence plot image-like 
made it possible to successfully differentiate between the gait phenomenon of NDD patients and HC. 
After the original signal was transformed, feature enhancement using PCA was applied to increase 
the between-class separability and reduce the within-class separability. In order to evaluate the CNN 
classification process, LOOCV was performed, and four parameters were generated, including 
accuracy, sensitivity, specificity and the AUC value. The classification accuracy for (HC vs. ALS), (HC 
vs. HD), (HC vs. PD), (ALS vs. PD), (ALS vs. HD), (PD vs. HD) and (NDDs vs. HC) were 100%, 
98.41%, 100%, 95.95%, 100%, 97.25% and 98.91%, respectively. In the multiclass classification, a four-
class gait classification among HC, ALS, PD and HD was conducted and the classification accuracy 
of HC, ALS, PD and HD were 98.99%, 98.32%, 97.41% and 96.74%, respectively. The proposed method 
can achieve high accuracy compare to the existing results, but with shorter length of input signal 
(Input of existing literature using the same database is 5-min gait signal, but the proposed method 
only needs 10-s gait signal). As a result, the proposed method was able to achieve the highest 
performance for more than 98.41% of the parameters being evaluated and achieved superior 
performance in comparison to NDD detection state-of-the-art methods found in the literature. 
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