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Abstract: In this article, we present the design and validation of a non-contact scanning system
for the development of a three-dimensional (3D) model of moist biological samples. Due to the
irregular shapes and low stiffness of soft tissue samples, the use of a non-contact, reliable geometry
scanning system with good accuracy and repeatability is required. We propose a reliable 3D scanning
system consisting of a blue light profile sensor, stationary and rotating frames with stepper motors,
gears and a five-phase stepping motor unit, single-axis robot, control system, and replaceable
sample grips, which once mounted onto the sample, are used for both scanning and mechanical tests.
The proposed system was validated by comparison of the cross-sectional areas calculated based on 3D
models, digital caliper, and vision-based methods. Validation was done on regularly-shaped samples,
a wooden twig, as well as tendon fascicle bundles. The 3D profiles were used for the development of
the 3D computational model of the sample, including surface concavities. Our system allowed for
3D model development of samples with a relative error of less than 1.2% and high repeatability in
approximately three minutes. This was crucial for the extraction of the mechanical properties and
subsequent inverse analysis, enabling the calibration of complex material models.

Keywords: non-contact measurement; three-dimensional imaging; tendon; tendon fascicle bundles;
3D model; soft tissues

1. Introduction

Biomedical imaging is an integral component in the study of soft tissue biomechanics.
Advancement in three-dimensional (3D) imaging techniques of various biological tissues (e.g., tendons,
muscle, skin) allows enhanced understanding of their physiology, structure, and biomechanical
properties. Morphological changes in the complex hierarchical structure of tissue [1] caused by disease,
aging, biological calcification, or injury [2–5] contribute to various alterations in the mechanical
and material properties of these tissues [6–8]. The mechanical properties of the tissue, such as
viscoelasticity [9] and the resulting stress distribution, are related to its dimensions and geometric
structure. Therefore, it is necessary to analyze the shape and structure of biological samples from
these tissues to determine their mechanical behavior and fully understand the relationship between
structure and function in these tissues. Accurate measurement of specimen shape is crucial in the
determination of its mechanical properties, since an incorrectly assumed geometry generates significant
discrepancies in the material parameters extracted from experiments. Determination of material
model parameters such as elastic modulus, ultimate strength, yield stress, stress relaxation, and other
viscoelastic properties based on tensile or fatigue tests requires knowledge of the cross-sectional area
(CSA) or shape of the whole sample in the case of inhomogeneous deformation of the specimen.
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A variety of techniques for the measurement of CSA and specimen geometry have been developed
thus far. Such techniques include destructive, non-destructive contact, and non-contact methods.
Destructive methods have successfully been implemented to determine CSA [10,11] and geometry,
but the need to destroy the sample disqualifies this approach in the estimation of material model
parameters based on the inverse approach. Non-destructive contact techniques are prone to errors due
to the required contact with the sample [12], which can deform the surface of soft tissue. Non-contact
techniques offer meaningful advantages with respect to the repeatability and reliability of soft tissue
measurements. The lack of physical contact with the sample ensures the accuracy and repeatability of
the measurements. One of the most precise non-contact techniques is laser micrometry developed by
Lee and Woo [13,14]. However, this technique has one major disadvantage: the geometry affects the
imaging results; thus, laser micrometers are unable to detect concavities in the sample. The concavities
are flat during image reconstruction, which produce a less accurate CSA measurement in complex
shapes. Moreover, laser micrometers cannot be used for 3D geometry reconstruction of the sample for
subsequent inverse analysis. Other techniques that can be used for characterizing the 3D structure
of soft tissues include laser and photographic scanners. The laser scanning device, described by
Heuer et al. [15], can be used for surface digitalization of soft tissue or whole musculoskeletal
structures and subsequent estimation of the strain field. The photographic scanner, proposed by
Hashemi et al. [16], allows CSA calculation at any point along the length of the specimen, as well as the
creation of a 3D model from the collection of 2D images. However, this device cannot detect surface
concavities as well as a laser scanning device. Other measurement techniques use the structured white
light [17,18] or charge-coupled device (CCD) laser displacement sensors [19–22] in the determination
of tissue morphological properties. These methods are characterized by good repeatability and can
capture the entire geometry of the sample. However, they are limited to samples with a CSA greater
than 10 mm2. Geometric changes and deformation of the sample during loading can be assessed using
vision-based 3D digital image correlation (3D DIC) techniques [23–28]. Three-dimensional DIC can
be useful in the measurement of both external surface deformation of samples and deformation of
samples in the bulk. Obuchowicz et al. [29] used the DIC method to analyze a series of photographs of
the specimen surface, as well as a series of ultrasound images acquired in a specified time interval
during tissue relaxation. It is not necessary to apply speckle patterns when analyzing ultrasound
images with DIC, which is an advantage of this technique. However, the analysis of the specimen
surface requires the application of the special contrasting speckle pattern [25]. Most existing solutions
used for the imaging of tendon or tendon subcomponent samples do not detect surface concavities
and/or do not have the required accuracy; thus, they cannot be used for the reconstruction of the
Sample 3D geometry. Methods that do provide the required repeatability and accuracy of imaging
do not allow for rapid measurement (within a matter of minutes) of samples already mounted in the
grips, which would prevent sample dehydration. Maintaining unchanged boundary conditions during
tissue scanning and testing, as well as adequate tissue hydration is crucial in the process of parameter
estimation using inverse analyses as described below. Three-dimensional imaging is an important tool
for analyzing the shapes and movements of soft tissues. In clinical practice, tendon dimensions are
often used in the identification of injury or in the planning of tendon surgery. A variety of techniques
for the measurement of CSA and specimen geometry have been developed thus far. Clinically available
measurement techniques are very important for determining the dimensions of tendon and also for
the imaging of tendon morphology. Techniques used in clinical practice include magnetic resonance
imaging, ultrasonography, and computed tomography. In addition, three-dimensional imaging is
useful in the development of computational models for further prediction of material parameters
using the inverse approach [30]. There have been many studies relating to 3D imaging techniques.
However, there are no reliable standard methods for analyzing the geometry of wet, soft tissue samples
directly prior to mechanical testing, which would ensure no changes in the boundary conditions,
as well as the detection of the surface concavities.



Sensors 2020, 20, 3847 3 of 13

Accurate measurements of biological sample geometry are of critical importance, especially for
those intended for mechanical tests and further inverse analyses. The assumption that a specimen has
a constant cross-section throughout its length can lead to fatal errors when estimating the parameters
of material models or even make calibration impossible. Moreover, performing an inverse analysis of
soft tissue strength tests requires not only the geometry of the sample, but also an accurate mapping
of sample fixation in which the finite element method is performed using boundary conditions.
Ensuring an unchanged sample fixation and, thus, boundary conditions between geometry imaging
and mechanical tests (usually performed on different tests stands) is impossible. Because of this,
there is a need to develop a rapid and reliable scanning system that is able to provide the exact
geometry of the sample mounted in the tensile grips. The development of such a system would allow
an inverse analysis of the mechanical test and extraction of parameters for both simple, as well as
highly sophisticated material models [9,31–35].

The objective of our work was to develop a novel, fully automated, and reliable non-contact
scanning system for 3D geometry determination of moist biological samples prior to carrying out
mechanical tests subsequently used for inverse analyses. We used a triangulation-based blue light
laser profile sensor, which allowed us to create computational models of the highly absorbing and
reflective irregular tissue samples mounted in the tensile grips with ±2 µm accuracy and a relative
error of less than 1.2%. Moreover, samples were mounted on replaceable inserts, which were fitted
to the 3D scanning system, as well as the tensile machine. This ensured no changes in the boundary
conditions between 3D scanning and mechanical tests, making inverse analysis feasible.

2. Development of a 3D Scanning System for the Imaging of Tendon Fascicle Bundles

The tissues of interest were soft and sensitive to moisture level. Because of this, the development
of our scanning system had to meet several conditions. Three-dimensional analysis of the moist,
soft tissue sample mounted in the grips, which would subsequently be subjected to tensile loading,
required the completion of a 360–degree scanning angle in less than a few minutes to minimize
sample dehydration prior to mechanical tests. Moreover, due to the moisture content and sample
texture, our system should be resistant to light reflections and have high sensitivity, which would
allow the detection of surface concavities. In this work, we propose a novel architecture of the 3D
scanning system with the use of a blue light laser profile sensor and dedicated mechatronic system,
which allowed us to obtain the 3D geometry of moist soft tissue samples. The proposed solution
allowed for quick reconstruction of the sample geometry and ensured that boundary conditions
remained unchanged during sample scanning, as well as during strength tests, which was of a critical
importance for further inverse analysis.

2.1. Three-Dimensional Scanning System: Design

The 3D scanning system proposed in this study was composed of a Micro-Epsilon scanControl
2900–25/BL blue light laser profile sensor (Ortenburg, Germany), rotating custom-built frame
(Figure 1), and associated software.

The scanControl 2900–25/BL blue light laser profile sensor had a resolution of 2 µm and a scanner
sampling frequency of 300 Hz. The non-contact sensor used the triangulation method, which is
commonly used to examine the shape of objects [36–39]. The blue light sensor used a laser diode with
a wavelength of 405 nm and was suitable for transparent, semitransparent, and organic materials.
The profile sensor was mounted onto a HIWIN KK 5002P300 single-axis robot (Offenburg, HIWIN,
Germany) attached to the custom-made rotatory frame, which ensured rotation of the single-axis
robot with the sensor around the stationary sample. Rotation of the frame and single-axis robot was
driven by Oriental Motor PK566AW (Tokyo, Oriental Motor, Japan) five-phase stepper motors with a
0.72° step. One motor attached to the single-axis robot ensured movement of the profile sensor along
the specimen, while a second motor controlled the rotation of the sensor, giving a 360° view of the
sample. The motors were controlled by an Oriental Motor RKD514L-C (Tokyo, Oriental Motor, Japan)
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five-phase stepping motor unit. This motor unit offered a smooth drive function, which ensured low
noise and low vibration even during low-speed operation. The smooth drive function automatically
divided the step angle into 16 microsteps, so that changing the pulse signal was unnecessary. The motor
unit was controlled by one-pulse input mode. To control the 3D scanning system, we used the
Arduino microcontroller, an open-source electronics platform, which allowed the interaction with
electronic devices, as well as the creation of a graphical user interface (GUI). The GUI was created
using Processing software (www.processing.org), which is a Java-based open-source graphical library
and integrated development environment. The GUI created for our 3D scanning system helped us
to choose the number of scans rapidly and to control and calibrate its position. To obtain the 3D
model of the sample, four scans were performed per 90-degree arc. The number of scans could be
changed if required; however, four scans were sufficient to obtain accurate sample geometry and CSA
cross-sectional measurement. Our proposed 3D scanner system enabled the measurement of samples
with a diameter of less than 15 mm, with an accuracy of ±2 µm. The sensor position was controlled
by an Infineon Technologies AG TLE4905L unipolar Hall switch (München, Infineon Technologies,
Germany). The sample was mounted in tensile grips, attached to the scanning system by a neodymium
magnet (Figure 2). The choice of all components was dictated by the need to create a novel and reliable
3D scanning system, which was easy to reconstruct by using existing elements. All components
of our mechatronic system, with the exception of mechanical parts, were commercially available,
which made the proposed solution easy to reproduce for other research groups. The blue light laser
profilometer was designed for highly reflective and highly absorbent materials, which was crucial for
moist biological materials.
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Figure 1. Assembly of the 3D scanner system: exploded view. The mechanical component is composed
of: 1. adjustable clamping rod with neodymium magnet, 2. laser light protection plate, 3. aluminum
profiles, 4. replaceable inserts for fixing samples, 5. tensile grips mounted with the sample onto
the strength machine, 6. step motor for rotating the scanner, 7. drive gears, 8. revolving frame, 9.
stepper motor controlling the vertical movement of the scanner, 10. blue laser profile sensor.



Sensors 2020, 20, 3847 5 of 13

Displacement

Fo
rc

e

Sample 
preparation

Mounting the sample 
in the grips

Sample imaging using 
the 3D scanning system

Tensile 
tests 

FEM 
inverse 
analysis

Four scans of 
the sample 

3D model 
assembly

Material model parameters / strength properties 

+ …

A)

B)

C)

D)

E)

F)

Figure 2. Flow diagram depicting the experimental process starting from the preparation of the samples
(A), through mounting of the sample in replaceable inserts (B), scanning of the sample using the 3D
scanning system (C), development of the 3D CAD model (D), up to the estimation of material model
parameters using finite element method inverse analysis (F) based on force-displacement curves from
tensile tests (E). Tensile tests were performed using the same gripping inserts that were used during
3D scanning of the sample, without changing the boundary conditions.

Tensile grips were designed to be easily installed onto the 3D scanning system and to be quickly
transferred to the strength machine without changing the boundary condition of the sample. Four 3D
profiles were subsequently used for developing a fully 3D model of the sample using MeshLab software
(www.meshlab.net) [40]. This process involved importing four sample scans and the rotation of the 3D
profiles around the Y-axis every 90°. Next, we developed the Poisson surface from the cloud of points
and generated the tetragonal mesh for further computational analysis.

2.2. Validation Procedure of Our 3D Scanning System on Synthetic Regular Samples and a Wooden Twig

In order to validate and determine the accuracy and reliability of our 3D scanner system,
we scanned six samples (n = 6) composed of styrene acrylonitrile resin (SAN) having a
cylindrical or hexagonal prism shape and then compared the results with two other methods:
manual measurement with a caliper and a vision-based method. To evaluate the accuracy and
reliability of our system for irregularly-shaped biological samples, we performed six measurements of
a wooden twig. The dimensions of each sample were measured using a precision digital caliper with
an accuracy of ±0.01 mm. The vision-based method consisted of taking photos of the analyzed sample
in the presence of a caliper. Next, using Levenhuk ToupView software (Levenhuk USA), calibration
was performed by determining dimensions from the scale of the caliper. Then, the sample dimensions

www.meshlab.net
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(between the sample edges) were determined in several places. The following types of samples were
included: a cylinder with a diameter of 9.46 ± 0.04 mm (Sample 1), a cylinder with a diameter of
8.98 ± 0.04 mm (Sample 2), a cylinder with a diameter of 2.32 ± 0.05 mm (Sample 3), a hexagonal
prism with a short diagonal of 8.06 ± 0.05 mm (Sample 4), a hexagonal prism with a short diagonal of
6.61 ± 0.01 mm (Sample 5), a hexagonal prism with a short diagonal of 3.34 ± 0.03 mm (Sample 6),
and a wooden twig with an irregular shape. Subsequently, six measurements were carried out for
each cross-section, with the mean value and standard deviation recorded to assess for accuracy and
repeatability of the 3D imaging technique. Sample scanning from four sides took approximately three
minutes. The values of CSA, calculated based on the obtained 3D models, were compared to the
estimated values based on caliper-, as well as vision-based measurements. Moreover, we estimated
the relative error of the measurements to be the difference between the CSA value obtained by the
evaluated method and the true value, divided by the true value. The true value refers to calculations
based on measurements using a digital caliper.

2.3. Validation Procedure of Our 3D Scanning System on Soft Tissues: Tendon Fascicle Bundles

We used our 3D scanning system to image 10 samples dissected from Y-shaped bovine superficial
digital flexor tendons (SDFT) obtained from a local abattoir. Immediately after receiving the fresh
tendons, they were properly secured using moistened gauze, then frozen and stored at 80 °C. On the
day of testing, each sample was slowly thawed for four hours at 4 °C and then for two hours at
room temperature (23 ± 1 °C). After thawing, we removed two periphery branches of each tendon,
leaving the core branch intact. Then, from the midsubstance of each core, we dissected a sample of
fascicle bundles, ensuring that it did not include any piece of the tendon outer membrane. During
cutting, we also guided the blade in such a way that the cut followed the natural torsion line of
the fibers. The resulting cross-sectional area (CSA) of the fascicle bundle samples varied due to the
unequal dimensions of the tendons from which they were cut. Despite the fact that the CSAs of our
samples were approximately 15–30 mm2, we considered our samples to be fascicle bundles and not
subtendons. This was because they were not dissected as an anatomically distinct portion of the
multi-muscle tendon. Our 3D scanning system was used to create 3D models, as well as to calculate
the CSA of each sample. The CSA values were calculated 3 mm above the lower grip. To prevent
tissue dehydration, the samples were regularly sprayed between scans using a 0.9% NaCl solution.
To investigate the influence of light reflections on scan reliability, we performed a repeat scan of all
prepared tendon/tissue samples after coating them with talc. The application of a thin talc layer is a
widely recognized method of reducing excessive laser light absorption or reflection. All tendon fascicle
bundle samples were rinsed with a 0.9% NaCl solution and coated with talc before measurements.
The measured CSA using our 3D scanning system was compared with the results obtained by the
vision-based system. All statistical analyses were performed using OriginLab (OriginLab Corporation,
Northampton, MA, USA). Values are presented as the mean ± standard deviation. The effect of the
measurement method on the determined CSA was examined using a one-way analysis of variance
(ANOVA) test. Tukey’s post-hoc analysis was used to determine significant differences between the
mean values. The significance level was set to 0.05.

3. Results

3.1. Regular Cylindrical / Hexagonal Prismatic Shapes and Irregular Biological Samples: Comparison between
the True Value, Vision-Based Method, and 3D Scanning System

The calculated CSA of the cylindrical and hexagonal prism SAN samples with standard deviations
and relative errors for caliper measurements, our scanning system, and vision-based methods are
presented in Table 1.
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Table 1. The results of cross-sectional area (CSA) measurements of the regular styrene acrylonitrile
resin (SAN) samples and corresponding relative errors using our 3D scanning system and vision-based
method. Number of repeated measurements per sample n = 6. Data concerning CSA are presented as
means with standard deviations. Differences were considered statistically significant for p< 0.05.

Sample True Value 3D Model Vision-Based

Number CSA CSA Error CSA Error
(Section) (mm2) (mm2) (%) (mm2) (%)

1 (circular) 9.46 ± 0.04 9.45 ± 0.02 0.06 10.02 ± 0.01 5.92 p < 0.001
2 (circular) 8.98 ± 0.04 9.02 ± 0.02 0.47 9.70 ± 0.09 8.00 p < 0.001
3 (circular) 2.32 ± 0.05 2.31 ± 0.02 0.13 2.47 ± 0.10 6.66 p < 0.001
4 (hexagonal) 8.06 ± 0.05 8.06 ± 0.02 0.07 8.44 ± 0.01 4.68 p < 0.001
5 (hexagonal) 6.61 ± 0.01 6.61 ± 0.06 0.01 6.90 ± 0.01 4.29 p < 0.001
6 (hexagonal) 3.34 ± 0.03 3.33 ± 0.02 0.30 3.37 ± 0.01 4.13 p < 0.05

The standard deviation for CSA measured using our 3D scanning system for each sample
was 0.02–0.06 mm2. The relative error for all samples measured using our 3D scanning system
was less than 0.5%, while the vision-based method yielded a relative error between 4 and 8%.
For prismatic specimens of regular hexagonal cross-sections, the angles between two sides when
measured based on the reconstructed 3D model were: 120.1 ± 0.1° for Sample 4, 120.0 ± 0.0° for
Sample 5, and 120.1 ± 0.1° for Sample 6, which were in line with their real values. Our 3D scanner
system was also characterized by good repeatability. Coefficients of variation were less than 1.5%
for all types of objects. The ANOVA test revealed statistically significant differences between the
three measurement methods for all analyzed samples (p < 0.05). Tukey’s post-hoc analysis revealed
that the values obtained by the vision-based method significantly differed from those obtained by
3D scanner and caliper measurement. After validation with regular specimens, we tested our 3D
scanning system on a sample of a wooden twig. The calculated CSA of the wooden twig at several
points with standard deviations and relative errors for caliper measurements, our scanning system,
and vision-based methods are presented in Table 2.

Table 2. The results of CSA measurements of the biological sample (wooden twig) at 6 points of the
sample and corresponding relative errors using our 3D scanning system and vision-based method.
Number of repeated measurements per point n = 6. Data are presented as means with standard
deviations.

Section True Value Reconstructed 3D Model Vision-Based Method

Number CSA CSA Error CSA Error
(mm2) (mm2) (%) (mm2) (%)

1 29.21 28.89 ± 0.16 1.12 35.56 ± 2.00 17.85 p < 0.001
2 34.51 34.82 ± 0.42 0.90 39.10 ± 1.66 11.74 p < 0.001
3 29.40 29.38 ± 0.51 0.06 44.01 ± 2.26 33.20 p < 0.001
4 33.99 33.89 ± 0.51 0.15 45.89 ± 0.67 25.86 p < 0.001
5 46.66 47.20 ± 0.18 1.13 67.99 ± 1.10 31.36 p < 0.001
6 30.27 29.94 ± 0.34 1.10 45.20 ± 0.82 33.03 p < 0.001

The standard deviation for CSA measured using our 3D scanning system for each sample was
0.16–0.51 mm2. The relative error for all samples measured using our 3D scanning system was
less than 1.2%, while for the vision-based method, the value of relative error was between 11 and
33%. The significant measurement error obtained by means of the vision-based method, resulting in
overestimation of the CSA, may have been caused by image distortion from the lenses or chromatic
aberration due to the imaging of samples against a contrasting background.
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3.2. Tissue Samples: Comparison between the Vision-Based Method and 3D Scanning System Using
Talc-Coated and Uncoated Samples

To evaluate the reliability of the 3D scanning system that we developed, we compared the
CSA estimated using the vision-based method with CSA estimated based on 3D models, which is
schematically shown in Figure 3. Moreover, we compared the results of vision-based measurements
and those obtained via reconstructed 3D models with repeated measurements of fascicle bundles with
additional anti-reflective talc coating [41]. The calculated CSA and relative error for CSA measurement
of uncoated samples are presented in Table 3.

Four 3D profiles 
of the sample

3D model of the 
sample

Cross sections 
of the sample

3D CAD model
tetragonal mesh

C             C
C - C

B             B

A             A

B - B

A - A

Figure 3. Development of the 3D model of the sample from four 3D profiles scanned every 90 °.
The profiles were assembled into a single 3D surface model considering concavities, followed by the
generation of the tetragonal mesh for further computational strength analysis. Geometry of the sample
with a variable cross-section is shown.

Table 3. The calculated cross-sectional areas (CSA) of tendon fascicle bundles estimated using the
3D scanning system for uncoated and talc-coated samples compared to vision-based measurements.
Number of repeated measurements per sample n = 6. Data concerning CSA are presented as means
with standard deviations.

Tendon 3D Model 3D Model Vision-Based

Fascicle Uncoated Talc-Coated Error CSA Error
Bundle CSA (mm2) CSA (mm2) (%) (mm2) (%)

1 22.97 ± 0.32 26.96 ± 0.69 17.37 24.85 ± 0.30 8.18
2 30.27 ± 0.36 34.82 ± 0.84 15.03 32.70 ± 0.32 8.00
3 26.05 ± 0.40 30.84 ± 0.93 18.39 28.42 ± 0.41 9.10
4 17.40 ± 0.28 20.95 ± 0.64 20.40 19.94 ± 0.28 14.60
5 20.57 ± 0.78 20.15 ± 0.73 −2.04 23.65 ± 0.25 14.97
6 24.00 ± 0.76 27.02 ± 0.30 12.58 29.84 ± 0.78 24.33
7 17.98 ± 0.21 21.78 ± 0.53 21.13 19.86 ± 0.34 10.46
8 24.57 ± 0.29 28.27 ± 0.51 15.06 32.10 ± 0.45 30.65
9 14.88 ± 0.54 16.26 ± 0.37 9.27 18.88 ± 0.52 26.88
10 16.23 ± 0.61 19.70 ± 0.41 21.38 18.10 ± 0.41 11.52

For tendon fascicle bundle samples, the 3D model of uncoated and talc-coated samples created
using our 3D scanning system were compared with vision-based measurements. The use of calipers for
the tactile measurement of tendon fascicle bundle dimensions was burdened by the large influence of
operator experience and ability, which resulted in a measurement method of low repeatability. In this
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case, caliper measurements could not be considered as a reference measurement. The vision-based
method overestimated the values of CSA, which was in line with our observations for regularly-shaped
specimens. This overestimation could reach up to 31%, which resulted from sample concavity not being
taken into consideration when using the vision-based method. Moreover, the significant error from
vision-based measurements may have been caused by image distortion from the lenses or chromatic
aberration due to the imaging of samples against a contrasting background. The application of talc
coating to the sample, even though it could reduce laser light reflection, was not suitable in this
situation due to the spread of the relative error value, reaching up to 22% (Table 3). This may be due to
the uneven thickness of the talcum layer. The application of talc coating to tendon fascicle bundles
did not increase the quality of the obtained 3D models; thus, it may be omitted. Our observations
regarding the sample coating were in line with the results from a previous study [17]. The repeatability
of measurements was high, giving coefficients of variation of less than 4% for both coated and
uncoated tendons. The higher coefficients of variation obtained for tissue samples in comparison with
regularly-shaped samples could result from the slight drying of soft tissues during measurements.

The accurate measurement of the sample geometry, especially of those intended for mechanical
tests, is crucial for experimental research in the field of tissue biomechanics. A deep insight into the
geometry of samples intended for mechanical tests is a key issue for experimental research in the
field of tissue biomechanics. The influence of specimen dimensions on tendon mechanical properties
has previously been studied [42,43]. However, these studies only considered the correlation between
tissue mechanical properties and sample length. The correlation between mechanical properties
and specimen CSA was described in detail by Legerotz et al. [44], who confirmed that failure
stress, failure strain, and Young’s modulus positively correlated with CSA for a selected length
of specimens. Therefore, the proper determination of CSA may be crucial for further calculations of
selected mechanical properties of a sample, since overestimation of CSA results in underestimated
strength properties of the samples. During previous studies, we observed that the mechanical response
of tendons depended on sample geometry more than material properties, which was also reported
by other research groups [45]. Therefore, the exact geometry of the sample allowed us to calculate
the strength properties of biological samples and to estimate the parameters of the material models,
which are crucial in cases of more sophisticated models. Commonly used techniques for measuring the
geometry of tissue samples include the use of calipers [46,47], laser micrometers [48], or vision-based
methods (camera snapshots, photos) [29]. Although the caliper method seems to be the simplest
solution, it is largely based on operator decisions and the arbitrary selection of the first moment
of contact between the instrument and tissue sample. This is a disadvantage of the technique,
especially in the case of operators having little experience in the field of soft tissue experimentation.
Furthermore, this may cause unintentional underestimation of CSA as a result of excessive tissue
squeeze. This in turn may be insidious in the case of operators having little experience in the soft tissue
experimental field and may cause unintentional underestimation of CSA as a result of excessive tissue
squeeze. However, this issue can be overcome by performing a high number of repeated measurements
by several different operators. Another approach for CSA measurement uses a laser micrometer,
which is less dependent on intra- and inter-operator variability. However, the area detected by the laser
beam does not take into consideration any concavities found on the tissue surface; thus, the detected
CSA may not be the smallest along the sample’s length. This could lead to false estimations of tissue
mechanical properties and incorrect research conclusions. An overestimation of CSA may also appear
when using vision-based methods due to image distortion or chromatic aberration. Taken together,
all of the above arguments suggest that the use of a manual or semi-automated solution for CSA
measurement may never be as accurate as that of a fully automated system, which we have proposed
in this study. However, in the case of experiments studying the influence of a given phenomenon on
selected mechanical properties, an error resulting from measurements using vision-based or manual
methods may be assumed as systematic error. In the absence of other factors that may cause gross or
random errors, a systematic inaccuracy in CSA measurement may be identified as a constant offset
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factor. This should not have an influence on the relative change in mechanical parameters caused by
the tested phenomena between groups. Moreover, the use of various methods for CSA measurement
of soft tissue samples and the resulting variations in their values may explain the discrepancies in
results from mechanical tests of tissues reported by different research groups.

The high repeatability and accuracy of our 3D scanning system on regularly-shaped, as well
as tendon fascicle bundle samples demonstrated that this system could be successfully applied in
the development of tissue 3D models, which could then be used for inverse analysis, as proposed in
Figure 2. The scan acquisition time was approximately three minutes, which meant that this method
was appropriate for fast drying biological samples. Furthermore, the 3D scanning system that we
developed allowed non-contact detection of sample concavities due to the use of a laser profile sensor.
The accuracy of the blue light profile sensor used in this study was equal to ±2 µm, while much
more expensive structured light scanners, which are capable of capturing concavities [17], have an
accuracy of 0.05 mm, which can be insufficient for the imaging of individual fascicle bundles or
fascicles. The 3D scanners based on CCD laser displacement sensors [19,20] take into account sample
concavities as well, but have an accuracy that is two-fold lower than our blue light sensor. Due to its
short wavelength (405 nm), blue laser light did not penetrate the target surface, providing stable and
precise results. Moreover, our developed 3D scanning system ensured that the boundary conditions
remained unchanged during sample scanning, as well as during strength tests, which was crucial for
the reconstruction of the models for further inverse analyses. Reconstruction of the sample surface
from a cloud of points was performed using Poisson reconstruction in MeshLab. This software uses
a portion of code written by Kazdan et al. [38] to build a hole-free surface, while filling in all the
gaps. Our 3D scanning system had some limitations. The use of a laser triangulation sensor resulted
in the appearance of a shadowing effect due to the distance between the receiver and laser beam
transmitter. The shapes of grips and inserts, despite being optimized to limit the shadowing effect,
did not allow accurate modeling of both sides of the sample together with both grips. A possible
solution to overcome this issue might be to turn the laser sensor upside-down and to repeat the
scanning process from the bottom, then assemble the scanned profiles together. Another alternative
would be to use a second laser profile sensor simultaneously. The 3D scanner we proposed had
numerous advantages, among others: non-contact fast measurement, high accuracy and repeatability,
the ability to determine the dimensions of irregularly-shaped samples, as well as the quick transfer of
the grips after scanning to the testing machine.

4. Conclusions

In our study, we described the development and validation of a novel 3D scanning system based
on the blue laser profile sensor for the measurement of shapes and CSA of soft biological samples.
Our proposed automatic 3D scanning system had the following noteworthy features:

• it used a blue laser profile sensor, which enabled the measurement of samples with a diameter of
up to 15 mm with ±2 µm accuracy and a relative error of less than 1.2%

• it enabled the creation of 3D computational models of biological samples, including their
concavities, within a matter of minutes

• samples were mounted on replaceable inserts, which were fitted to the 3D scanning system,
as well as the tensile machine; this ensured no change in the boundary conditions between 3D
scanning and mechanical tests, making inverse analysis feasible

• the process of sample scanning was fully automated, which ensured the high repeatability and
accuracy of measurements

The validation of our 3D scanning system on regularly-shaped and tendon fascicle bundle samples
showed that our non-contact scanning system could be successfully used in the development of 3D
models, which is crucial for inverse analysis. Our system could be further developed by adding a
second sensor turned upwards to eliminating the shadowing effect. Moreover, the 3D scanning system
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could be mounted directly onto the strength machine. Such a solution would allow for scanning of
the sample shape under loading, which would allow for the estimation of the parameters in irregular
specimen geometries.
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