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Abstract: Various methods have been used to estimate the pupil location within an image or a
real-time video frame in many fields. However, these methods lack the performance specifically
in low-resolution images and varying background conditions. We propose a coarse-to-fine pupil
localisation method using a composite of machine learning and image processing algorithms.
First, a pre-trained model is employed for the facial landmark identification to extract the desired eye
frames within the input image. Then, we use multi-stage convolution to find the optimal horizontal
and vertical coordinates of the pupil within the identified eye frames. For this purpose, we define
an adaptive kernel to deal with the varying resolution and size of input images. Furthermore,
a dynamic threshold is calculated recursively for reliable identification of the best-matched candidate.
We evaluated our method using various statistical and standard metrics along with a standardised
distance metric that we introduce for the first time in this study. The proposed method outperforms
previous works in terms of accuracy and reliability when benchmarked on multiple standard
datasets. The work has diverse artificial intelligence and industrial applications including human
computer interfaces, emotion recognition, psychological profiling, healthcare, and automated
deception detection.

Keywords: pupil detection; deep eye; iris detection; eye centre localisation; eye gaze; facial analysis;
image convolution; machine intelligence; pupil segmentation

1. Introduction

Detection and localisation of the objects within images or real-time video frames is considered
an essential task in various computer vision algorithms [1]. Various studies have addressed
the detection and tracking of facial landmarks including the iris and pupil which has various
applications—particularly, eye gaze estimation for human–machine interfaces. The control of assistive
devices for disability [2], driver safety improvements [3,4], the design of diagnostic tools for brain
diseases [5], cognitive research [6], automated deception detection system (ADDS) [7], and academic
performance analysis [8] are some examples of such applications.

Research studies for the eye detection and eye tracking mostly focus on the iris and pupil
localisation. Once the coordinates of pupils are determined, it can be used for the eye tracking,
gaze estimation, and eye movements within the images and video frames [6]. Eye images can be
characterised by the intensity distribution of the iris, pupil, and the cornea, in addition to their shapes.
It should be noted that various aspects can influence the appearance of the eye including the viewing
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angle, ethnicity, head position, eye colour, light conditions as well as the texture, eye state (e.g., half
closed, fully closed) and current well-being [6].

Overall, eye detection techniques can be classified as shape-based, feature-based, appearance-based,
and hybrid methods. In the shape-based methods, open eyes are described by their shapes, including the
pupil and iris contours as well as shape of the eyelids [9–11]. For the feature-based methods, the objective
is to identify the local features within the eye that are less sensitive to the varying illumination as well as
viewpoint [12–15]. Appearance-based methods depend upon detecting and tracking of the eyes using
the photometric look, which is characterised by colour distribution and filter responses to eyes and
their surroundings [16–18]. The hybrid methods aiming to combine various techniques to mitigate the
particular disadvantages of these methods [19,20].

Standard methods in gaze estimation are based on corneal reflections that needs an accurate
localisation of the pupil centre as well as the glints [21]. Pupil and glints localisation algorithms are usually
based on image processing such as morphological operators for the detection of contour [22] and intensity
threshold identification followed by the fitting using ray-based ellipse [23]. The topography-based hybrid
method is introduced in [24], which uses series of filters for the iris centre estimation. However, these
techniques assume that the pupil exists in the darkest area of the input image and may susceptible to
varying illumination conditions that might require manual tweaking to the threshold parameters [25].

There are four main eye movement behaviours that are likely to show different details related
to cognitive efforts when responding to tasks including blinks, pupillary responses, fixations, and
saccades [31]. Blinking represents the involuntary deed of opening and closing the eyelids. Pupillary
responses are the changes in pupil size restrained by the involuntary nervous system. Fixation
represents the collection of gaze points that are relatively stable and near in spatial and temporal
vicinity. Saccade represents the rapid and small eye movements when moving from one object to
another [31]. These four eye-movement behaviours reveal the details about cognitive efforts and
therefore can be used as suitable inputs for designing the machine learning (ML) systems as illustrated
in Table 1, which shows various supervised ML algorithms to predict categorical responses from the
eye movements.

Table 1. Eye movements and classification algorithms.

Reference Model Aims and Feature Used

[26] Hidden Markov model
Use of fixation count, fixation durations to

distinguish between expert and
novice participants

[27] Multi-layer perceptron
(MLP)

Use pupil size and point-of-gaze for
predicting the users’ behaviours (e.g., word
searching, question answering, looking for

the most interesting title in a list)

[28] Naïve Bayes classifier
Use of fixation duration, mean, and

standard deviation to identify various
visual activities (e.g., reading, scene search)

[29] MLP Use of pupil dilation, gaze dispersion to
classify various tasks on decision making

[30]
Decision tree, MLP,

support vector machines
(SVM), linear regression

Use of fixation rate, fixation duration,
fixations per trial, saccade amplitude,

and relative saccade angles to identify eye
movements to predict visualisation tasks

In addition to conventional methods, existing works also utilise the deep learning (DL) approaches
for the pupil detection while using hierarchical image patterns to enhance and eliminate artefacts with
Convolutional Neural Networks (CNNs). For instance, [21] proposed the use of fully connected CNNs
for segmentation of the entire pupil area in which they trained the network on 3946 video oscillography
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images. These images were hand annotated and generated within a laboratory environment. The authors
claim that the proposed network enables them to perform elliptical contour detection, pupil centre
estimation, and blink detection. More explicitly, pupil centres are predicted with a median accuracy of
one pixel and gaze estimation accuracy is within 0.5 degrees. However, varying image resolution might
provide different accuracy measures. More specifically, [32] indicated the eye tracking as an important tool
that can have a range of applications from scientific research to the commercial sector. The authors show
that the use of tracking software based on commodity hardware including tablets and smartphones
allows these advanced technologies to be available for everyone. The system is called iTracker, which
uses a CNNs model indicating 2.53 cm and 1.71 cm prediction error without calibration on tablets and
smartphones respectively, which is reduced to 2.12 cm and 1.34 cm using calibration.

The research presented in [23] proposed a pipeline of two CNNs cascaded for pupil detection.
The authors claim that their method outperforms state-of-the-art techniques with a detection rate
up to 25% while avoiding computational complexity. To benchmark their proposed technique,
79,000 hand-labelled images were used in which 41,000 were complementary to existing images
from the literature. A similar work is presented in Naqvi et al. [33], which indicate that automobile
accident deaths could be minimised using drivers’ gaze region to provide their points of attention.
In this respect, the authors suggest the use of DL for gaze detection with the use of near-infrared
camera sensors. They incorporate driver head and eye movement into their study. Gaze estimation
accuracy was benchmarked using a loosely correct estimation rate and strictly correct estimation
rate in which the study claims achieving good accuracy when benchmarked with the previous gaze
classification techniques.

Recent work that uses the CNNs-based DL model for the pupil estimation [34] indicates around
70% accurate estimation, while the error threshold is within 5 pixels. However, this accuracy is limited
to be used in real time—specifically, the applications that consider micro-movements within the eyes
such as ADDS [7]. A similar work that uses CNNs for the pupil detection [23] indicates varying
detection rates (70–90%) with respect to the tolerance level as the pixel error and dataset they employed
for testing. The study outcomes clearly indicate the trade-off between the error tolerance level and
accuracy measure. Furthermore, the performance metric used in these studies is not standard (i.e.,
the error as number of pixels) and might produce varying accuracy with respect to image size and
resolution. In contrast to CNNs, [35] utilises the wavelet transform to extract the distinguishing features,
while SVM is used for the pupil classification. This work indicates 88.79% of accurate pupil estimation
on a benchmarked dataset while utilising the standard validation metric. Despite the variety of existing
methods for the pupil localisation, further improvements are required in terms of a precise estimation
for the pupil location. For instance, the DL-based pupil localisation and gaze estimation in [21] uses
pixel distance to validate the performance, which is not a standard representation of the error in
the case of varying resolutions. Furthermore, the validation is performed on a dataset containing
artificially rendered images, which in most cases do not reflect the real-time dynamics. Likewise, [36]
presented gaze estimation that utilises the DL-based facial landmarks detection following the image
segmentation to identify the pupil within the input images. However, the 81% accuracy produced
by the algorithm on a benchmark dataset indicates the lack of preciseness in pupil localisation that
might lead to the incorrect gaze estimation. Furthermore, this study along with [23,24] utilises a static
threshold while considering the pupil as the darkest area within the image that may be susceptible to
various illumination conditions [25] and low-resolution images. Likewise, the use of static size kernels
for the template matching to find out the best-matched candidate (i.e., the pupil in this case) within the
image might causes local maxima. For instance, a smaller-sized kernel may cause attention to noisy
details (i.e., local maxima), whereas a larger size may lead to mismatches and an incorrect estimation
of pupil location [37].

In the proposed work, we introduce an efficient algorithm for the pupil identification within
low-resolution images (and video frames) using a composite of DL and image processing algorithms.
To clarify the novelty of this paper, the contributions are outlined as follows: (1) utilising the pre-trained
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DL model to identify the facial landmarks and extraction of desired eye frames within the input
images; (2) unidirectional cascades of two-dimensional (2D) convolution is used to determine the
pupil coordinates within the eye frames of varying characteristics; (3) an adaptive kernel size is used
to deal with the varying size of input images (i.e., eye frame) during the template matching; (4) we
used a dynamic threshold to identify the best matched candidate more reliably; (5) for the first time,
we introduce a relative error metric to measure the standardised distance (i.e., error) between the
estimated and actual pupil centres; (6) we validated the proposed methodology over multiple publicly
available and benchmark datasets containing high diversity in gaze positions, participants background,
lighting illuminations, image background, and a comparatively smaller size of eye frames.

The remainder of this paper is organised as follows. Section 2 entails the proposed methodology
and algorithms. Section 3 presents the detailed experimental design and newly introduced evaluation
metric. The statistical results and technical discussions are presented in Section 4 followed by a
conclusion and future works in Section 5.

2. Proposed Method

The proposed pupil detection utilises a composite of techniques along with new algorithms
while leveraging the DL-based facial landmark detection [38] to extract the eye information within
an image/video frame. The existence of background noise and dark patches within the image frame
and specifically prominent eyebrow parts are normally detected as pits that might cause mismatch for
computer vision-based iris and pupil detection [24,37,39]. However, this issue can be resolved readily
by utilising modern DL algorithms for a reliable face and eye-frame extraction from ordinary quality
images or video frames. In the first step, we utilise the facial landmark detection to extract the desired
segments containing only the eye frames (both left and right) from an input image. Then, we convolve
the extracted eye frame with a pre-defined kernel in horizontal and vertical directions to identify the iris
and pupil respectively within the eye frame. We adapt the kernel size dynamically with respect to the
varying eye-frame size to resolve the possible occurrences of local maxima being a false representation of
best matched patches. We further define a dynamic threshold for the identification of the best-matched
patch within the current eye frame to reduce the impact of noisy matches. Figure 1 shows the sequential
processing in our work to identify the pupil coordinates within an input image/video frame. The major
components are (1) DL-based eye-frame extraction, (2) image processing-based iris localisation, and (3)
pupil detection, which are detailed in the following sub-sections.

2.1. Eye Frame Extraction

The DL component utilises a well-known toolkit (Dlib-ml) [38] that can reliably identify the facial
landmarks while producing extensive fiducial points (68 in total) on the face, including eye corners
and eye lids, as shown in Figure 1A. We first extract the face rectangle from an image using Dlib-ml
that not only removes the unnecessary portion of the input frame but also helps to eliminate the major
noisy components that might exist in the background region of the image frame. Within the face
region, we then note the identified extreme points (left, right, top, bottom) for eye corners and eyelids,
which are used to crop the exacted eye frames within the identified face rectangle. This is one of the
major advantages of using Dlib-ml, which reliably eliminates the unnecessary portion of an image and
extracts the exact region of interest (i.e., eye frames in this case) from the input frame. Only the input
images (or video frames) with exactly one face rectangle and two eye frames are considered as ‘valid’.
The output of this component in form of eye frames (left, right) is processed further to identify the iris
and pupil within the image.
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Figure 1. Sequential processing components of the proposed method comprising (A) deep learning
(DL) library (i.e., Dlib-ml) for the eye-frame extraction, (B) computer vision algorithm for localising
the potential iris and pupil candidates within eye-frames, (C) post-processing for the pupil coordinate
measurement. In images, eye’s view is reversed (e.g., the left eye in an image is actually the right eye
and vice versa).

2.2. Iris Segmentation and Pupil Localisation

Following the eye-frame extraction, a convolution function is applied for the template matching
between a custom kernel and eye frame to localise the best-matching segment within the eye frame.
Firstly, we built a custom kernel representing 100 iris frames (cropped from eyes frames) randomly
chosen from the datasets described in Section 3. The advantage of a custom kernel over an ordinary
black colour kernel is a more generalised representation of an iris for a diverse population and
morphology characteristics (e.g., geometry, patterns within the iris, colour, etc.). Another common
factor that can affect the template matching performance is the size of the template (i.e., kernel).
A smaller sized kernel may draw attention to noisy details (i.e., local maxima), whereas a larger size
may lead to mismatches and incorrect estimation [37].

y[i, j] =
∞∑

m=−∞

∞∑
n=−∞

K[m, n]·E[i−m, j− n] (1)

To resolve this issue, the adaptive size kernel is employed using the interpolation and extrapolation
techniques where the size (wk × hk) varies with respect to the input frame size (i.e., eye frame).
Furthermore, the eye frame (E) is padded with a rim of white pixels (see Figures 1 and 2) to enlarge it
enough so that the convolution kernel (K) fits inside the padded image to identify all the possible best
matches (i.e., between kernel K and the overlapped eye-frame patches of a size similar to K)—more
specifically, when the desired patch (i.e., iris) is located at extreme positions (e.g., looking in extreme
left/right positions).



Sensors 2020, 20, 3785 6 of 19

Sensors 2020, 20, x FOR PEER REVIEW 6 of 18 

 

   
Figure 2. Horizontal convolution (A) and vertical convolution (B) between adaptive size kernel K and 
white outlined eye frame E. 

In contrast to the ordinary technique of 2D convolution where kernel K slides along E with a 
fixed overlapping window (usually 1 pixel) in both horizontal and vertical directions, we perform 
comparatively simple and efficient convolutional steps (only one slide per horizontal and vertical 
directions), as shown in Figure 2. The reason behind an adaptive kernel selection is that the geometric 
features of the iris and pupil are considered approximately circular and black compared to the rest 
of the eye, with the pupil as the darkest segment. First, kernel height hk is resized to eye-frame height 
(i.e., he = hk), and the width wk is set to 0.4 of the eye-frame width. Then, the convolution function 
slides through E in the horizontal direction to determine the x-coordinate of the iris centre within the 
E. It compares the overlapped patches of E (wk × hk) against K to calculate the matching scores at each 
horizontal stride (i.e., 1 pixel). The normalised correlation coefficient calculates a total matching score 
for the current patch in E using Equation (2). 

 
(2) 

where ( ,  is the matching score of the current overlap (x, y) between K and the E patch with a 
size equal to K (wk × hk). The summation in Equation (2) is performed over the K and E patch where 
x′ = 0...wk -1, y′ = 0... hk -1. As the kernel height hk is aligned with height of the eye frame (i.e., he = hk), 
there are no vertical overlapping (i.e., no vertical overlapping/strides), which means that the kernel 
will only be able to move along E in the horizontal direction while computing the matching scores 
for overlapped patches in E.  

Once all the horizontal matching scores are calculated, the next step is to find the coordinates of 
the best matching segment. There have been several approaches to select the optimal match, but the 
candidate with maximum match has been commonly used in similar works [12,37,40]. However, it 
can easily cause local maxima, specifically in low-resolution images [37]. Likewise, using a pre-
defined matching threshold can provide varying matching scores regarding the environment and can 
also mislead because of varying dynamics such as illuminations. We utilised quantile measure to 
select all the candidates (M) in the horizontal direction that cross the adaptive threshold of the 90th 
percentile of the matching scores sorted in ascending order; i.e., 

.  
The mean of the horizontal (x-axis) coordinate of M selected patches is calculated using (3), 

which represents the x-coordinate of the top-left corner ( , ) of the final best-matched patch (i.e., 
estimated iris rectangle). 

 (3) 

where m represents the total number of elements (i.e., best-matched candidates) in M, and  is 
the horizontal coordinate of the corresponding best-matched candidates M.  

The iris rectangle I is identified using  and kernel width wk, which is then used for the vertical 
convolution to identify the y-coordinate of iris centre. Similar to horizontal convolution-based 
matching, kernel height wh is resized to 0.4 of the height of I for overlapped stride matchings while 
keeping the width the same. Then, vertical convolution steps are performed to compute the matching 

Figure 2. Horizontal convolution (A) and vertical convolution (B) between adaptive size kernel K and
white outlined eye frame E.

Equation (1) represents a 2D convolution function where E is the current eye frame (within the
input image) to be convolved with the kernel matrix K resulting in y as the output image. The indices i,
j and m, n represent the indices within the E and K matrices (i.e., image pixels), respectively.

In contrast to the ordinary technique of 2D convolution where kernel K slides along E with a
fixed overlapping window (usually 1 pixel) in both horizontal and vertical directions, we perform
comparatively simple and efficient convolutional steps (only one slide per horizontal and vertical
directions), as shown in Figure 2. The reason behind an adaptive kernel selection is that the geometric
features of the iris and pupil are considered approximately circular and black compared to the rest of
the eye, with the pupil as the darkest segment. First, kernel height hk is resized to eye-frame height
(i.e., he = hk), and the width wk is set to 0.4 of the eye-frame width. Then, the convolution function
slides through E in the horizontal direction to determine the x-coordinate of the iris centre within the E.
It compares the overlapped patches of E (wk × hk) against K to calculate the matching scores at each
horizontal stride (i.e., 1 pixel). The normalised correlation coefficient calculates a total matching score
for the current patch in E using Equation (2).

S(x, y) =

∑
x′y′(K′(x′, y′)· E′(x + x′, y + y′)√∑

x′y′ K′(x′, y′)2
·
∑

x′y′ E′(x + x′, y + y′)2
(2)

where S(x, y) is the matching score of the current overlap (x, y) between K and the E patch with a size
equal to K (wk × hk). The summation in Equation (2) is performed over the K and E patch where x′ = 0
. . . wk−1, y′ = 0 . . . hk−1. As the kernel height hk is aligned with height of the eye frame (i.e., he = hk),
there are no vertical overlapping (i.e., no vertical overlapping/strides), which means that the kernel
will only be able to move along E in the horizontal direction while computing the matching scores for
overlapped patches in E.

Once all the horizontal matching scores are calculated, the next step is to find the coordinates of
the best matching segment. There have been several approaches to select the optimal match, but the
candidate with maximum match has been commonly used in similar works [12,37,40]. However, it can
easily cause local maxima, specifically in low-resolution images [37]. Likewise, using a pre-defined
matching threshold can provide varying matching scores regarding the environment and can also
mislead because of varying dynamics such as illuminations. We utilised quantile measure to select all the
candidates (M) in the horizontal direction that cross the adaptive threshold of the 90th percentile of the
matching scores sorted in ascending order; i.e., M ∈ SCh such that∀ SCh > 90th percentile of sorted SCh.

The mean of the horizontal (x-axis) coordinate of M selected patches is calculated using (3), which
represents the x-coordinate of the top-left corner (Rx,y) of the final best-matched patch (i.e., estimated
iris rectangle).

Rx =

∑m
i=1 Mx (i)

m
(3)
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where m represents the total number of elements (i.e., best-matched candidates) in M, and Mx is the
horizontal coordinate of the corresponding best-matched candidates M.

The iris rectangle I is identified using Rx and kernel width wk, which is then used for the vertical
convolution to identify the y-coordinate of iris centre. Similar to horizontal convolution-based matching,
kernel height wh is resized to 0.4 of the height of I for overlapped stride matchings while keeping the
width the same. Then, vertical convolution steps are performed to compute the matching score for K
and the overlapped patches of I along the vertical direction only. The output matrices SCv contains all
the corresponding matching scores for vertical convolutions between the K and I overlapped patches.
The quantile measure is used in a similar way to select all candidates (N) in the vertical direction that
cross the adaptive threshold of the 90th percentile of the matching scores sorted in ascending order,
where N ∈ SCv such that ∀ SCv > 90th percentile of sorted SCv. Then, the mean of the vertical (y-axis)
coordinate of N selected patches is calculated using Equation (4), which represents the y-coordinate of
the top-left corner (Rx,y) of the final best-matched patch (i.e., the estimated pupil rectangle).

Ry =

∑n
i=1 Ny (i)

n
(4)

where n is the total number of elements (i.e., the best-matched candidates) in N, and Ny is the vertical
coordinate of the corresponding best-matched candidates N.

Finally, the centre coordinates of the best-matched patches within E in the horizontal (Cx) and
vertical directions (Cy) represent the pupil location along the x-axis and y-axis respectively and are
calculated as:

Cx = Rx + wk/2, Cy = Ry + hk/2 (5)

where wk and hk are the width and height of kernel K, respectively. Algorithm 1 summarises all the
sequential steps involved in the proposed methodology to determine the pupil coordinate within an
image frame.
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Algorithm 1: Proposed algorithm for iris detection and pupil localisation in an image/video frame.

Inputs: image/video frame F, a custom-defined kernel frame K
Output: Pupil coordinates (Cx, Cy), iris rectangle (top-left; bottom-right)
STEP1:

- Initialise validation Score = 0 for current F
- Use Dlib-ml for the facial landmark detection within input frame F
- Crop the face rectangle (Face) using the detected landmarks
- IF count (Face) == 1 (i.e., exactly one face in an image is found)

- Score ++
- Extract the eye frames (EL, ER) for left and right eye
- IF count (EL, ER) == 2. i.e., exactly 2 eyes within the Face rectangle

� Score ++
� Goto STEP 2

- ELSE

�Mark it as invalid frame
� Goto STEP 1 for the next F

- ELSE

- Mark it as invalid frame
- Goto STEP 1 for the next F

STEP2:

- Foreach eye frame E in EL, ER

� Convert E into greyscale
� Outline E with white paddings
� Adapt the kernel K height to the height of E and width to 0.4*width(E)
� Convolve K with E by sliding Horizontally with a 1-pixel stride/sliding window
� Store the matching scores for overlapped E patches in a vector SCh

� Store the horizontal elements with high matching scores in lists M for
M ∈ SCh such that ∀ SCh > 90th percentile of sorted SCh.

� Find the top-left of the best-identified iris rectangle by taking the mean (µ) of x-coordinates for M (i.e.,
Rx) using Equation (3)

� Find the iris rectangle I, using Rx and wk

� Goto STEP3

- End Loop

STEP3:

- Adapt the kernel K height to 0.4*height(I) for vertical convolution
- Convolve K with I by sliding Vertically with a 1-pixel stride/window
- Store the matching scores for overlapped I patches in a vector SCv

- Find the elements with high matching scores (call them N) where
N ∈ SCv such that ∀ SCv > 90th percentile of sorted SCv

- Find the top-left coordinate of the best-identified rectangle by taking the mean (µ) of y-coordinates of N
(i.e., Ry) using Equation (4)

- Find the pupil centre Cx, Cy by adding the width and height of K into Rx and Ry respectively using
Equation (5).
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3. Experimental Design

We conducted detailed experiments to validate the proposed methodology while using various
datasets and validation metrics. We also performed a critical analysis based on various conditions
and validated the proposed algorithm while considering the diversity in validation datasets as well as
validation metrics. The following sections explain the validation datasets and metrics along with a
detailed experimental design.

3.1. Datasets

To validate the proposed methodology and reliable performance measure, we used three different
publicly available datasets. The first dataset is known as Talking-Face [41] and has been used in
previous works [36]. This dataset contains 5000 video frames captured during an engaged conversation
with a person for 200 s. The original objective of this dataset was to model the facial behaviour
during a natural conversation. Data are captured with a static positioned camera with a frame size of
720 × 576 pixels. Every frame is annotated in a semi-automated manner containing 68 facial points,
including the pupil coordinates. Following our validation check in Algorithm 1 (i.e., frames with
exactly 2 eyes/frame) and removing the fully closed eyes (manually, we found 280 images) images,
we are left with 4720 frames for the validation purpose. The dataset contains varying gaze positions,
facial and body movements, diverse natural expressions, and variations in eye state (e.g., closed, open,
half closed). However, because it is captured from an individual person, the diversity within the eye
characteristics is very limited. In other words, there are no variations in terms of eye characteristics
(e.g., iris or pupil colour, intensity, iris pattern, etc.) and hence, it is not very challenging for the
algorithm validation.

In contrast to Talking-Face, we used the BIO-ID dataset [42], which is comparatively more
challenging and has been used as a benchmark in various relevant studies such as [36,40]. The data
were acquired from 23 different subjects during multiple sessions and have 1521 images in total
containing varying gaze positions, illuminations, background scenes, eye features (e.g., eye colour,
gender, ethnicity, iris size), camera focus, and hence eye-frame (and face rectangle) size. The interesting
aspect of this dataset is the comparatively lower resolution (greyscale 384 × 288 pixels), which makes
the validation of the pupil localisation algorithm more challenging but reliable. Besides, the dataset
contains natural expressions such as images with half-closed eyes that further help to measure the
validity of the proposed algorithm. Our algorithm detects only seven frames as invalid (i.e., not
containing exactly two eyes), whereas we found 45 images (manually) with fully closed eyes that were
excluded, resulting in 1469 images in the remaining dataset for validation purposes.

Furthermore, we evaluated our method on a comparatively larger dataset known as GI4E [43]
containing more diversity involving various morphology types (e.g., eye size, eye/iris features, gender,
ethnicity, varying backgrounds and illuminations). It should be noted that despite higher resolution
images (800 × 600 pixels), the size of the eye-frame rectangles is comparatively small. This is because of
the larger distance of the capturing device from the subject, resulting in a lower ratio of the eye frame
to the entire image. In other words, the whole frame covers more background pixels as compared to
the actual face within the image, which makes the eye frame and hence iris/pupil localisation more
challenging. The dataset is much more diverse, containing 103 subjects (each with 12 images) with
1236 total images involving 12 different gaze position. In addition, there are no open eyes or invalid
frames in this dataset.

3.2. Validation Metrics

One of the important factors in validation of the pupil detection and proposed work is the metric
we chose for the performance measure. This is because of the nature of the pupil localisation problem.
For instance, the absolute error in the estimated pupil/eye centre and actual eye centre might vary with
respect to image size/resolution. Hence, a standard distance measure such as Euclidean distance (ED)
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and/or R2 coefficient will not give a true representation of the accuracy measure. The authors in [42]
introduced a relative error measure (deye) to deal with this issue, which has been utilised in various
related works [36,37,42,44]. It uses the maximum of the estimated pupil coordinates distances from left
and right eyes (dl) and (dr) respectively, between the actual eye centres (Cl, Cr) and the estimated ones
(C̃l ,C̃r) using Equation (6).

deye = wec =
max

(
‖ C̃l −Cl ‖ , ‖ C̃r −Cr ‖

)
‖ Cl −Cr ‖

(6)

For the normalisation, the calculated distance is divided by the distance between two actual
eye centres ‖ Cl −Cr ‖, as shown in Equation (6). The normalisation factor makes the error measure
independent of the image scale and hence eye-frame size. Furthermore, [36] used the best eye centre
(bec) which utilises the minimum of the error between the estimated and actual centres as:

deye = bec =
min

(
‖ C̃l −Cl ‖ , ‖ C̃r −Cr ‖

)
‖ Cl −Cr ‖

(7)

Although the wec (i.e., the worst eye centre) metric provides a relative error estimate, it is based
on some assumptions such as ‘on average population, the distance between the inner eye corners is
equal to width of a single eye of the corresponding subject’. Likewise, a relative error of deye = 0.25 is
considered as half of an eye width, which may not be valid in every case. Interested readers can get
further details in [42].

To further deal with the metric generalisation issue, for the first time, we introduce a standardised
error measure (SED) as a function of distance between the estimated and actual coordinates within
an eye frame. It calculates the relative distance as a percentage of the total possible ED (i.e., error)
between the actual and estimated pupil coordinates. The SED measure interprets the error within the
single eye frame without depending on the second eye or interpupillary distance used in other related
works. Besides, the SED metric can measure the relative error regardless of image/face or eye-frame
size and hence the image resolution. Mathematically, the proposed SED is defined as:

sED =

√
(Cxe −Cxa)

2 + (Cye −Cya)
2√

(xmin − xmax)
2 + (ymin − ymax)

2
× 100 (8)

where Cxe, Cxa represents the estimated and actual pupil horizontal coordinates, respectively,
and Cye, Cya represents the estimated and actual pupil vertical coordinates, respectively. The xmin, ymin
are the coordinates of the nearest corner of the eye frame (usually the top left corner), whereas xmax, ymax

are the coordinates of the farthest corner of the eye frame (usually the bottom right). The numerator
in Equation (8) represents the error (in terms of pixels) between the actual and estimated positions,
whereas the denominator is the total possible error and is used as a normalisation factor. The resulting
SED gives the percentage error representing a standardised distance between the actual and estimated
pupil positions in pixels, which is not affected by the image size and resolution. In addition, to evaluate
the pupil detection techniques, the proposed standardised distance measure can also be useful for
other related works such as object localisation, image segmentation, and object tracking etc.

In summary, a comprehensive comparative analysis is performed to evaluate the proposed
methodology using the aforementioned metrics including wec, bec, and SED along with other standard
accuracy measures including the ED, absolute mean difference, and R2 (coefficient of determination).

4. Results and Discussions

Following the experimental design, performance of the proposed pupil detection approach is
evaluated using various gold standards, validation metrics, and benchmarked datasets. As discussed
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in the experimental design, it is important to use appropriate evaluation methods due to the nature of
the problem. To maintain the reliability in our performance measure, we utilised different metrics as
well as the newly introduced SED in this work.

Table 2 summarises the results achieved from the proposed approach using wec and bec metrics,
which have been used in recent similar works [35–37,42–44]. We are specifically interested in the
wec measure when error ≤0.05, which indicates the model estimation within the pupil diameter (i.e.,
more restricted). The best accuracy achieved by the proposed method is 97.1% while tested over the
Talking-Face dataset, which outperforms the 89.59% presented in a recent work [36] that uses the
same dataset. The high accuracy is expected because of the comparatively less challenging nature of
the dataset (see Section 3.1). Firstly, the dataset contains high-resolution images. Secondly, the data
are captured from only one person; hence, generalised iris and eye patterns are easily detected. It is
important to note that despite the dataset being collected from single person, it contains high variations
in terms of gaze, head movements, facial expressions, and sufficient quantity (i.e., 5000 images) with
annotated pupil coordinates. On the other hand, the proposed method achieves 100% wec accuracy
while testing for an error threshold of ≤0.1, indicating the robustness of the proposed methodology.
This means that the model estimation regarding pupil coordinates is within the iris in all cases (i.e.,
5000 images). Overall, the proposed method outperforms the most recent works in relatation to pupil
localisation [36] while evaluating the Talking-Face dataset.

Table 2. Performance analysis of the proposed model using wec, bec with varying error thresholds.

Dataset
Wec (%) Bec (%)

Error ≤ 0.05 Error ≤ 0.1 Error ≤ 0.05 Error ≤ 0.1

BIO-ID 94.5 100 98.34 100

Talking-Face 97.10 100 99.7 100

GI4E 95.05 100 98.71 100

To further evaluate the model performance, the BIO-ID dataset is used, which contains various
subjects as well as high variations in gaze, head pose, and body movements. Furthermore, the image
quality (i.e., resolution) is comparatively lower (i.e., 286 × 384), which makes it more challenging when
focusing the identified eye frame and/or iris/pupil within the image. In addition, a large proportion
of the entire image contains background rather than the face itself, which makes the dataset more
challenging, as addressed by the previous works [37]. Despite the associated challenges, the proposed
approach shows robust pupil estimations, as shown in Table 2. The model indicated significant
improvements with a 94.5% wec measure with an error threshold ≤0.05 when benchmarked with the
works of [36] and [39] of 81% and 84%, respectively. Furthermore, the model indicated 100% accuracy
when evaluated for an error threshold ≤0.1, which means that pupil localisation is within the iris in
all cases (i.e., 1521 cases in total). Despite the 100% wec and bec accuracy for an error threshold ≤0.1,
the main focus is to maximise the wec accuracy (which is the most challenging) with a minimum error
threshold (i.e., ≤0.05) to restrict the model estimation within the pupil diameter.

Figure 3 shows the R2 coefficient for the proposed model tested on the BIO-ID dataset. It can be
observed that the x-axis and y-axis estimated coordinates are almost overlapping the actual annotations
with R2 values of 0.993 and 0.998 for the x-axis and y-axis, respectively. Although R2 is a well-known
statistical measure to determine the goodness-of-model fit, it might not be effective for validating the
model estimation in pupil detection or similar problems because of the varying error rate with respect
to the image size (and resolution).
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Table 3 summarises the comparative results from various previous works while weighted over
the challenging BIO-ID dataset using the wec metric with varying thresholds. It can be noticed that
the proposed model outperforms (94.5%) all the previous works specifically with the most restricted
error threshold: ≤0.05. Recent works that uses a similar approach [36] achieved accuracies of 80.9%
and 82.5% [37] with e ≤0.05, whereas the best accuracy of 88.79% was indicated by [35], which is
significantly lower than the proposed method. The research study in [21] presented a robust technique
for the pupil localisation and gaze estimation; however, the measured performance is not standard
(i.e., it uses the mode of pixel distance, which is not the true representation of error with varying
resolutions). Furthermore, the validation is performed on a different dataset containing artificially
rendered images, which in most cases do not reflect the real-time dynamics.

Table 3. Performance comparison between previous works based on the wec measure using the
BIO-ID dataset.

wec % Accuracy with Varying Error (e) Threshold

Methods e ≤ 0.05 e ≤ 0.1 e ≤ 0.15 e ≤ 0.2

[24] 81.1 94.2 96.5 98.5

[35] 88.7 95.2 96.9 97.8

[36] 80.9 91.4 93.5 96.1

[37] 82.5 93.4 95.2 96.4

[39] 84.1 90.9 93.8 97.0

[40] 57.2 96.0 98.1 98.2

[42] 38.0 78.8 84.7 87.2

[44] 47.0 86.0 89.0 93.0

[45] 85.8 94.3 96.6 98.1

Proposed Model 94.5 100 100 100

Besides the Talking-Face and BIO-ID datasets, we evaluated the performance of our proposed
approach on another challenging dataset: GI4E. It can be noted from Table 2 that our model produces
95.05% wec and 98.71% bec accuracy respectively with a critical threshold of ≤0.05. While most of
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the existing works used BIO-ID as a benchmark dataset, some of them also used GI4E to evaluate
their techniques. For instance, a recent study on eye centre localisation [24] reported 93.9% wec
accuracy on the GI4E dataset, which is slightly lower than our approach (i.e., 95.05%). However,
their accuracy decreased to 881.2% when tested on the BIO-ID dataset. This indicates the robustness of
our proposed approach for pupil detection in varying datasets containing diversity regarding eye colour,
gaze position, facial emotions, and real movements. Similarly, [45] indicated 89.28% wec accuracy
on the GI4E dataset, which is significantly lower than the proposed approach. A clustering-based
approach [46] produced a mean pixel error of 2.73 pixels as compared to our proposed model, which
produced 1.7 pixels when validated on the GI4E dataset. However, it is important to note that this
metric does not represent a standard accuracy measure, as described in Section 3.2.

In addition to wec, [24,40] used an average point-to-point error (me17) with the interocular distance
between the left and right eye pupil. A recent work [21] that uses DL to localise the pupil and estimate
the gaze position also employed the median of absolute difference in the x-axis and y-axis. However,
variations in image size, zoom-in/out due to body/head movements, and/or camera positions might
affect the mean difference in corresponding error estimate, resulting in variations in accuracy measure.
The wec metric, which has been used extensively in related works such as [24,36–39,44,45], gives a
comparatively better indication of the performance measure. However, these metrics measure the
performance in terms of coordinate estimation within the pupil/iris diameter with a varying error
threshold, as shown in Table 2. In addition, it is based on relative error assumption (deye = 0.25) as half
an eye width, which may not be true in every case. Therefore, model estimations and performance
measurements (specifically in the pupil localisation task) need to be evaluated using a more standard
metric representing the distance between estimated and actual pupil coordinates.

To overcome this issue, we first time introduce a standardised Euclidean distance (SED), which
represents the percentage distance error as ED using Equation (7) (see Section 3.2). The error represents
the displacement between the actual and estimated pupil coordinates as a percentage of the whole
image size (i.e., eye frame) in terms of the number of pixels. The major advantage of SED is a standard
representation of the error that can be used to measure the accuracy regardless of image size and
resolution, which is not the case in wec, me17, and other metrics used in most of the existing studies.
Table 4 presents the comparative analysis of proposed model estimations in terms of mean pixel
difference in each axis for both eyes (left and right), the R2 coefficient, the ED between the centre of
the estimated and actual pupil coordinates, and the newly introduced SED. The proposed method
indicates 1.04 and 0.57 absolute pixel errors on the x-axis and y-axis, respectively (i.e., 0.8 on average for
both) as compared to 2.91 in [46] on the BIO-ID dataset. Similarly, a DL-based model in [23] indicated
their optimal performance with a pixel error >10. However, they used different datasets, which in the
case of high resolution is not comparable with the proposed method and clearly indicates the need for
a standard metric similar to SED.

Table 4. Comparing model estimations using newly introduced SED, Euclidean distance (ED), R2, and
absolute error metrics.

Dataset µ|xa−xe| µ|ya−ye| R2_x R2_y ED(ca, ce) %ED(ca, ce)

BIO-ID 1.04 0.57 0.993 0.998 1.43 3.98

Talking-Face 1.23 0.97 0.990 0.956 1.96 2.49

GI4E 1.32 0.71 0.996 0.999 1.70 3.87

It can be analysed that the model performs comparatively better for the Talking-Face and BIO-ID
datasets as compared to the GI4E dataset based on the corresponding properties (as discussed in
Section 3). However, there are several crucial aspects to be noted in each case. First, in contrast to the
wec measures in Table 2, the ED (ca, ce) error in Table 4 for Talking-Face is 1.96, which is higher than
the other two datasets (1.43 and 1.70 for BIO-ID and GI4E, respectively), despite the high quality and
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fewer variations in the former case. This is because the size of the images in the Talking-Face dataset is
comparatively larger than those in the other datasets, and consequently, the ED (ca, ce) error as well as
absolute error (µ|xa−xe|, µ|ya−ye|) in each axis is also high. However, the results from these metrics
(i.e., ED, µ|xa−xe|, µ|ya−ye|) do not align with the results in Table 2 (wec measure) and therefore do not
reflect the true measure of the standardised difference between estimated and actual pupil coordinates.
In contrast, SED provides a more generic and standard representation of error between the actual and
estimated coordinates as a percentage of the eye rectangle size. The SED error for the Talking-Face
dataset is 2.49%, which is less than the 3.98% and 3.87% errors of the BIO-ID and GI4E datasets,
respectively, and it also aligns with the wec outcomes in Table 2. As mentioned earlier, SED represents a
standardised distance (i.e., pixels) using the current eye frame without depending upon the second eye
or interpupillary distance, which is not the case in wec measurement. Furthermore, SED interprets the
error in terms of pixel distance without using any thresholds (as in the case of wec) and can be utilised
as a standard metric to evaluate the true performance of such models in similar problems.

Figure 4 demonstrates the pupil estimation performance of the proposed model for both the left
and right eye (x-axis and y-axis) on the BIO-ID dataset. The model indicates a perfect overlapping for
both axes and more specifically at the peak positions, which represent the extreme pupil and/or iris
positions looking extremely left or right as well as the top or bottom positions. One of the reasons of
such robust overlapping is the use of white paddings in our model, which helps the adaptive kernel
achieve maximum overlaps at extreme positions resulting in appropriate matching candidates during
horizontal and vertical cascades.
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As discussed earlier, a custom kernel might help for the optimal representation of iris diversity.
Additionally, the adaptation of kernel size regarding the eye frame and dynamic threshold for best
candidate selection further improves the reliability of our method specifically in dynamic conditions.
Figure 5 demonstrates various test cases of iris/pupil detection using the proposed methodology for
diverse eye properties and varying environmental conditions (e.g., patterns, gaze direction, varying
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background, half/full closed eyes, colour, intensity, illuminations, resolution, pupil/iris size, gender,
ethnicity, etc.). It indicates the robustness of model estimations in both horizontal and vertical
convolutions specifically at extreme positions (such as left/right corners, top right, half-closed, etc.)Sensors 2020, 20, x FOR PEER REVIEW 14 of 18 
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Figure 5. Horizontal and vertical convolution-based pupil coordinates localisation (in randomly
selected images from the BIO-ID, GI4E, and Talking-Face datasets) for dynamic conditions such as gaze
position, eye colour, intensity, noise interference, eye size, and image resolution.

Primarily, the proposed method is leveraging the pre-trained Dlib-ml that can locate the facial
landmarks efficiently and reliably. It helps to filter out the unnecessary background segments within
the input image as well as irrelevant facial components, excluding the desired regions that contain
exact eye frames. Secondly, the proposed method uses efficient algorithms to adapt the kernel size in
accordance with the eye frame and pad the eye frame with white surrounding pixels, which further
reduces the probability of selecting noisy matched candidates, as mentioned by [36,37]. The use of a
quantile-based dynamic threshold to identify the best-matching patch further enhances the reliability
of the proposed algorithm (e.g., the outcomes in Figures 4 and 5).

Figure 6 shows the performance of the proposed method for pupil coordinate estimation
using the BIO-ID dataset while varying the error threshold to measure the mean wec for both
eyes. The visualisation indicates accuracy over 90% in all cases (i.e., dataset) while considering the strict
constraint of e ≤0.05. More explicitly, the model indicates that in over 97% of cases with high-resolution
images/videos (which are ordinary for current technological advancement), the error in estimated pupil
position is less than the diameter of the pupil itself. Even in the worst-case scenario (i.e., small-size eye
frames in the GI4E dataset), the model achieves above 95% accuracy.
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It is also imperative to mention that some annotation errors may slightly influence the performance
measure, even though this is observed in very few cases. For instance, Figure 7 indicates the eye
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centre coordinates annotations in the BIO-ID dataset (Rx:161, Ry:110) provided by [42] for the right
eye of subject BioID_0000.eye. However, the correct values are Rx:158 and Ry:108 (refer to Figure 7),
which indicate approximately a 2-pixel difference in each axis. This is significant for micro-movements
estimation and would affect the model performance substantially (e.g., wec, SED).Sensors 2020, 20, x FOR PEER REVIEW 15 of 18 
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Figure 7. Example of annotation error in the BIO-ID dataset.

Finally, it can be noted that the proposed model performs initial checks on the current frame quality
to assure the existence of exactly two eyes (Algorithm 1) within the identified face rectangle. However,
additional constraints can further improve the accuracy, specifically, in real-time scenarios and video
stream data. For instance, [36] used the DL model to identify blinking eyes, which can further improve
the accuracy of the proposed model while filtering out the images/frames without distinctive iris/pupils
(i.e., separating the closed eyes not to be analysed for pupil localisation). Additional post-processing
constraints such as symmetry constraints over the estimated pupils’ coordinates in both eyes might
improve the gaze estimation accuracy. This might be useful to improve the eye-state information
extraction approaches such as that used in [7] for the deception detection through facial micro-gestures.

5. Conclusions and Future Works

We proposed a novel pupil estimation method utilising the deep learning-based facial landmark
detection and an image processing algorithm to determine the eye centre within an image frame.
Reliable extraction of the eye frames within the input image is one of the major advantages of using
Dlib-ml. This eliminates most of the background and irrelevant segments of the image, which helps to
identify the target segment using intelligent image processing. We developed a customised iris kernel
using multiple images from various datasets for its generalised representation. Then, the iris kernel
is convolved with eye frame in two stages (horizontal and vertical) such that no nested strides are
performed by the convolution function. The white paddings surrounding the kernel as well as the eye
frame proved very helpful for template matching between the kernel and overlapped eye patches,
specifically for the extreme eye positions (e.g., left/right corners). In addition, utilising a dynamic
threshold for identifying the best-matched patch further contributed to the reliability of our method.

Compared to several state-of-the-art pupil detection methods, the proposed approach indicated
significant improvements in pupil estimation accuracy, specifically with lower-resolution images and
minimum error thresholds. We also introduced a standardised distance metric to measure the relative
error in model estimation. This metric can be used regardless of image size and resolution, which is not
the case with most of the existing validation metrics used in similar works. In future works, the proposed
method will be utilised along with eye-blink detection models to determine eye gaze, in particular
for infraduction iris positions. Our method can be useful in various computer vision applications,
specifically the one requiring precise pupil and eye centre estimation. For instance, the eye-related
feature extraction in [7] can be replaced with our method to extract the more reliable and micro-level
movements within the eyes to distinguish truthful from deceptive behaviour. More explicitly, this work
is expected to direct several application areas such as human–computer interfaces, gaze estimation,
emotion recognition, psychological profiling, fatigue detection, healthcare, visual aid, and automated
deception detection.
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