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Abstract: Bearings are ubiquitous in rotating machinery and bearings in good working conditions are
essential for the availability and safety of the machine. Various intelligent fault diagnosis models have
been widely studied aiming to prevent system failures. These data-driven fault diagnosis models
work well when training data and testing data are from the same distribution, which is not easy to
sustain in industry since the working environment of rotating machinery is often subject to change.
Recently, the domain adaptation methods for fault diagnosis between different working conditions
have been extensively researched, which fully utilize the labeled data from the same machine under
different working conditions to address this domain shift diploma. However, for a target machine
with seldom occurred faulty data under any working conditions, the domain adaptation approaches
between working conditions are not applicable. Hence, the cross-machine fault diagnosis tasks are
recently proposed to utilize the labeled data from related but not identical machines. The larger
domain shift between machines makes the cross-machine fault diagnosis a more challenging task.
The large domain shift may cause the well-trained model on source domain deteriorates on target
domain, and the ambiguous samples near the decision boundary are prone to be misclassified.
In addition, the sparse faulty samples in target domain make a class-imbalanced scenario. To address
the two issues, in this paper we propose a semi-supervised adversarial domain adaptation approach
for cross-machine fault diagnosis which incorporates the virtual adversarial training and batch
nuclear-norm maximization to make the fault diagnosis robust and discriminative. Experiments of
transferring between three bearing datasets show that the proposed method is able to effectively learn
a discriminative model given only a labeled faulty sample of each class in target domain. The research
provides a feasible approach for knowledge transfer in fault diagnosis scenarios.

Keywords: semi-supervised domain adaptation; cross-machine fault diagnosis; discriminability

1. Introduction

Bearings are ubiquitous in rotating machinery and the failure of bearings would increase the
downtime and operating cost. Fault diagnosis methods are of great importance to prevent accidents
and reduce maintenance cost. These fault diagnosis methods could generally be divided into two
categories: model-based methods and data-driven methods. The model-based diagnosis models
usually develop dynamic models of the machinery through analytical approaches and finite element
analysis. Gupta [1] introduced a 6-DOF (degree of freedom) model of a bearing and Adams [2]
developed a 29-DOF model for a shaft supported by two rolling element bearings. Finite element
methods have also been investigated between a roller element and a race defect [3]. Data-driven fault
diagnosis models employ large amount of monitoring data and historical data to establish the fault
diagnosis models without prior physical or expert knowledge. The data-driven fault diagnosis models
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used the support vector machine (SVM), k-nearest neighbor (KNN), Bayesian approach and artificial
neural network (ANN) models. Deep learning approaches provide an automatic feature learning
process without manually feature selection in traditional data-driven fault diagnosis models, and have
attracted increasing interesting for fault diagnosis research [4]. However, the deep learning methods
only work well when enough labeled training data is available, and training and test data are drawn
from the same distribution, which is often not applicable in real industrial applications.

In real industrial applications, the working conditions of rotating machines, such as the rotation
speeds and loading conditions, are subject to change during operations. The fault diagnosis model
trained on one working condition could not generalize well to another working condition while
testing, due to the distribution of test data are different from training data. It would be expensive
and impractical to collect sufficient faulty data in industrial environments and retrain the models,
especially for safety-critical systems. The existence of domain shift and the lack of bearing damages
greatly hinder the application of fault diagnosis methods in industrial environments. Thus, the domain
adaptation has been proposed to leverage annotated data from one domain, denoted as source domain,
to learn the knowledge for another domain, denoted as target domain, with little or even no annotated
data. Numerous studies have shown the benefits of knowledge generalization learned from different
working conditions of the same machine. The domain discrepancy of feature representations was
explicitly reduced by minimizing maximum mean discrepancy (MMD) [5,6], multi-kernel MMD [7,8],
CORAL metric [9], and Wasserstein distance [10,11] in bearing fault diagnosis tasks. Considering the
quadratic time complexity of MMD [12] and the adversarial learning methods have been extensively
explored, the adversarial domain adaptation strategy have also been widely used [13,14].

However, when the target machine has little or even no annotated faulty data under any working
condition, the domain adaptation methods between different working conditions are not applicable.
Nevertheless, the annotated faulty data may be available in other machines, such as the open datasets
or machines from laboratories. It is natural to explore generalizing fault diagnosis models from
these different but related machines. Compared with diagnosis tasks between working conditions,
the cross-machine diagnosis tasks are basically more challenging. The differences between two domains
in mechanical structure of bearings, fault depth, and sampling frequencies lead to larger domain gap
than traditional cross-domain fault diagnosis tasks. Less studies on cross-machine fault diagnosis have
been carried. In [15] Yang et al. proposed to transfer fault diagnosis model from laboratory bearings to
locomotive bearings. Guo et al. [16] proposed a deep convolutional transfer learning network, and the
domain-invariant features are learned from adversarial training between feature extractor and domain
discriminator, as well as minimizing the MMD distance of features between domains. In [17] Li et al.
proposed to use an auto-encoder as a feature extractor, by this means the unlabeled examples are more
involved in training, which could perform well given very limited labeled target samples.

When larger domain gap exists and labeled target samples are insufficient, however, learning a
domain-invariant model does not necessarily guarantee a target discriminative model. The well-trained
model on source domain may deteriorate on target domain due to the large data density of target
domain near the decision boundary, and the ambiguous target samples near the decision boundary are
prone to be misclassified. To move decision boundaries into lower density regions of target domain,
a variety of target discriminative methods have been explored. One approach is conditional-entropy
minimization [18] which increases the confidence of classifier output on the unlabeled target data,
thus potentially driving the decision boundaries of classifiers to pass through the low-density target
regions. Another approach is adding consistency regularization losses computed on unlabeled data.
These consistency regularization losses, such as mean teacher [19] and virtual adversarial training [20]
measure the discrepancy between predictions of unlabeled data and its perturbations. By minimizing
consistency losses, they enforce the low-density separation assumption of semi-supervised learning
and implicitly push the decision boundary to pass through low-density regions of unlabeled data.
The virtual adversarial training (VAT) and conditional entropy loss are used as combination in Virtual
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Adversarial Domain Adaptation (VADA) model [21] and co-regularized domain alignment (Co-DA)
model [22] for better performance.

Another issue of cross-domain fault diagnosis is the class imbalance problem where the majority
of target samples are normal samples and only limited number of faulty samples are available.
When class imbalance exists, samples are prone to be classified as the majority category due to higher
prior probability the majority category has. To handle the class imbalance, data-level methods, such
as oversampling [23] or down-sampling, are proposed to balance the data distributions explicitly,
while algorithm-based methods, such as focal loss [24], address the class imbalance by allowing the
minority categories to contribute more to the weight updates. However, these methods often require
prior knowledge of class distributions.

To cope with the reduction of discriminative and diversity of cross-machine fault diagnosis
model, in this paper we employ the semi-supervised domain adaptation approach to fully leverage
the sufficient unlabeled data and insufficient labeled data in target domain to improve the model
performance. To handle the larger domain shift in cross-machine fault diagnosis tasks, an adversarial
domain adaptation method utilizing nuclear norm maximization and variational adversarial training
is proposed to achieve prediction discriminability as well as diversity. We also investigate the class
imbalance scenario commonly exists in fault diagnosis tasks. Through this approach, only seldom
faulty target data is needed to train an efficient fault diagnosis model.

The contributions of this work are:

(1) An intelligent cross-machine fault diagnosis model is proposed. Fully utilizing the labeled data
in source domain and unlabeled data in target domain, this model could perform fault diagnosis
task effectively while only limited labeled target data is available.

(2) We proved that the batch norm maximization is effective to improve the discriminability decline
and diversity decline, which are both caused by the large domain shift.

(3) Experiments between three open dataset of bearing faults are carried to verify the effective of
the proposed method, especially under the situation that only 1 or 5 labeled samples from each
category are available for target domain.

The remainder of this paper is organized as follows. The background of target discriminative
domain adaptation approaches and batch nuclear-norm maximization are discussed in Section 2.
The proposed cross-machine fault diagnosis approach is specified in Section 3. Experiments and
analysis on semi-supervised domain adaptation tasks and imbalanced semi-supervised domain
adaptation tasks are presented in Section 4. We close the paper with conclusions in Section 5.

2. Related Works

2.1. Cross-Machine Fault Diagnosis Domain Adaptation

Domain shift often occurs when the models trained on one domain, denoted as source domain,
and applied the models to another domain, denoted as target domain, which is obstacle to model
generalization. Domain adaptation methods aim to align the feature distributions of two domains.
Domain-invariant feature representations are usually learned in the shared feature space by minimizing
the distribution discrepancy between domains. Tzeng et al. [25] explores the maximum mean
discrepancy (MMD) to measure the divergence in high-dimensional shared space between domains.
Long et al. proposed to further reduce domain divergence in multiple task-specific layers of deep
neural network by utilizing the multi-kernel MMD [26,27]. Correlation alignment (CORAL) [28]
minimizes the domain divergence by aligning the second-order statistics of the source and target
distributions which is easy to use. DeepCORAL [29] further extends the CORAL to deep network
architectures. Center moment discrepancy (CMD) [30] reduces the domain divergence by aligning
high order moments across domains.

Inspired by generative adversarial network, many achievements of domain adaptation have
been achieved by adversarial training. A domain discriminator is trained to tell which domain the
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features come from, while the feature extractor is trained to confuse it. The domain discriminator
and the feature extractor are trained adversarially until the target features are indistinguishable from
the source features. In [31] Ganin et al. proposed a domain adversarial neural network (DANN).
DANN introduced a gradient reversal layer that reversed the gradients of domain discriminator.
Tzeng et al. [32] proposed an adversarial discriminative domain adaption (ADDA) which provided
an uniform view of adversarial domain adaptation methods. Inspired by conditional generative
adversarial network (CGAN), Long et al. [33] utilized multilinear conditioning that captures the
cross-covariance between feature representations and class predictions named conditional domain
adversarial network (CDAN). To make the fault diagnosis models more generalized and robust to
varying working conditions of real industrial scenarios, fault diagnosis tasks between different working
conditions have been widely studied. Some researchers resort to minimize the domain divergence
between different working conditions through maximum mean discrepancy (MMD) [5,6], multi-kernel
MMD [7,8] or Wasserstein distance [10,11]. Adversarial based domain adaptation for bearing diagnosis
tasks have also been investigated in [13,14,34].

However, the annotated data for a target machine is not always available in industrial applications.
The faults may have barely occurred if the target machine is new and works primarily under healthy
conditions, so it is difficult to train an accurate fault diagnosis model independently. In this scenario,
cross-machine diagnosis tasks are motivated where the source domain is from different but related
machines. Compared with the cross-working condition diagnosis, the cross-machine diagnosis is less
explored. In a deep convolutional transfer learning network (DCTLN) proposed by Guo et al. [16],
domain invariant features between different bearings are learned through adversarial training and
MMD distance. In [17] Li et al. proposed to use auto-encoder to project features into shared subspace
and MMD distance is employed to minimize the distance between domains. Through theauto-encoder,
the sufficient unlabeled target data also contributes to feature learning.

Compared with conventional cross-domain fault diagnosis tasks which transfer from different
working conditions of same machine, the cross-machine fault diagnosis tasks may face different
mechanical structures, different fault characteristics, and different sampling frequencies between
domains. The larger domain gap makes the cross-machine diagnosis tasks commonly more challenging.

2.2. Target Discriminative Domain Adaptation Methods

The existing cross-machine fault diagnosis methods focus on learning domain invariant feature
distributions between source and target domain. However, learning a domain-invariant model does not
necessarily guarantee a target discriminative model, especially when larger domain discrepancy exists
and labeled target samples are insufficient. The well-trained models on source domain may deteriorate
on target domain due to the large data density near the decision boundary, which violates the cluster
assumption of semi-supervised learning. This could lead to annoying ambiguous predictions on
target domain.

To move decision boundaries into lower density regions and improve the model performance
on target domain, a variety of target discriminative methods have been explored. These methods
could be roughly categorized into two categories, namely discrepancy-based methods and conditional
entropy-based methods. Saito et al. [35] proposed a maximum classifier discrepancy (MCD) method to
align the two domains using decision boundaries of task-specific classifiers. There are two task-specific
classifiers in this method, and the discrepancy between predictions of two classifiers measures how
far outside the support of the source domain the target samples lie. Then the feature extractor and
two classifiers are performed adversarial training where the feature extractor is trained to minimize
the discrepancy while the classifiers are trained to maximize the discrepancy on the target samples.
The consistency regularization losses, such as a mean teacher [19] and virtual adversarial training [20],
measure the discrepancy between predictions made on perturbed unlabeled data points, so as to add
consistency regularization losses computed on unlabeled data. By minimizing the consistency losses,
they implicitly push the decision boundary away from high-density parts of the unlabeled data.
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Conditional-entropy minimization [18] is also a widely used target discriminative method which
forces the classifier to be confident on the unlabeled target data, thus potentially driving the classifiers
decision boundaries away from the target data. Due to the domain shift, the model prediction on target
data is less certain as on source data, resulting in noisy and high entropy outputs. To achieve high
prediction certainty, the entropy minimization pushes the examples to nearby examples far from the
decision boundary. The entropy could be minimized directly [36,37] or by an adversarial way [38,39].
In [36], Long et al. imposed conditional entropy loss on target domain data, which ensures that the
target classifier fits the target-specific structures well.

As pointed by [18], however, without a locally-Lipschitz constraint on the loss function, the decision
boundaries can be placed close to the training samples even when the entropy is minimized. VADA
and Co-DA both use a combination of virtual adversarial training (VAT) and conditional entropy
loss. They are used in combination because VAT without the entropy loss may result in overfitting
to the unlabeled data points and the entropy loss without VAT may result in the network not being
locally-Lipschitz and thus not resulting in moving the decision boundary away from the data points.

Another issue of entropy minimization, as pointed out by [40,41], is that the entropy minimization
may suffer the side effect of prediction diversity reduction. Since the sample numbers of each category
in the batch during training may not equal to each other, entropy minimization is prone to push
examples near the category boundary into majority categories, even the examples actually belonging
to minority categories. It would be even worse if the dataset is class-imbalanced, namely some classes
are abundant while other classes are very limited. The class-imbalanced phenomenon naturally exists
in many real-world applications as well as the cross-machine bearing fault diagnosis tasks, since the
bearings work under healthy status at most of the time. To maintain prediction diversity for minority
classes, the imbalance learning methods are widely explored. In [42], under-sampling for majority
samples and over-sampling for minority samples using Synthetic minority oversampling technique
(SMOTE) method [43] are both conducted to handle the class imbalance issue. GAN is also used for
over-sampling purpose to generate samples. Compared with SMOTE approaches which are based on
local information, GAN methods learn from the overall class distribution and have better performance
than SMOTE [44]. Deep convolutional GAN (DCGAN) [45] and Wasserstein GAN (WGAN) [46] are
also explored for imbalanced fault diagnosis tasks. In spite of powerful tools to generate complicated
distributions, GANs are prone to mode collapse and are difficult to train. Different from the imbalance
learning methods, Wu et al. [41] proposed a diversity maximization method which explicitly maximizes
the category diversity of output.

2.3. Improving the Target Discriminability and Diversity Through Nuclear-Norm Maximization
An effective and easy-to-implement method to simultaneously improve the target discriminability

and diversity of model output is the batch nuclear-norm maximization (BNM). In [40] Cui et al.
theoretically find that the discriminability and diversity of domain adaptation could be achieved by
nuclear-norm maximization. In this section, we briefly introduce the BNM regularization.

We propose to use Frobenius-norm (F-norm) of prediction output as indication of target
discriminability. F-norm has strict opposite monotonicity with the entropy H(A) where A is the
prediction output matrix as proved in [40]. Increasing the prediction discriminability could be achieved
by maximizing the F-norm.

We measure the feature diversity of domain adaptation by nuclear norm of the features. Assume
that two randomly selected vectors, Ai and A j, should be more linear independent if they belong to
different categories. Otherwise, they should be more linear dependent if they belong to same category.
Hence rank(A) could be roughly used as an indicator of prediction categories. We approximate the
rank function using the nuclear norm ‖A‖∗.

As proven in [47], the relationship between ‖A‖F and ‖A‖∗ could be written as

1
√

D
‖A‖? ≤ ‖A‖F ≤ ‖A‖? ≤

√

D·‖A‖F (1)
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where D = min(B, C), B is batch size, C is the category number of class, ‖A‖F is the F-norm of output
vector A. When increasing the ‖A‖∗, the ‖A‖F could be also enlarged. Hence the feature diversity and
discriminability of domain adaptation could be both enhanced by maximizing the nuclear norm ‖A‖∗.

To jointly increase the discriminability and diversity of the prediction outputs, we incorporate
the batch nuclear-norm maximization (BNM) regularization into model training. Within each batch
samples X of length B, the classification output could be denoted as G(X). And the loss function of
BNM can be formulated as:

Lbnm = −
1
B
‖G(X)‖? (2)

3. Proposed Methods

In this section, we introduce a semi-supervised domain adaptation method for the cross-machine
fault diagnosis task. To align the distributions between domains and perform fault diagnosis on target
machine with very limited annotated data, the fault diagnosis model learned from related but different
machines are generalized. The framework of the proposed method is illustrated in Figure 1. We denote
source domain asDs =

{(
xs

i , ys
i

)}ns

i=1
, where the samples are fully annotated. xs

i represents the sample
data and ys

i is the corresponding label indicating the health state of bearings. The target domain is

denoted asDt =
{
D

lab
t ,Dunl

t

}
, where limited annotated dataDlab

t and abundant unannotated dataDunl
t

are available.
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The adversarial domain adaptation achieves distribution alignment through adversarial training
between feature extractor and domain discriminator. Specifically, the adversarial training involves
three components, namely the feature extractor E, the label classifier C, and the domain discriminator D.
The feature extractor E learns a function fE(x;θE) parameterized by θE that maps the samples x to the
feature representation h. Classifier C learns a function fC( fE(x);θC) that maps the feature representation
h to class probability output. The domain discriminator D learns a function fD( fE(x);θD) that tells
whether the sample comes from the source domain or target domain. The divergence reduction is
achieved by adversarial training between feature extractor E and domain discriminator D where the
domain discriminator tries to distinguish which domain the samples come from while the feature
extractor tries to fool it.

During training, given access to labeled samples in the source domain and limited labeled samples
in the target domain, we first train the feature extractor E and classifier C on the labeled samples and
their corresponding labels in a supervised way, by minimizing the cross entropy loss with K classes:

Lcls = −E(xs,ys)

K∑
k=1

1[k=y] log C(E(xS)) −E(xt,yt)

K∑
k=1

1[k=y] log C(E(xT)) (3)

We now train the feature extractor and domain discriminator adversarially. The domain
discriminator takes the feature representation and domain label as input, where the samples from
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source domain is donated as label 0, and the samples from target domain is donated as label 1.
The output is the predicted domain label, D(E(x))→ {0, 1} . The objective function of the discriminator
is defined as:

Ld = ExS [log D(E(xS))] +ExT [log(1−D(E(xT)))] (4)

To perform domain alignment, the gradient reversal layer proposed in [48] is employed in
adversarial training. The overall goal of adversarial training is

L = Lcls −Ld (5)

To jointly increase the discriminability and diversity of the prediction outputs, we incorporate the
batch nuclear-norm maximization (BNM) regularization into model training, the classification output
could be denoted as G(X). The loss function of BNM within each batch samples X of length B can be
formulated as:

Lbnm = −
1
B
‖C(E(X))‖? (6)

To improve the stability of adversarial training and improve the prediction performance, we
further impose the local Lipschitz constraint by virtual adversarial training (VAT). VAT perturbs the
target data in the most sensitive direction of the model at the input level and minimize the adversarial
loss so as to improve the robust of model. The VAT minimization objective is:

LV(T ) = Ext∼T

[
max‖r‖≤εDKL[h(xt)‖h(xt + r)]

]
(7)

where r represents the virtual adversarial perturbation on input xt.
The total loss for the model is defined as:

L = LC − βLD + λLV + ϕLbnm (8)

where β, λ and ϕ are hyperparameters.
The algorithm details of the proposed method are presented in Algorithm 1.

Algorithm 1: Details of the proposed method

Require: source data Xs; target data Xt; minibatch size B; training step n;

1. Initialize feature extractor, domain critic, classifier with random weights θE,θD,θC

2. for t = 1, . . . , n do

3. Sample labeled minibatch
{
xs

i , ys
i

}B

i=1
from source domain Xs. Sample unlabeled minibatch

{
xt

i

}B

i=1
and

labeled minibatch from target domain XT.

4. calculate the cross-entropy loss: Lcls = −E(xs,ys)

K∑
k=1

1[k=y] log C(E(xS)) −E(xt,yt)

K∑
k=1

1[k=y] log C(E(xT))

5. calculate the BNM loss:

Lbnm = − 1
B ‖C(E(X))‖?

6. calculate the VAT loss on target samples: LV(T ) = Ext∼T

[
max‖r‖≤εDKL[h(xt)‖h(xt + r)]

]
7. calculate the discriminator loss: Ld = ExS [log D(E(xS))] +ExT [log(1−D(E(xT)))]

8. calculate the overall objective: L = LC − βLD + λLV + ϕLbnm

9. until θE,θD,θC converge

4. Experiments and Results

4.1. Datasets
The first bearing dataset in use is provided by Case Western Reserve University (CWRU) Bearing

Data Center [49]. The vibration signals sampled from the drive-end bearings are used. The faults were
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manually induced into bearings using electro-discharge machining (EDM). The sampling frequency
was 12 kHz. The rotating speed was 1797 rpm.

The IMS bearing data [50] provided by the Center for Intelligent Maintenance Systems, University
of Cincinnati, is used as the second dataset. Four Rexnord ZA-2115 double row bearings were
performing run-to-failure tests under constant loads. The rotating speed was 2000 rpm and the
sampling frequency was 20 kHz. Since the data at different life-cycle stages are considered with
different severities, in this study we only adopt the data from the healthy state and severe state.

The third bearing data comes from the centrifugal fan system for rolling bearing fault diagnosis
testbed of JiangNan University [51]. The bearings under test is single-row spherical roller bearings.
The faults were artificially induced into bearings with a wire-cutting machine. Vibration signals of
four categories of bearings including normal, outer-race defect, inner-race defect, and roller element
defect. The rotating speed was 1000 rpm and the sampling frequency was 50 kHz.

The three testbeds are shown in Figure 2. The descriptions of bearings of the three datasets are
listed for better comparison in Table 1. We could find that the bearings show significant difference
between each other, such as the bearing designation, number of roller elements, and sample rate,
which makes the cross-machine fault diagnosis tasks more challenging. It should be pointed out that
all the datasets share the same label information, namely healthy, inner race fault, outer race fault,
and ball fault.Sensors 2020, 20, x FOR PEER REVIEW 9 of 18 
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Table 1. Characteristics of bearings in three datasets.

Dataset Bearing in
Use Bearing Category # of Rollers Fault Type Rotating

Speed (rpm)
Sample

Rate (Hz)

CWRU 6205-2RS
JEM SKF

deep groove ball
bearing 9

induced using
electro-discharge

machining
1797 12k

IMS Rexnord
ZA-2115

double-row spherical
roller bearing 16 test-to-failure

experiments 2000 20k

JNU N/A single-row spherical
roller bearing 13 induced using

wire-cutting machine 1000 50k

To prepare the training and testing data, we use a sliding window of size 1024 to scan the raw
signals and generate the data samples, hence each sample is composed of 1024 sequential points.
Each category has 2000 samples, and description of the datasets in use are shown in Table 2.
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Table 2. Details of the dataset used in this experiment.

Dataset Class Label 1 2 3 4

CWRU
Fault Location Inner Outer Ball Healthy

Fault depth 14 14 14 14

IMS
Fault Location Inner Outer Ball Healthy

Fault depth Serv. Serv. Serv. Serv.

JNU Fault Location Inner Outer Ball Healthy
Fault depth N/A N/A N/A N/A

4.2. Implementation Details

The network architecture of proposed method consists of three 1-D convolutional layers,
following the rectified linear units (ReLU) activation function and the batch normalization layer.
The representation is then flattened and passed to label classifier and domain discriminator. The detailed
network architecture is shown in Table 3.

Table 3. Details of the networks used in this experiment.

Component Layer Type Kernel Stride Channel Activation

Feature
Extractor

Convolution1 32 × 1 2 × 1 8 Relu
BN1

Convolution2 16 × 1 2 × 1 16 Relu
BN2

Convolution3 8 × 1 2 × 1 32 Relu
BN3

Label Classifier
Fully connected 1 500 1 Relu
Fully connected 2 4 1 Relu

Domain
Discriminator

Fully connected 1 500 1 Relu
Fully connected 2 2 1 Relu

To validate the performance of the proposed method, we compare our method with the following
methods. To be fair, the neural network used in our method and the compared methods are kept
the same.

• CNN: The model trained on labeled source domain data is used to classify the target samples
without domain adaptation.

• Domain adversarial neural network (DANN) proposed by Ganin et al. [48]. Feature distributions
are aligned through adversarial training between feature extractor and domain discriminator.

• DCTLN proposed by Guo et al. [16]. Adversarial training and MMD distance are employed to
minimize domain shift between domains.

• VADA proposed by Shu et al. [21]. VADA incorporates virtual adversarial training loss and
conditional entropy loss to push the decision boundaries away from the empirical data.

• DANN + Entropy Minimization (EntMin). The discriminability of model is improved by entropy
minimization on the basis of adversarial training.

• DANN + BNM (BNM). The discriminability of model is further improved by batch nuclear-norm
maximization on the basis of adversarial training.

The reported experimental results are averaged by 5 trials to reduce the effect of randomness,
and the mean values are provided. All the experiments are implemented using Pytorch and running
on Nvidia GTX 2060 GPU.
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4.3. Case 1: Results and Analysis of Cross-Domain Diagnosis

We evaluate the cross-domain fault diagnosis methods when different numbers of annotated
target data are available. The performances on different transfer tasks and different number of labeled
target samples are listed. Table 4 shows the cross-machine diagnosis results of different methods. We
could find that when no labeled target sample is involved in training, nearly all the methods failed to
achieve meaningful diagnosis performance. Higher diagnosis accuracy could be achieved as more
labeled target samples are involved in training. When only one target sample is available for each class,
the proposed method gains better performance over other methods. When number of target samples
raises to 5, nearly all methods could reach best results except tasks using JNU dataset as target. Among
different transfer tasks, the transfer tasks of IMS dataset as target domain have higher diagnosis results.
This could be explained as that IMS has abundant fault information since the samples of IMS are
selected from a run-to-failure experiment.

Table 4. Results of diagnosis accuracy under different number of labeled target samples.

Tasks Number
Accuracy (%)

CNN DANN DCTLN EntMin VADA BNM Proposed

CWRU
→

IMS

0 41.94 40.52 25.62 25.73 27.45 35.62 50.62
1 / 80.47 81.98 85.95 87.76 99.90 99.95
5 / 98.33 97.81 99.84 99.74 99.89 99.91

10 / 99.25 99.01 99.47 99.86 99.96 99.98

CWRU
→

JNU

0 23.79 24.64 24.79 25.01 25.57 25.05 31.20
1 / 63.82 66.56 62.36 61.89 77.26 92.07
5 / 87.55 86.20 87.40 86.32 91.79 96.18

10 / 93.09 95.16 96.35 93.18 95.57 97.24

IMS
→

CWRU

0 41.03 49.11 49.32 50.21 50.16 30.68 26.04
1 / 77.85 75.31 82.26 72.99 86.04 85.85
5 / 99.56 100.00 99.86 100.00 100.00 100.00

10 / 99.98 100.00 100.00 100.00 100.00 100.00

IMS
→

JNU

0 25.81 25.83 26.46 25.36 25.83 27.81 28.75
1 / 67.48 67.40 65.95 65.07 72.61 81.41
5 / 88.64 89.95 87.50 84.44 91.84 94.38

10 / 94.95 95.00 93.91 94.25 94.65 96.51

JNU
→

CWRU

0 35.64 25.26 25.10 24.95 25.68 24.27 24.95
1 / 72.09 74.95 73.92 72.31 89.29 87.94
5 / 100.00 100.00 99.98 99.98 100.00 100.00

10 / 100.00 100.00 99.98 99.98 100.00 100.00

JNU
→

IMS

0 40.52 41.72 41.41 44.22 27.03 55.99 49.01
1 / 86.67 86.56 84.19 91.79 99.95 99.97
5 / 99.79 98.70 99.97 99.93 100.00 100.00

10 / 99.29 100.00 99.78 99.74 99.97 100.00

To better compare the performances of different methods, we drew the performances of different
methods on different tasks when number of target samples is equal to 1 and 5, respectively.
When number of labeled target samples is 1, as shown in Figure 3a, the entropy minimization
has the average accuracy of 75.77%, which has not shown to effectively improve the performance over
DANN with average accuracy of 74.73% except the tasks between IMS and CWRU. By contrast, the
proposed method has the average accuracy of 97.86% and achieves highly precision nearly on all tasks.
When number of labeled target samples is 5, as shown in Figure 3b, the tasks except CWRU→ JNU
and IMS→ JNU are almost perfectly classified.

We draw the representations of DANN and proposed method via t-SNE for comparison in Figure 4.
The task ‘CWRU→ IMS’ with number of labeled target sample of 1 is shown. The target features
with category ‘IR’ and ‘OR’ are partially overlapped in DANN, and they are better separated in our
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proposed method. By imposing the target discriminative regularization, the ambiguous samples near
the decision boundaries are better separated.Sensors 2020, 20, x FOR PEER REVIEW 12 of 18 
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4.4. Case 2: Cross-Domain Diagnosis under Class-Imbalanced Scenarios

To further explore the cross-domain diagnosis tasks under class-imbalanced scenarios, we explicitly
reduce the unlabeled faulty samples in target domain. Three imbalanced scenarios are composed with
different imbalance rate, as shown in Table 5. Firstly, the target dataset is equally split as training
set and testing set. Then, the faulty classes in training set are reduced to different extent. For fair
comparison, the number of labeled target samples each class is fixed to 5. The results of the experiments
are shown in Table 6.

Table 5. Details of the imbalanced target dataset used in case 2 of this experiment.

Scenarios
Number of Unlabeled Target Samples

Healthy IR Ball OR Test

#1 50% 25% 25% 25% 50%
#2 50% 10% 10% 10% 50%
#3 50% 5% 5% 5% 50%

Table 6. Results of diagnosis accuracy under imbalance scenarios. The number of labeled target
samples each class is fixed to 5.

Tasks Imbalanced
Scenarios

Accuracy

DANN DCTLN EntMin VADA BNM Proposed

CWRU
-> IMS

#1 99.37 99.95 99.56 99.59 99.74 99.95
#2 99.13 99.74 99.06 99.84 99.62 99.84
#3 99.83 95.73 99.87 99.85 99.98 99.95

CWRU
-> JNU

#1 89.46 89.58 88.62 87.50 89.66 95.83
#2 88.18 83.28 88.15 88.31 88.70 95.19
#3 90.09 88.02 88.93 87.71 88.78 94.14

IMS
-> CWRU

#1 99.77 99.22 99.95 99.92 100.00 100.00
#2 99.95 100.00 99.98 99.93 100.00 100.00
#3 99.87 100.00 100.00 100.00 100.00 100.00

IMS
-> JNU

#1 89.54 87.97 89.56 84.92 92.38 96.57
#2 87.58 89.74 87.47 88.75 90.94 96.33
#3 86.59 86.77 86.38 89.17 90.34 93.39

JNU
-> CWRU

#1 99.95 99.95 99.95 100.00 100.00 100.00
#2 99.95 99.95 100.00 100.00 100.00 100.00
#3 99.95 99.85 99.93 100.00 100.00 100.00

JNU
-> IMS

#1 99.85 99.95 99.87 99.92 99.95 99.93
#2 99.87 99.69 99.79 99.92 99.98 99.87
#3 99.95 99.58 99.90 99.95 97.53 99.72

From the results we could find that, the imbalanced scenarios have negligible effect on tasks where
CWRU and IMS are target domains. For tasks where JNU is the target domain, the proposed method
has obvious improvement over compared methods.

4.5. Case 3: Experiments with Environmental Noise

Environmental noise commonly exists in industrial environment, and the vibration signal will be
inevitably affected by the noise, which may deteriorate the performance of the fault diagnosis methods.
Since the target machine may suffer a different level of noise disturbance, in this section, we evaluate
the fault diagnosis performance under environmental noise. The testing vibration signal is added with
the additive white Gaussian noise of different signal-to-noise ratio (SNR) which is defined as:

SNRdB = 10 log10

(Psignal

Pnoise

)
(9)
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We test the different diagnosis models under noise level from −4 dB to 4 dB. The result of task ‘DE
-> IMS’ is shown in Figure 5a and task ‘IMS -> JNU’ is shown in Figure 5b. The number of labeled
target samples each class is fixed to 5.
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(b) IMS→ JNU. The number of target samples each class is 5.

It could be found that the diagnosis accuracies decrease as the signal-to-noise ratio decreases.
Among these fault diagnosis models, the proposed method has better performance on both two tasks.
This can be explained that the ambiguous samples in our model are better pushed away from the
decision boundaries.

5. Conclusions

In this paper, we leverage semi-supervised domain adaptation method to address the cross-machine
fault diagnosis problem. Cross-machine fault diagnosis is a promising method to address the dilemma
of labeled data insufficiency in data-driven fault diagnosis tasks, especially when labeled data from
different working conditions of same machine are unavailable. While it provides the opportunity to
generalize the fault diagnosis knowledge from different machines, the cross-machine fault diagnosis
is generally more challenging, since the large domain gap between machines make the ambiguous
samples near decision boundary are prone to be misclassified, and the data imbalance scenario in
target domain makes the faulty samples are prone to be misclassified as normal healthy category.
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In our method, feature alignment is achieved by adversarial domain adaptation, then the ambiguous
samples near decision boundary are further reduced by batch nuclear-norm maximization and virtual
adversarial training. Experiments on three different bearing diagnosis scenarios verify the efficacy
of our proposed approach when only one labeled target samples each class are available. The class
imbalance scenarios also are investigated.

Although the proposed method is effective for cross-machine fault diagnosis, some limitations
exist when applying this method. The semi-supervised method assumes there are a few labeled
samples in target machine. In our method, adding one labeled sample to each class of target dataset
will dramatically increase the accuracy of model prediction. However, in real applications it may
be difficult to obtain these labeled data since it is sometimes expensive or infeasible to perform the
experiment. In this case, generating labeled data using simulation or digital twin may be a feasible
method. Through the virtual experiments, the simulation data could be easily collected, and the
annotation information is also available, but with the cost of larger domain gap between simulation
data and sensory data. In the future, we plan to explorer the domain adaptation tasks between
simulation signals and real signals.
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