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Abstract: In this study, we propose a method to find an optimal combination of hyperparameters
to improve the accuracy of respiration pattern recognition in a 1D (Dimensional) convolutional
neural network (CNN). The proposed method is designed to integrate with a 1D CNN using the
harmony search algorithm. In an experiment, we used the depth of the convolutional layer of the 1D
CNN, the number and size of kernels in each layer, and the number of neurons in the dense layer as
hyperparameters for optimization. The experimental results demonstrate that the proposed method
provided a recognition rate for five respiration patterns of approximately 96.7% on average, which is
an approximately 2.8% improvement over an existing method. In addition, the number of iterations
required to derive the optimal combination of hyperparameters was 2,000,000 in the previous study.
In contrast, the proposed method required only 3652 iterations.

Keywords: 1D convolutional neural network; ultra-wideband radar; respiration patterns; harmony
search algorithm; hyperparameter optimization

1. Introduction

Existing ultra-wideband (UWB) radar sensors have been used for shortrange communication.
However, recently, many studies using this sensor have been conducted in various fields that require
noncontact signal pattern analysis technology. Among them, in the healthcare field, a technique to
analyze the bio-signal data of a person obtained using a UWB sensor is being actively researched.
This technology is intended to analyze signal patterns, e.g., the respiration, pulse, and movement of a
person, obtained from a UWB sensor and use these signal patterns to diagnose diseases or improve
quality of life based on the analyzed data.

Various machine learning techniques have been studied as a method to recognize and analyze
human bio-signal patterns. Recently, as deep learning technologies have been researched, attention
has been placed on improving performance, e.g., by improving the recognition rate [1–5].

Previously, the pattern recognition method for UWB sensor signals was researched primarily on
pulse or apnea pattern detection based on machine learning [6–10]. Since then, as ANN(Artificial Neural
Network)-based AI(Artificial Intelligence) technology has emerged, methods using this technique have
been investigated; however, in such methods, preprocessing steps are required to construct learning
data of a specific pattern. Recently, deep learning models based on CNN have emerged to solve
these problems.
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In such methods, features can be extracted and learned in the same process without preprocessing
the data. Thus, various pattern recognition studies using CNN models have been conducted
recently [11–13].

Generally, a CNN is used for object detection and recognition from an image; thus, it primarily
comprises input data structures in two dimensions; however, one-dimensional signal data can also be
used as input. Therefore, when one-dimensional signal data are input, convolution is performed using
a one-dimensional vector kernel. The respiratory signal of a human obtained from a UWB sensor is
also one-dimensional data; therefore, it is possible to learn and recognize the patterns of respiratory
signal by implementing a 1D CNN model. However, generally, CNN performance is greatly affected
by the structural design of each layer and hyperparameter values.

Various image processing studies have demonstrated that it is possible to improve performance
with little adjustment of the depth and structure of the layer and the number and size of kernels in
each layer based on previously studied neural networks and hyperparameters. However, in fields
with few related studies, it is necessary to design an optimal neural network via repeated experiments
with various hyperparameter combinations using a simple neural network [14–17].

In previous 1D CNN-based respiration pattern recognition studies, a specific range for
hyperparameters is determined in advance for each layer, and experiments are performed repeatedly
using a combination of all hyperparameters in this range, and the best combination is selected. In this
case, the total number of hyperparameter combinations is 2,000,000; however, this method is limited
relative to finding a hyperparameter with better performance because the combination is generated
using specific values in the specified range.

To find a combination of hyperparameters that yields improved performance, the search must
be performed in a wider range. In this case, experimenting with all combinations is very inefficient
because it takes a lot of time. Therefore, it is necessary to study how to find an optimized combination
of hyperparameters that provides good performance in less time. There are various algorithms for
the optimization method, but among them, the harmony search (HS) algorithm is designed with a
structure that is easy to hybridize with other technologies than the traditional optimization methods,
namely the genetic algorithm (GA) or particle swarm optimization (PSO), and is an algorithm that
efficiently searches for solutions [18–24].

Therefore, in this paper, we propose a hyperparameter optimization method that yields better
performance in less time than the existing method [25] by applying the HS algorithm to the existing
1D CNN model with UWB radar sensor for respiration pattern recognition. A comparative analysis
demonstrates that the proposed method outperforms existing methods.

2. Related Research

2.1. UWB Sensor and Repiratory Signal Patterns

UWB sensors have primarily been used for shortrange wireless communication; however, recently,
they have been widely used for object motion detection and bio-signal detection.

The UWB sensor uses a wide range of frequency bands; thus, it has the advantage of less
interference with other narrowband or wideband signals.

In particular, UWB signals use very narrow pulses, i.e., a few nanoseconds or picoseconds.
Therefore, it is possible to precisely measure the distance and position of an object with a low-spectrum
power density characteristic in a wide frequency band.

The specifications of the UWB sensor used in our experiment are given in Table 1, and the data
were measured via UART communication with a PC.
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Table 1. Specifications of UWB sensor.

Item Specification

Detecting Range 10~22 (m)
Frequency Range 3.0~4.0 (GHz)

Bandwidth 0.45~1.0 (GHz)
Distance Resolution 1.5~3.3 (cm)

Antenna Angle 50◦ (X-Z plane)~77.5◦ (Y-Z plane)

The respiratory signals of the UWB sensor rise in inspiration and descend in expiration.
The amplitude of the respiratory signal is determined by the degree of deep respiration, and, as the
length of one respiration lengthens, the period of the signal increases [25–28].

These respiratory signals appear in various forms depending on the type of respiration, and the
medical field defines the respiration type as given in Table 2 based on the number of respirations per
minute [29–31].

Table 2. Respiration type according to number of respirations per minute.

Type of Respiration Definition and Characteristics of Respiration

Eupnea Respiration when average number of respirations per minute is 15–20 for an adult.

Bradypnea

Respiration when the number of respirations per minute is 12 or less. Compared to
general respiration, the depth of inspiration and expiration is reduced, and the
respiration cycle is increased. Often observed when sleeping and may be caused by
diseases.

Tachypnea
Shallow respiration with 20 or more respirations per minute and may occur in the
presence of diseases, e.g., fever and weakness or mental instability. This can be
appeared during normal light exercise.

Apnea When there is a decrease of more than 90% of typical respiratory airflow for more than
10 seconds during sleep. This results in very small amplitudes in the respiratory signal.

Each respiration type is measured using a UWB sensor (Figure 1), and each signal demonstrates a
distinct difference.

Figure 1. Four respiratory signal patterns measured by UWB sensor. (a) Eupnea. (b) Bradypnea. (c)
Tachypnea. (d) Apnea.
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2.2. 1D CNN for Signal Pattern Recognition

Generally, CNNs are used for object detection or recognition based on image data. Thus, as shown
in Figure 2, the convolutional layer uses an M × N type kernel for feature extraction of the image. In
addition, features extracted by performing convolution with multiple kernels are processed into vector
form and connected to the fully-connected layer.

Figure 2. General structure of CNN for image classification.

In addition, this layer is connected to the output layer, and through an iterative learning process,
a model that can derive the classification result is constructed.

The respiratory signal comprises a one-dimensional signal (rather than an image) to learn
respiratory patterns using an existing CNN. Therefore, the respiratory signal must be transformed into
two-dimensional image data. However, since one-dimensional data have time continuity, if the data
are transformed into two-dimensional data, the time continuity characteristic for a respiratory signal
may be impaired.

In addition, the structure of one-dimensional data changes to a matrix. As a result, unspecific
features may be added between each row in the convolution result. Due to these problems, the
performance of the neural network can be degraded. Thus, it is necessary to construct a CNN that is
suitable for one-dimensional data characteristics.

A CNN for learning the one-dimensional data is shown in Figure 3. Here, the convolutional layer
receives input data in the form of a vector and performs convolution using a 1 × N type kernel. As
a result, the feature map is also extracted in the form of one-dimensional data. In the subsequent
learning process, the fully-connected layer is structured in the same manner as a general CNN, and
learning is performed via backpropagation.

Figure 3. General structure of 1D CNN for signal pattern recognition.
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As described above, a CNN can be designed with a structure to learn 2D and 1D data, and the
optimization model is completed through feedforward and backpropagation processes. For learning
via backpropagation, learning proceeds with various optimization techniques. Generally, stochastic
gradient descent (SGD) based on the gradient descent method is employed.

Recent deep neural networks use several optimization methods to improve SGD. Such methods
attempt to minimize errors for various hyperparameters and learn the data of a given neural network.
Thus, the hyperparameter settings are largely determined by existing studies or experiments.

2.3. Hyperparameters in 1D CNN

The hyperparameters in a CNN can be composed of various components depending on the
structure of the neural network. The basic hyperparameters are shown in Table 3. Here, kernel size
and kernel count are the most influential factors relative to recognition or detection performance.
The hyperparameters other than the kernel size and kernel count in Table 3 are already reported the
ranges of values close to optimization through various studies [32–34].

Table 3. Hyperparameters of general 1D CNN.

Hyperparameter Description

Kernel Size Kernel size of convolutional layer
Kernel Count Kernel count of convolutional layer

Stride Number of moving pixels of kernel when performing convolution (base: 1)

Zero-padding Hyperparameters used to acquire characteristics of the border area of the
training data

Epoch Number of learning iterations
Learning Rate Amount of change in weight that is updated during learning
Layer Depth Number of layers constituting entire network

Neuron Count Neuron count in fully-connected layer
Batch Size Group size to divide training data into several groups

Loss Function Function to calculate error (SGD)
Activation Function Neuron’s activation function (ReLU, sigmoid, etc.)

However, the kernel size and count should be applied differently depending on the characteristics
of the input data. Thus, the kernel size and count must be found through repeated experiments
or experience.

Methods to optimize these hyperparameters have been studied in various ways. The basic
optimization methods are summarized as follows.

• Manual search: This method sets the hyperparameter value depending on the researcher’s
intuition or experience and can be used when the understanding of neural network structure and
learning data is high. However, this method is inefficient because hyperparameter setting criteria
are very ambiguous and many experiments are required.

• Grid search: This method finds the hyperparameter that yields the best performance by
predetermining several values for each hyperparameter and combining the values.

• Random search: This method finds the best combination by setting the minimum and maximum
range of values that each hyperparameter can have and selecting values randomly within the
specified range. This method can be better than the manual search and grid search methods in
terms of performance over time.

• Bayesian optimization: Bayesian optimization constructs a specific range of value for a
hyperparameter based on a good case studied in the past and optimizing within the determined
range. This method has good performance over time but must be studied previously.

In the existing study of respiration pattern recognition using the UWB sensor signal, the 1D CNN
hyperparameters were optimized using the grid search method. However, to improve the neural
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network’s performance, a better method to optimize hyperparameters is required. The Bayesian
optimization method, which demonstrates good performance, can be used when existing studies are
abundant; however, for 1D CNN-based respiration pattern recognition, it is difficult to use this method
due to a lack of related studies. The random search method can also take a very long time because it
optimizes the values randomly selected for given ranges without prescribed rules.

2.4. Harmony Search Algorithm

The harmony search (HS) algorithm solves optimization problems based on stochastic theory.
This algorithm solves such problems by modeling the process for the music-inspired player to produce
better chords.

The HS and genetic algorithms are similar relative to the method by which they probabilistically
approach the solution through a random process; however, they differ in the process of constructing the
initial value group. The HS algorithm comprises five processes, i.e., the initial value setting, harmony
memory (HM) initialization, new harmony creation, HM update, and repetition processes [35,36].

Step 1: Initial value setting

To optimize the hyperparameters used in the HS algorithm, initial values must be set for the
hyperparameters. Here, the HS algorithm has three parameters, i.e., harmony memory size (HMS),
harmony memory considering ratio (HMCR), and pitch adjusting ratio (PAR). In addition, an objective
function is required. The objective function is used to evaluate the quality of various chords, and the
optimization problem is solved by maximizing or minimizing the value of the objective function.

Step 2: Initialize harmony memory

Harmony memory is used by the player to find the best chord among multiple chords, and one
chord comprises several variables. The number of initialization chords is configured to have the HMS,
and the objective function is set to evaluate the chord. During initialization of HM, the values of each
variable are determined by random selection. Here, the value is selected in the range of the random
selection for each variable. The objective function is calculated by the values of the variables comprising
harmony, and the HM is updated with the values of the variables and the objective function.

Step 3: Create new harmony

This process removes bad chords from HM and finds better chords. Here, the HS optimization
hyperparameter HMCR is used to determine whether to create a completely new chord or make a chord
by slightly adjusting the existing chords. The HMCR is set to a real value between 0 and 1, and, if this
value is too low, new chords are created frequently, which can be result in an inefficient optimization
process. Conversely, if the HMCR value is too high, the existing chord is selected frequently and
searched around it; thus, there is a risk of falling into the local minimum or maximum. Therefore, it
is necessary to find a suitable HMCR to ensure sufficient performance of the HS algorithm. When
using an existing chord in the HMCR, it is necessary to adjust the pitch, which is determined by
hyperparameter PAR, which is set to a real value between 0 and 1. Here, if the value is large to be close
to 1, it is used by changing the existing chord. In addition, when the pitch is corrected by PAR, the
amount of change is adjusted by the maximum pitch adjustment proportion (MPAP) and maximum
pitch adjustment index (MPAI) values. MPAP is a pitch adjustment value used for discrete variables,
and MPAI is a pitch adjustment value used for continuous variables. Pitch adjustment values serve to
search around existing chords. If the value is small, a local search is performed, and if it is large, a
wide range is searched.

Step 4: HM update

For chords newly created by HMCR and PAR, the objective function value is calculated for
comparison with other chords. Then, the objective function value of the new chord is compared to the
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worst chord of the HM composed so far. Here, if the new chord is better than HM’s worst chord, the
bad chord is replaced by the new chord.

Step 5: Iteration and results

Steps 3 and 4 are performed as many times as the set number of iterations, and optimization is
finished by selecting the chord that demonstrates the best performance in the final HM. The performance
of the HS algorithm is ultimately determined by the values of HMS, HMCR, PAR, MPAP, and
MPAI. These five variables should also be set to appropriate values in reference to existing studies
or experiments.

The HS algorithm has five hyperparameters to be set. Thus, it is possible to reduce the number of
variables to be tested and effectively find the solution.

Therefore, this paper proposes an optimization method for 1D CNN hyperparameters based on
the HS algorithm and demonstrates the superiority of the proposed method by applying it to existing
1D CNN respiration pattern recognition system.

3. Proposed Method

This paper proposes a method to optimize hyperparameters to improve the recognition rate in a
1D CNN neural network configured to recognize respiratory signal patterns from UWB sensor data. In
the proposed method, first, the required hyperparameters are set as target variables to be optimized,
and HM comprises hyperparameters and objective functions.

Next, the parameters to be used by the HS algorithm are derived, and in the final step, the
optimized hyperparameter combination is found by applying the HS algorithm to the 1D CNN
respiration pattern recognition system.

The goal of the proposed method is to design an optimal system that integrates the 1D CNN and
HS algorithms in order to find an optimal combination of hyperparameters that yields an excellent
respiratory pattern recognition rate in the 1D CNN system.

To demonstrate that the proposed method is superior to the existing method, an experiment
was conducted under the same conditions as the existing method, and the respiratory signal pattern
recognition rate and number of iterations required to find the optimal combination of hyperparameters
were compared.

3.1. Design of Harmony Memory and Object Function

To optimize the 1D CNN’s hyperparameters using the HS algorithm, first, the HM must be
configured and the objective function must be designed. Here, hyperparameters that significantly
influence optimization of the 1D CNN are selected. The hyperparameters used in the proposed
method are presented in Table 3, and these hyperparameters affect the recognition rate according to
the characteristics of the input data. The hyperparameters selected for the proposed method are KS,
KC, and DLNC (Table 4), where KS is the kernel size in the convolutional layer, KC is the number of
kernels used in the convolutional layer, and DLNC is the number of neurons in the dense layer.

Table 4. Hyperparameters to be optimized for 1D CNN.

Hyperparameter Description Expression of Hyperparameter in Layer

KS Kernel size of each convolution layer KS = {ks1, . . . , kscld}
KC Kernel count of each convolution layer KC = {kc1, . . . , kccld}

DLNC Neuron count of each dense layer DLNC = {dlnc1, dlnc2}

KS and KC exist for each convolutional layer. Thus, if the convolutional layer depth (CLD)
increases, KS and KC will also increase.

In the 1D CNN, the dense layer always comprises two layers regardless of the CLD.



Sensors 2020, 20, 3697 8 of 19

The HM is designed to have the convolutional layer as much as CLD (Figure 4) for the existing
1D CNN respiration pattern recognition system. As the value of CLD increases, the number of
hyperparameters for KS and KC also increases, and the number of DLNC is fixed to two.

Figure 4. Layout of 1D CNN model used in proposed method.

The structure of the hyperparameters of HM, i.e., the optimization target, is expressed in matrix
form as follows.

HM =


ks1

1 kc1
1 . . . kscld

1 kccld
1 dlnc1

1 dlnc2
1 R1

ks1
2 kc1

2 . . . kscld
2 kccld

2 dlnc1
2 dlnc2

2 R2

ks1
3 kc1

3 . . . kscld
3 kccld

3 dlnc1
3 dlnc2

3 R3

. . .
ks1

hms kc1
hms . . . kscld

hms kccld
hms dlnc1

hms dlnc2
hms Rhms


HPi =

{
ks1

i , kc1
i , . . . , kscld

i , kccld
i , dlnc1

i , dlnc2
i

}
, i = 1, . . . , hms

The objective function used to evaluate the performance of each hyperparameter combination in
HM is set to recognition rate Ri.

In other words, in each execution step of the 1D CNN (Figure 5), hyperparameters are substituted,
and weights ω and bias b are updated while the feedforward and backpropagation processes are
performed with the learning data. Learning for a single selected parameter combination is completed
when the loss function’s conditions are satisfied.

Next, the recognition rate using the verification data is calculated and stored at the location of
the objective function in the new HM area (HMnew), and the HM is updated by comparing the Rnew

of HMnew to Rhms of HM, which is the lowest priority of HM. When HM is updated, alignment is
performed for recognition rate Ri,i=1,...,hms in HM.

When initializing HM, it is recommended to set HMS to a sufficiently large value (in this study, it
is set to 1000). The reason may be described as an example of searching global maxima, which has the
highest recognition rate for several CNN hyperparameters.
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Figure 5. Process for hyperparameter optimization between HM and 1D CNN.

If a global search is performed through multiple random selections during the HM initialization
process, and iteration is performed based on this HM, the HM creation with sufficiently large HMS can
be optimized with much fewer Iterations than when HMS is small. Thus, the initialization process
requires more time than when HMS is small; however, it is possible to significantly reduce the time
required to reach global maxima by iteration. In contrast, if a small HMS value is used, the memory
pool will also be small; thus, there is a high probability of falling into local maxima or performing a
very high number of iterations.

3.2. Selecting Optimal Hyperparameters for HS Algorithm

The HS algorithm requires hyperparameters to operate HS itself in addition to optimization for
a 1D CNN, and, to obtain good results, the hyperparameters should be selected with appropriate
values determined through experimentation. Therefore, experiments were performed by constructing
various hyperparameter groups, and appropriate hyperparameters were set based on the results.
The hyperparameters that have significant influence on the performance of the HS algorithm in the
proposed method are HMCR, PAR, and MPAP. Here, as the HMCR value increases, the probability of
using a combination of existing hyperparameters stored in HM increases. Pitch is adjusted by PAR,
and a higher PAR value results in a higher probability of pitch adjustment. Here, pitch is adjusted
by selecting a random value within the MPAP range. In other words, a higher HMCR value results
in a higher probability that the PAR and MPAP values will be used frequently. Therefore, HMCR
should be set to an appropriate value to achieve efficient optimization without reaching local maxima.
Conversely, if the value of the HMCR is low, optimization efficiency is reduced because this is similar
to global search using normal random selection [37].

Considering the characteristics of each hyperparameter, we present two cases where optimization
becomes inefficient with the local maxima or frequent random selection in the following.

1. Local maxima problem: This problem occurs when using a high HMCR value and low MPAP
value regardless of the PAR value. This problem frequently recalls existing memory due to the
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high HMCR value, and the pitch is adjusted by PAR when creating a new harmony. Here, if the
MPAP value is too low, falling into local maxima may occur.

2. Random selection problem: This problem occurs when the HMCR value is low. As a result, the
probability of random selection occurring increases, which can yield efficiency that is similar to a
typical random search method. This problem may also occur when the HMCR, PAR, and MPAP
values are all high. In particular, if MPAP is too large, even if the existing HM is used, the pitch
adjustment value becomes too large, which has the same effect as random selection.

Due to these problems, it is inefficient to use HS algorithm variables that are close to 0 or 1.
To minimize this problem, HMCR is set to a random value of 0.05 units between 0.5 and 0.7. Thus,
when creating a new harmony, it is recommended to recall the existing HM with a probability of 50%
or greater.

In addition, PAR was selected with a random value of 0.05 units in the range of 0.6 to 0.8 such that
pitch adjustment occurred frequently. Here, the PAR value is set to a slightly higher value than existing
method 2 in Table 5. Thus, MPAP must be set to an appropriate value to minimize the occurrence of
local maxima and random selection problems.

Table 5. Number of iterations required to reach 95% recognition rate for each hyperparameter
combination to find appropriate hyperparameter value for HS algorithm.

Methods
Hyperparameters for HS Algorithm

Iteration
Set Recognition

Rate (%)HMCR PAR MPAP

Existing method 1 [38] 0.95 0.8 0.2 5912
95%Existing method 2 [39] 0.70 0.50 0.1 4357

Proposed method 0.5–0.7 0.6–0.8 10–18 2011

The MPAP value was set in the range 10–18 through experiments. The hyperparameter combination
and performance of the HS algorithms among studies are compared in Table 5. Note that the
performance comparison is expressed as the number of iterations required to reach a 95% recognition
rate for each combination of hyperparameters.

As can be seen, the hyperparameter combination of the proposed method reached a recognition
rate of 95% with fewer iterations than the hyperparameter combination used in other studies.
The hyperparameter values for the existing method 1 and 2 shown in Table 5 are used in different
optimization problems [38,39].

As shown in Table 5, when applying the combination of hyperparameters derived from
existing methods 1 and 2 to the hyperparameter optimization problem of the proposed ID CNN,
approximately 4,357 to 5,912 iterations were required reach the target recognition rate of 95%. When
the proposed method was applied to the same environment, it was possible to derive a combination of
hyperparameters that reached the target recognition rate by performing approximately 2,011 iterations.
Since MPAP is applied to all hyperparameters used in the proposed 1D CNN (i.e., KS, KC, and DLNC), a
range of hyperparameters was derived experimentally to have a larger value than the hyperparameters
suggested by the existing method. This means that each hyperparameter must be set appropriately
for the target optimization problem. The experimentally derived HMCR, PAR, and MPAP values
were used in the HS algorithm to optimize the KS, KC, and DLNC hyperparameters of the proposed
1D CNN.

3.3. Optimization of 1D CNN Hyperparameters Using HS Algorithm

Figure 6 shows the hyperparameter optimization process to improve the recognition rate of
respiration patterns in the 1D CNN using the HS algorithm with the HM configuration suggested in
Section 3.1 and the HS hyperparameter range suggested in Section 3.2.
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Figure 6. 1D CNN hyperparameter optimization process using HS algorithm.

The new harmony generation and harmony memory update processes shown in Figure 6 are
detailed in Algorithm 1. Here, a combination of hyperparameters as much as HMS is generated and
filled in HM. Then, the HM was updated only when the given condition was satisfied. Hmax is a
combination of hyperparameters that gives the best performance among the harmonies in HM. If
the HM is updated but Hmax has not been updated, variable ∆I (count of non-update for Hmax) is
increased by one. If the ∆I value reaches a given specific value (threshold k), optimization is no longer
occurring in HM, and the HM update operation is completed even if the set number of iterations has
not been reached.

Finally, the hyperparameter combination HPmax, which has the highest recognition rate in HM, is
derived as the optimal combination of hyperparameters.
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Algorithm 1: Algorithm for Optimizing Hyperparameters of 1D CNN using HS
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2 = 𝑟𝑎𝑛𝑑(DLNC-MIN, DLNC-MAX)

② Learn with the hyperparameter 𝐻𝑃𝑖 .

* Use training data set X

* Update w, b by backpropagation
𝜔, 𝑏   𝐿( 𝐻𝑃𝑖 , 𝑋) 

③ If the Loss function is not satisfied, go to ②.

④ Calculate the recognition rate 𝑅𝑖  by applying 𝐻𝑃𝑖  to the verification data Y.
𝑅𝑖   𝑉(𝜔,𝐻𝑃𝑖 , 𝑌) 

⑤ Store the values of hyperparameters 𝐻𝑃𝑖 and recognition rate 𝑅𝑖 in the i index of HM

End Loop (i) 

(3) Optimization of 1D CNN Hyperparameter (𝐻𝑃).

Initialization of variable  𝐼𝑝𝑟𝑒𝑣  , 𝐼𝑐𝑢𝑟𝑟  (𝐼𝑝𝑟𝑒𝑣 = 0, 𝐼𝑐𝑢𝑟𝑟 = 0)

Begin Loop (j):

for(j=0; j<Iteration; j++) 

① Each algorithm is executed according to the following conditions

if rand(0, 1) < HMCR then

* Create new harmony 𝐻𝑃𝑛𝑒𝑤  using the hyperparameter 𝐻𝑃𝑟𝑎𝑛𝑑  randomly

selected from the existing HM.
𝐻𝑃𝑟𝑎𝑛𝑑 = 𝐻𝑃𝑖 , i = rand(0, 𝐻𝑀𝑆) 𝑎𝑛𝑑 𝐻𝑃𝑖 ∈ 𝐻𝑀 
𝐻𝑃𝑟𝑎𝑛𝑑 = {𝑘𝑠𝑟𝑎𝑛𝑑

1 , 𝑘𝑐𝑟𝑎𝑛𝑑
1 , …  , 𝑘𝑠𝑟𝑎𝑛𝑑

𝑐𝑙𝑑 , 𝑘𝑐𝑟𝑎𝑛𝑑
𝑐𝑙𝑑 , 𝑑𝑙𝑛𝑐𝑖

1, 𝑑𝑙𝑛𝑐𝑖
2}

if rand(0, 1) < PAR then 

* Adjust the pitch for the new harmony 𝐻𝑃𝑛𝑒𝑤 as follows.

Begin Loop (d) :

for(d=1; d<=CLD; j++) 

𝑘𝑠𝑛𝑒𝑤
𝑑 = 𝑘𝑠𝑟𝑎𝑛𝑑

𝑑 + 𝑀𝑃𝐴𝑃
𝑘𝑐𝑛𝑒𝑤

𝑑 = 𝑘𝑐𝑟𝑎𝑛𝑑
𝑑 + 𝑀𝑃𝐴𝑃

End Loop (d) 

𝑑𝑙𝑛𝑐𝑛𝑒𝑤
1 = 𝑑𝑙𝑛𝑐𝑟𝑎𝑛𝑑

1 + 𝑀𝑃𝐴𝑃
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𝑑𝑙𝑛𝑐𝑛𝑒𝑤
2 = 𝑑𝑙𝑛𝑐𝑟𝑎𝑛𝑑

2 + 𝑀𝑃𝐴𝑃

else if 

* Create a new harmony without adjusting the pitch of the existing harmony.
𝐻𝑃𝑛𝑒𝑤 = 𝐻𝑃𝑟𝑎𝑛𝑑  

else if 

* Set values for each hyperparameter 𝐻𝑃𝑛𝑒𝑤  through Random Selection.

Begin Loop (d) :

    for(d=1; d<=CLD; j++) 

𝑘𝑠𝑛𝑒𝑤
𝑑 = 𝑟𝑎𝑛𝑑(KS-MIN, KS-MAX) 

𝑘𝑐𝑛𝑒𝑤
𝑑 = 𝑟𝑎𝑛𝑑(KC-MIN, KC-MAX) 

End Loop (d) 

𝑑𝑙𝑛𝑐𝑛𝑒𝑤
1 = 𝑟𝑎𝑛𝑑(DLNC-MIN, DLNC-MAX) 

𝑑𝑙𝑛𝑐𝑛𝑒𝑤
2 = 𝑟𝑎𝑛𝑑(DLNC-MIN, DLNC-MAX) 

② Learn with the new harmony 𝐻𝑃𝑛𝑒𝑤 .

* Use training data set X.

* Update w, b by backpropagation
𝜔, 𝑏   𝐿( 𝐻𝑃𝑛𝑒𝑤 , 𝑋) 

③ If the Loss function is not satisfied, go to ②.

④ Calculate the recognition rate 𝑅𝑛𝑒𝑤 by applying 𝐻𝑃𝑛𝑒𝑤to the verification data Y.
𝑅𝑛𝑒𝑤   𝑉(𝜔,𝐻𝑃𝑖 , 𝑌) 

⑤ Compare the recognition rate 𝑅𝑛𝑒𝑤  with 𝑅𝑚𝑖𝑛 , the minimum recognition rate in

harmony memory. And if 𝑅𝑛𝑒𝑤 is greater than 𝑅𝑚𝑖𝑛, remove 𝐻𝑚𝑖𝑛 from harmony and

update to 𝐻𝑛𝑒𝑤 .

⑥ After sorting all harmony 𝐻𝑖  in descending order based on the recognition rate R of

HM, perform the following procedure to find the optimal combination of

hyperparameters early.

if  𝑅𝑛𝑒𝑤 > 𝑅𝑚𝑎𝑥 then

   𝐼𝑝𝑟𝑒𝑣 = 𝐼𝑐𝑢𝑟𝑟 = 𝑗, ∆𝐼 =  0 

else 

     𝐼𝑐𝑢𝑟𝑟 = 𝑗, ∆𝐼 =  𝐼𝑐𝑢𝑟𝑟 − 𝐼𝑝𝑟𝑒𝑣 

     if  ∆𝐼 ≥ 𝑘 then 

break Loop (j) 

     else 

continue Loop (j) 

End Loop (j) 

(4) Obtain the hyperparameter combination 𝐻𝑃𝑚𝑎𝑥  with the highest recognition rate (R) from the

harmony memory HM.

4. Experiments

4.1. Learning and Test Dataset

The UWB respiration signal dataset used for learning in this study is the same dataset used in a
previous study to compare the performance to the exiting method [35].
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The dataset includes five signal patterns, i.e., general respiration, slow respiration, tachypnea,
apnea, and movement. Here, 10 people participated in the experiment. Table 6 shows samples of the
respiratory signal data extracted for each pattern type.

Table 6. Samples of five respiration patterns collected from participants.

Pattern Samples of Signal

Eupnea

Bradypnea

Tachypnea

Apnea

Moving

The experimental data comprised a total of 2500 pieces (i.e., 10 peoples × 5 types × 50 pieces) by
extracting 50 pieces for each type from each participant’s respiratory signal and 1 piece is a respiratory
signal for 10 seconds. Here, 1500 pieces were used for learning, and the remaining 1000 were used for



Sensors 2020, 20, 3697 15 of 19

testing. In addition, 1500 pieces were divided into training and verification datasets at a ratio of 8:2.
The two datasets comprised randomly selected data from 1500 data for each learning process.

4.2. Comparison of Recognition Rate between Proposed and Existing Methods

The range of hyperparameters used in the HS algorithm and 1D CNN for the proposed method
were set as shown in Table 7. Here, KS, KC, and DLNC were approximately two times wider than in
the previous studies.

Table 7. Hyperparameters used in proposed method and range of each parameter value.

Parameter Description Value or Range

HMS Harmony Memory Size 1000
HMCR Harmony Memory Considering Ratio 0.5~0.7

PAR Pitch Adjusting Ratio 0.6~0.8
MPAP Maximum Pitch Adjustment Proportion 10~18

Iteration Number of repetitions for HM update 10,000

k Threshold for comparing the number
ofnon-updates of Hmax

200

CLD Convolution Layer Depth 3
KSi

i=1,2,3 Kernel Size for Convolution 3~81
KCi

i=1,2,3 Kernel Count for Convolution 16~1024
DLNC1 First Dense Layer (FC Layer) Neuron Count 256~4096
DLNC2 Second Dense Layer (FC Layer) Neuron Count 256~4096

For the experiment with the proposed method, the hyperparameters for the HS algorithm and 1D
CNN were set as shown in Table 7, and number of iterations was set to 10,000 to perform repeated
experiments. Here, if we calculate the number of all cases of the combination in the range of KS1, KS2,
KS3, KC1, KC2, KC3, DLNC1, and DLNC2 used as hyperparameters of 1D CNN, the number of KSi

cases is 40 (odd numbers from 3 to 81), KCi is 1009 (16 to 1024), and DLNCi is 3841 (256 to 4096), so the
total number of cases is 9.69934 × 1020 (= 403

× 10093
× 38412).

Figure 7 shows the process of optimizing the hyperparameter combination of the 1D CNN. As can
be seen, the recognition rate gradually is increased as iteration progressed. For HPmax, the recognition
rate reached 96.7% after 3652 iterations, and optimization was terminated after 3852 iterations because
it had not been updated continuously for over ∆I (200 iterations) repetitions.

Figure 7. Trend of recognition rate in 1D CNN hyperparameter optimization process using
proposed method.
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The combination of hyperparameters and recognition rate Ri for each iteration step is shown in
Table 8, and it is possible to derive the optimal hyperparameter combination HPmax at the location (i.e.,
recognition rate of Hmax has maximum values) where optimization was completed.

Table 8. Hyperparameter combination and recognition rate when Hmax was updated.

Iteration
Hyperparameters in HM Recognition

Rate of Hmax
(%)ks1 kc1 ks2 kc2 ks3 kc3 dlnc1 dlnc2

1 5 171 63 314 27 573 3426 1796 83.4
5 19 481 5 56 21 214 862 2182 83.9

21 47 98 27 228 55 638 1544 3,205 84.5
55 37 116 73 187 9 203 929 648 84.6

...
3652 23 56 17 48 11 102 1762 984 96.7

Comparing the above result with the existing method (Table 9), the final recognition rate and total
number of iterations performed until searching for the optimal hyperparameter can be represented. In
the existing method, a set of hyperparameters was constructed using a grid search method, and the
recognition rate was tested for 2,000,000 combinations to optimize hyperparameters.

Table 9. Number of iterations required for hyperparameter optimization and recognition rate using
optimized hyperparameters.

Method Number
ofIteration

Hyperparameters for HS Algorithm Recognition
Rate (%)ks1 ks2 ks3 kc1 kc2 kc3 dlnc1 dlnc2

Previous
Method [25] 2,000,000 ksi

∈ KS, when
KS = {21, 25, 29}

kci
∈ KC, when

KC = {64, 128}
dlnci

∈ DLNC, when
DLNC = {1024, 2048}

93.9

Proposed
Method 3652 23 17 11 56 48 102 1762 984 96.7

However, with the proposed method, it was possible to obtain a better recognition rate result in
only 3652 iterations. In addition, with the existing method, the values of each optimized hyperparameter
used in the 1D CNN were derived in a specific range. However, with the proposed method, each
optimized hyperparameter was derived as a single value.

The recognition rate of 1000 test datasets was tested with optimized hyperparameters and
compared to the existing method. The results are shown in Figure 8. By comparing all patterns, we
found that the proposed method (Figure 8b) increased the recognition rate by approximately 2.8%
compared to the existing method (Figure 8a).

5. Conclusions

In this paper, have proposed a method to optimize the hyperparameters required to improve the
recognition rate in a 1D CNN-based UWB respiration pattern recognition study, and we have proven
the validity of the proposed method by comparing it with an existing method. Conventionally, to
optimize the hyperparameters of a 1D CNN, a specific range is determined for each hyperparameter,
and a combination of the range values is constructed. Then, repeated experiments are performed
using the combination in all cases. However, this method requires many experiments without special
rules to find a better hyperparameter. Thus, it takes a long time to find the optimal hyperparameter
combination, which is tedious and inefficient.
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Figure 8. Comparison of recognition rate by respiration pattern for existing and proposed methods.
(a) Recognition rate of existing method [28]; (b) Recognition rate of proposed method.

In contrast, the proposed hyperparameter optimization method is implemented to have scalability
according to the CLD by integrating the HS algorithm into the 1D CNN and focusing on deriving an
optimal combination of hyperparameters with fewer iterations.

The proposed method was tested with CLD value of 3 to maintain the same environment as
the existing method. Experiments were conducted using the same dataset used in a previous study
using the optimal hyperparameter combination derived by the proposed method. As the result,
the recognition rate of the 1D CNN’s respiration pattern was approximately 96.7%, which is an
improvement of approximately 2.8% over the previous study.

In addition, to derive hyperparameters, the number of experimental repetitions was 2,000,000
with the existing method. In contrast, the proposed method could derive an optimal combination of
hyperparameters in only 3652 iterations.



Sensors 2020, 20, 3697 18 of 19

This demonstrates the excellence of the proposed method and suggests that the time required to
derive an optimal combination of hyperparameters can be reduced by up to approximately 548 times
compared to the existing method.
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