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Abstract: This paper presents a two-layer controller for accurate and robust lateral path tracking
control of highly automated vehicles. The upper-layer controller, which produces the front wheel
steering angle, is implemented with a Linear Time-Varying MPC (LTV-MPC) whose prediction
and control horizon are both optimized offline with particle swarm optimization (PSO) under
varying working conditions. A constraint on the slip angle is imposed to prevent lateral forces
from saturation to guarantee vehicle stability. The lower layer is a radial basis function neural
network proportion-integral-derivative (RBFNN-PID) controller that generates electric current control
signals executable by the steering motor to rapidly track the target steering angle. The nonlinear
characteristics of the steering system are modeled and are identified on-line with the RBFNN so that the
PID controller’s control parameters can be adjusted adaptively. The results of CarSim-Matlab/Simulink
joint simulations show that the proposed hierarchical controller achieves a good level of path tracking
accuracy while maintaining vehicle stability throughout the path tracking process, and is robust to
dynamic changes in vehicle velocities and road adhesion coefficients.
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1. Introduction

Despite significant advances made in recent years, highly or fully automated driving of vehicles
remains challenging in arbitrarily complex environments, due to numerous non-trivial issues to be
addressed, among which is the path tracking control [1]. The aim of designing the path tracking
controller is to ensure that the vehicle follows reference paths accurately and robustly in a timely
manner under varying environmental and vehicular conditions on the premise of guaranteed vehicle
stability [2]. In this study, we focus on the lateral control of autonomous vehicles.

Previously proposed path tracking schemes can be classified into 3 categories: (1) Geometric
based control, including pure pursuit control [3,4], the Stanley Tracking Algorithm [5], etc., with which
the front wheel angle is computed by investigating the geometric relationship among vehicle
kinematics, reference paths and points of preview. Due to the neglect of vehicle dynamics in
these strategies, both tracking accuracy and vehicle stability would be worsened as the vehicle
speed increases. (2) Feedback control without prediction, including backstepping control [6],
H∞ control [7], sliding-mode control [8,9], adaptive control [10,11] and the combination of
aforementioned algorithms [12]. In these strategies, explicit control laws are designed with regard
to vehicle dynamics whose key characteristics are captured with mathematically complex models.
Although it has been proven by both simulation studies and field tests that these control algorithms
are effective in vehicle motion control, their performance under highly dynamic conditions are not
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satisfactory mainly due to the absence of prediction on future conditions and low tolerance on external
disturbances [13]. (3) Model predictive control (MPC), which is well suited to optimization problems
with multiple constraints and is characterized by prediction and optimization, is now increasingly
adopted in implementing path tracking control of autonomous vehicles [14,15]. A path tracking
controller built in the MPC framework employs a vehicle dynamics model to predict vehicle states
and establishes a multivariate multi-objective function between the predicted states of the vehicle
and the reference variables as an open-loop optimal problem. At each sampling time, a sequence of
optimal steering angles is calculated by solving the control problem with multiple constraints, which
is applied to the control process only during the following sampling interval. Then, a new optimal
control sequence is calculated based on new measurements of the vehicle states over a shifted horizon.
The benefit brought by rolling optimization on finite and shifting horizons is that MPC can optimize its
control law throughout the process of control and therefore can cope with the dynamically changing
characteristics of the controlled system. The linear time-varying (LTV) MPC is more applicable in
practice as the basic control strategy due to its much higher computational efficiency as compared to
nonlinear MPC (NMPC) [16].

Full capture of the nonlinearities of the vehicle in the prediction model is neither favorable nor
possible when designing MPC controllers due to the enormously large computation overhead [17].
As a result, extensive efforts have been invested in proposing linearized models that can contribute to
achieving a tradeoff between tracking accuracy and computation efficiency. Among these proposals,
the proportional linearized tire model with the small-angle assumption is one that gets widely adopted
in previously proposed MPC-based controllers [18–20]. However, it is not necessarily true to assume
that the slip angle will stay small, especially when the vehicle speed is high and the road friction
coefficient is low. Significant modeling error could be caused if the linearized tire model is used
without imposing constraints on the slip angle as the lateral tire forces will be saturated and no longer
increase linearly with the slip angle when the lateral vehicle dynamics enter the nonlinear zone. As a
result, the predicted states of the vehicle would deviate from actual values and therefore affect control
accuracy [21]. Although adopting a nonlinear tire model contributes to minimizing the modeling error,
it is still important for the slip angle to be contained within a small interval. In the framework of
LTV-MPC, the nonlinear prediction model is linearized at each control point of operation. As a result,
even with a nonlinear tire model, significant modeling errors would still be caused when the control
points of operation approach the nonlinear zone of tire dynamics. Therefore, a constraint on the slip
angle is required.

To develop a path tracking controller that is robust to dynamic changes in working conditions
and yet still benefits from the low computation burden with LTV-MPC, a nonlinear tire model with a
constraint imposed on the slip angle is incorporated into the prediction model in this study.

To cope with arbitrarily complex driving conditions, a few proposals have also focused on dynamic
control parameters including optimal sampling time [22,23] or adaptive weights of the cost function [15].
In [24], the authors point out the necessity of changing both the prediction horizon and control horizon
as speed changes to maintain vehicle stability. Though, there is still limited research on fine-tuning
the prediction horizon and control horizon other than setting these two parameters empirically or via
trial-and-error [25,26]. This study proposes to optimize both parameters with regard to various vehicle
speeds and road adhesion coefficients using the particle swarm optimization (PSO) algorithm.

Another major gap between previously proposed path tracking controllers and practical lateral
control of autonomous vehicles is the absence of a precise model that depicts the nonlinear characteristics
of the steering system. The consequences are two-fold.

First, the feedback of the actual steering angle is almost certainly distorted as the nonlinearities
of the steering system are either completely neglected or overly simplified [27]. Some efforts have
been made to approximate the steering system with linear representations. In [28], the steering system
is identified with the prediction-error minimization (PEM) method, and a second-order system is
established as the transfer function between the actual steering angle and the target. Han at al. [10]
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designed a second-order steering control model with the control auto-regression and moving-average
(CARMA) method, and the parameters of the steering system are estimated with the method of
forgetting factor recursive least squares (FFRLS). Though, the linear approximation of the rather
complex nonlinear time-varying steering systems is deemed to be non-applicable for practical purposes.
Besides, identifying system parameters under different steering conditions is quite tedious.

Second, as the steering angle is not a physical signal applicable to any type of steering actuators,
it becomes impossible to verify the effectiveness of proposed controlling strategies via field tests.

Therefore, an efficient and robust control strategy developed based on an accurate steering system
model, that outputs executable control signals such as electric current by actuators is an important step
toward developing path tracking controllers for real-life autonomous driving. To identify the nonlinear
characteristics of the controlled system online and adjust the control parameters adaptively, adaptive
PID control strategies based on neural networks have been developed [10]. Li at al. [29] proposed a
back propagation neural network (BPNN)-PID control strategy to eliminate the nonlinear friction in
the electric power steering system. In our case, a RBFNN, which converges faster as compared to
BPNN, is adopted.

This paper proposes a two-layer path tracking controller for lateral control of autonomous vehicles.
The upper layer is a PSO-LTV-MPC controller built upon a 3-DOF vehicle dynamics model. With the
root mean square (RMS) value of tracking deviation as the objective function, the combination of the
prediction and the control horizon of the LTV-MPC algorithm under different working conditions in
terms of vehicle velocities and road adhesion coefficients are optimized offline with PSO. To ensure
vehicle stability while tracking reference paths, a slip angle constraint is introduced to prevent tire
forces from saturation. The lower layer is a RBFNN-PID steering angle tracking controller that
generates electric current control signals for the steering motor. The nonlinear characteristics of the
steering system are identified on-line with the RBFNN, and the PID controller’s control parameters are
adjusted adaptively. The proposed hierarchical controller is validated on the CarSim-Matlab/Simulink
simulation platform under double lane-changing conditions with various velocities and road adhesion
coefficients. The effectiveness of the proposed strategy is verified through extensive simulation tests.

2. Overview

Figure 1 shows the diagram of the lateral control system utilizing the multi-layer controller this
study proposes. The reference path is presented as given information.
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Figure 1. The diagram of the path tracking control system.

The upper-layer LTV-MPC controller, whose parameters are optimized offline with the PSO
algorithm, generates the target steering angle of the front wheel. The lower-layer RBFNN-PID
controller outputs the electric current required by the steer-by-wire (SBW) system for rapid tracking of
the target steering angle.
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3. Vehicle Dynamics Model

This study adopts the “bicycle model” which has been widely used to develop the prediction
model of MPC [30], as shown in Figure 2. The definitions of the parameters are listed in Table 1.Sensors 2020, 20, x FOR PEER REVIEW 4 of 20 
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Table 1. Bicycle model parameters.

Symbol Description

Flf/Fcf Longitudinal force/lateral force of the front wheel
Flr/Fcr Longitudinal force/lateral force of the rear wheel

a/b Distance of front/rear axle from the center of gravity
m Vehicle Mass
r Wheel radius

κf/κr The tire longitudinal slip ratio of front/rear tires
Ccr/Clr Lateral stiffness/longitudinal stiffness of rear tire
αf/αr Slip angle of front/rear tire
Ccf/Clf Lateral stiffness/longitudinal stiffness of front tire

Iz Vehicle inertia
δf Front wheel steering angle
ϕ Heading angle
w Yaw rate

With Newton’s Second Law applied, a vehicle dynamics model can be built as given in Equation (1):
m

.
vy = −mvxw + 2(Fc f cos(δ f ) + Fl f sin(δ f )) + 2Fcr

.
ϕ = w
Iz

.
w = 2a(Fc f cos(δ f ) + Fl f sin(δ f )) − 2bFcr.

Y = vx sin(ϕ) + vy cos(ϕ)

(1)

where vy and vx represent the vehicle longitudinal speed, and lateral speed in the body-fixed coordinate
system respectively. Y is the vehicle lateral position in the Cartesian coordinate system.

To compute the longitudinal forces and lateral forces of the front and rear wheels with tire
dynamics coupling considered, a semi-empirical nonlinear model, the Pacejka tire model, is adopted.
As given in Equation (2), the tire longitudinal and lateral forces are described as nonlinear functions of
their respective parameters: the slip angle α and the longitudinal slip ratio κ with the effect of vertical
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load Fz, and the road friction coefficient µ. Figure 3 shows an example of the tire lateral forces versus
longitudinal slip and slip angle, for the fixed values of µ.

Fl f = fl f (κ f ,α f ,µ, Fz f )

Fc f = fc f (κ f ,α f ,µ, Fz f )

Flr = flr(κr,αr,µ, Fzr)

Fcr = fcr(κr,αr,µ, Fzr)

(2)
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Figure 3. The tire lateral forces versus longitudinal slip and slip angle.

We assume that the vehicle is equipped with an antilock brake system, and the tire longitudinal
slip ratio κf and κr is therefore provided. As suggested in [22], if the slip angle is relatively small, it can
be estimated with the vehicle longitudinal speed vy, the lateral speed vx, the Yaw rate w, and the front
wheel steering angle δf, as given in Equations (3) and (4):

α f =
vy + aw

vx
− δ f (3)

αr =
vy − bw

vx
(4)

and the vertical load of the front and the rear wheels are defined as follows:

Fz f =
bmg

2(a + b)
, Fzr =

amg
2(a + b)

(5)

The nonlinear vehicle dynamics model described in Equations (1)–(5) can be rewritten in a compact
form as defined below: .

ξ(t) = fµ(t),κ(t)(ξ(t), δ f (t)) (6)

where ξ is the state vector and ξ = [vy,w,ϕ,Y]T.
As we focus on the lateral control of the autonomous vehicle in this study, the longitudinal speed

vx is set to be constant. For parameters in ξ, the yaw rate w, the heading angle ϕ, and the vehicle lateral
position in Cartesian coordinate system Y can be measured with the yaw rate sensor and GPS/inertial
measurement unit (IMU). Measuring the lateral velocity vy is more challenging both economically and
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technically. Instead, previous studies have proposed to estimate the vehicle sideslip angle, based on
which vy can be calculated with vx being a known constant, utilizing vehicle dynamics models and
observation techniques based on easily measurable parameters. Measurements from the differential
GPS receiver and the IMU are fused with a Kalman filter to calculate the position, the orientation,
and the longitudinal and lateral velocities of the vehicle [24,26]. For more adaptive and accurate
estimation of the vehicle sideslip angle, measurable parameters such as the wheel angular velocity,
yaw rate, and wheel angle are used [31–34]. Therefore, we draw the conclusion that all the parameters
of vehicle states in ξ can be either directly measured or estimated from measurable parameters.

4. The PSO-LTV-MPC Controller

Both the prediction horizon and control horizon are optimized with PSO with regard to different
speeds and road adhesion coefficients. In addition, a slip angle constraint, estimated based on the
vehicle states and control variables, is imposed to avoid saturation of the lateral forces of tires and to
ensure that the tires provide additional lateral forces when needed to resist the interference of external
lateral forces.

4.1. Design of the LTV-MPC Controller

The objective of designing the LTV-MPC controller is to eliminate the deviations between the
predicted vehicle outputs and their references with the optimal steering angles. We use the vehicle
dynamics model described in Section 3 as the prediction model, to predict the vehicle outputs. A series
of optimal steering angles are then calculated by solving the multi-objective multi-constraint QP
problem to eliminate the deviations.

To obtain a finite-dimensional control problem, we discretize the nonlinear vehicle dynamics
model in Equation (6) with a fixed sampling time Ts:

χ(d + 1) = f (χ(d), ∆δ f (d)) (7)

χ(d) =
[
ξ(d) δ f (d− 1)

]T
(8)

where the control increment ∆δf is chosen as the input, and ∆δf (d) = δf (d) − δf (d−1).
The heading angle ϕ and the lateral position Y are chosen as the outputs λ. The new discrete LTV

model is obtained by linearizing Equation (7) around an operating point with the method of state
trajectory [24]:

χ(d + 1) = Mdχ(d) + Nd∆δ f (d) (9)

λ(d) = Hc·χ(d) (10)

where

Md =

[
Ak Bk

01×4 I

]
, Nd =

[
Bk
I

]
, Hc =

[
0 0 1 0 0
0 0 0 1 0

]
(11)

We define the current time as t and the measurable current vehicle states as χ(t). According to the
control law of MPC, the control inputs remain unchanged between prediction horizon C and control
horizon P. At each time step, the optimization problem of LTV MPC can be formed as follows:

min
∆δ f (t)

P∑
i=1
‖Q

[
λt(t + i) − λt,re f (t + i)

]
‖

2

+
C−1∑
i=0
‖R

[
∆δ f ,t(t + i)

]
‖

2

subj. to Eq.(12− 13)
(12)

χt(d + 1) = Mdχt(d) + Nd∆δ f ,t(d)
λt(d) = Hc·χt(d)

(13)

∆δ f ,t(d) = δ f ,t(d) − δ f ,t(d− 1) (14)
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δ f ,min ≤ δ f ,t(d) ≤ δ f ,max
∆δ f ,min ≤ ∆δ f ,t(d) ≤ ∆δ f ,max

(15)

where λref = [ϕref, Yref]T represents the reference signal. Q, R represents the weight matrix of controlled
outputs and inputs respectively. The prediction model in Equations (13) and (14) is used to predict the
vehicle’s behavior. The inequation in Equation (15) are the hard constraints of the control input and
the control increment.

The above optimization problem is transformed into the following QP form:

min
∆U(d)

XTH̃X + GXT

subj. to


I
−I
R
−R

X ≤


∆δ f ,max × ones(C, 1)
−(∆δ f ,min × ones(C, 1))(

δ f ,max − δ f (d− 1)
)
× ones(C, 1)(

−δ f ,min + δ f (d− 1)
)
× ones(C, 1)


(16)

where

X = ∆U(d)
H̃ = 2Ξd

TQΞd + R
Ed = Γdχ(d) −Yre f

G = 2Ed
TQΞd

Yre f =


λre f (d + 1)
λre f (d + 2)

...
λre f (d + P)

∆U(d) =


∆δ f (d)

∆δ f (d + 1)
...

∆δ f (d + C)

R =



1 0 · · · 0

1 1
. . .

...
...

...
. . . 0

1 1 · · · 1


C×C

Γd =



HcMd

HcMdMd+1
...

Hc
P−1∏
i=0

Md+i


Ξd =



HcNd 0 · · · 0
HcMdNd HcNd · · · 0

...
...

. . .
...

Hc
P−1∏
i=1

Md+iNd Hc
P−1∏
i=2

Md+iNd+1 · · · Hc
P−1∏
i=C

Md+iNd+C−1



(17)

By solving the QP problem presented in Equation (16) at time t, we get the control increment
sequence ∆Ut

* = [∆δf,t
*, . . . ,∆δf,t+C

* ]T. And the optimal control law is obtained:

δ f (t) = ∆δ f ,t
∗ + δ f (t− 1) (18)

where ∆δf,t
* is the first element of ∆Ut

*.
It should be noted that no constraint on the slip angle is so far imposed when solving the

aforementioned objective function, thus the control sequence obtained is inapplicable under limited
working conditions.

A discrete LTV prediction model of the tire slip angle is obtained by discretizing and linearizing
the Equations (3) and (4):

α(d) = Eαχ(d) + Zα∆δ f (d) (19)

where

α = [α f ,αr]
T, Zα = [−1, 0]T, Eα =

[ 1
vx

a
vx

0 0 −1
1
vx

−b
vx

0 0 0

]
(20)

Based on the measurable current vehicle states χ(t), the predictive outputs of tire slip angle over
the prediction horizon are obtained:

αt(d + 1) = Eαχt(d + 1) + Zα∆δ f ,t(d + 1) (21)

We restraint the slip angle in the region as defined below

αmin ≤ αt(d + 1) ≤ αmax (22)
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Then, the constraint of the slip angle is established as follows[
Ωα

−Ωα

]
X ≤

[
αmax × ones(C, 1) − Sαχ(d)
Sαχ(d) − αmin × ones(C, 1)

]
(23)

where

Sα =


EαMd

EαMdMd+1

...

Eα
P−1∏
i=0

Md+i


Ωα =


EαNd + Zα 0 · · · 0

EαMdNd + Zα EαB̃k + Zα · · · 0
...

...
. . .

...

Eα
P−1∏
i=1

Md+iNd + Zαα Eα
P−1∏
i=2

Md+iNd+1 + Zα · · · Eα
P−1∏
i=C

Md+iNd+C−1 + Zα


(24)

Lastly, by solving the QP problem in Equation (16) with the slip angle constraint in Equation (23),
the control input increment is produced with the stability of the vehicle considered.

4.2. Optimizing Controller Parameters Using PSO Algorithm

To further improve the LTV-MPC controller’s performance, the PSO algorithm is adopted to find
the optimal pairs of prediction horizon and control horizon with varying vehicle speed V and road
friction coefficient µ.

As the average lateral error is chosen as the evaluation index of the path tracking performance,
the fitness function of PSO is defined to be the RMS of the error in lateral positions, as expressed in
Equation (25).

f =

√√√
1
N

N∑
i=1

(Y(i) −Yre f (i))
2 (25)

To achieve a tradeoff between the local and global searching ability of PSO, the inertia weight W
of updating particle velocity is linearly decreased.

W( f ) = Wmax − (Wmax −Wmin)
f

Tmax
(26)

where Tmax represents the maximum iteration number. The maximum and minimum inertia weight is
set empirically to 0.9, 0.4 respectively.

As shown in Table 2, both prediction horizon and control horizon are optimized with PSO when the
vehicle speed V = [10,15,20,25] m/s, and the friction coefficient of road µ = [0.3, 0.8]. The optimization
process involves 4 steps:

Step 1: Initialize particle positions and velocities. Set the population number Nf = 30, the maximum
iteration number k = 30, learning factor C1 = C2 = 2, particle position information Pp = [P, C].
The upper boundary of the particle’s position is set to [30,30] while the lower boundary is set
to [1,1]. The particle velocity Vp ε [–1,1]. The current iteration number T = 1;

Step 2: Compute the particle’s fitness f, and choose the individual extremum PI, b and the group
extremum PG, b;

Step 3: Update Pp, Vp, and f based on PI,b and PG, b obtained in Step 2, and then update the PI,b
and PG, b;

Step 4: Check to see if the termination condition is satisfied. If not, back to step 2; else the
procedure terminates.
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Table 2. Optimized pairs of prediction horizon and control horizon.

Vehicle Speed(m/s) The Friction Coefficient
of Road Prediction Horizon NP Control Horizon NC

10
0.3 8 7
0.8 8 8

15
0.3 11 2
0.8 8 7

20
0.3 23 6
0.8 9 9

25
0.3 25 2
0.8 10 10

5. The RBFNN-PID Front Wheel Angle Tracking Controller

With the aim to design a control strategy that is capable of handling the nonlinear time-varying
(NTV) characteristics of the SBW system and outputs control signals that are executable by steering
actuators, a RBFNN-PID controller is built as the lower-layer controller. First, a steering system
model that depicts the electromechanical connection between the actual steering angle and its target is
established. Then, the RBF neural network, which has fast learning convergence and strong nonlinear
fitting ability, is implemented to identify the characteristics of the SBW system and tune the PID
controller’s control parameters on-line.

5.1. Modeling the SBW System

The structural of the SBW model is shown in Figure 4, which is composed of an electric motor,
a rack, a steering trapezium, and directive wheels. An SBW model that models the dynamics of the
electric motor and steering actuators is built. We assume that the left steering angles of front wheels
and the right one is identical. We derive the following equations:
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The dynamics model of the electric motor is expressed as
Js

..
θs + Bs

.
θs = Ts − Tδ

Tδ = Ks(θs −
xr gs
rp

)

Ts = Kii
(27)
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The rack dynamics model is expressed as

mr
..
xr + Br

.
xr + Krxr =

Ks(θs −
xr gs
rp

)

rp
ηp −

2
(

Kkpxr gs
Nl
− δ

)
Nl

(28)

The dynamics model of the directive wheel is expressed as

J f w
..
δ+ Bkp

.
δ = Kkp(

xr

Nl
− δ) − T f (29)

Definitions and values of variables presented in Equations (27)–(29) are shown in Table 3.

Table 3. Parameters of the SBW model.

Symbol Definition Value

Js Motor shaft inertia 0.00019 kg m2

Bs Motor shaft damping coefficient 0.0034 N m/(rad/s)
Ks Motor shaft torsional stiffness 115 N m/rad
gs Motor speed reduction ratio 10
mr Rack mass 2.57 kg
Br Rack damping coefficient 314 N/(m/s)
Kr Rack spring constant 91085 N/m
rp Pinion radius 0.009 m
ŋp Steering gear transmission efficiency 1
Jfw Steering tire inertia 0.82 kg m2

Ki Torque coefficient of the motor 0.0718 N m/A
Nl Transmission ratio from rack to steering tire 0.1003
Bkp Steering tire damping coefficient 197 N m/(rad/s)
Kkp Steering tire torsion stiffness 39951.6 N m/rad

The steering resistant torque of the front wheel Tf is composed of the front wheel rolling resistant
torque M1 and self-aligning torque M2, as expressed in Equation (30):

T f = M1 + M2 =
f cbmg
a + b

+
cbmg cos δ
180(a + b)

sin 2β+
bmvx

2r
(a + b)R

sinγ cos δ (30)

where c, β, and γ represent the offset distance of the front pin, the kingpin inclination, and the
caster angle, respectively. R denotes the turning radius of the vehicle, and f denotes the rolling
resistance coefficient.

5.2. The Steering Angle Tracking Controller Based on RBFNN-PID

Figure 5 illustrates the architecture of the proposed RBFNN-PID controller. The PID controller’s
input is the deviation of the actual steering angle from its target, while the output is the current to be
executed by the electric motor. Three parameters kP, kI, kD of the PID controller are tuned adaptively
with the RBFNN [35,36].
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where ߬ represents the learning efficiency which falls in the interval [0,1], and ∂δ/∂∆i is the sensitivity 
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current ∆ik, the actual steering angle at the present time δk, and at the previous time δk-1. 
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,
1

m

m k j j
j
w hδ

=

=  (36) 

where wj represents the connection weight between hj and δm,k, and the transfer function hj is 
calculated as in Equation (36). 

2

2exp
2

j
j

j

X c
h

b

 −
 = −
 
 

 (37) 

Figure 5. The architecture of the RBFNN-PID controller.
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The incremental PID controller is adopted and the control error is defined below:

dk = δ f ,k − δk (31)

The inputs of the controller are: 
I1 = dk − dk−1
I2 = dk
I3 = dk − 2dk−1 + dk−2

(32)

The incremental PID control low is expressed as follows:{
ik = ik−1 + ∆ik
∆ik = (KP0 + ∆KP)I1 + (KI0 + ∆KI)I2 + (KD0 + ∆KD)I3

(33)

where ik represents the PID controller’s output at time k, and KP0, KI0, KD0 denote the corresponding
initial values of KP, KI, KD respectively.

A RBFNN is implemented to identify the characteristics of the SBW system through analyzing the
its sensitivity between the input signal and the output variable. Then, the control parameters of PID is
tuned adaptively with gradient descent.

The index of tuning of the RBFNN is defined as follows:

Ek =
1
2

dk
2 (34)

To minimize Ek, the incremental parameters of PID is tuned with gradient descent:
∆KP = −τ ∂E

∂KP
= −τ∂E

∂δ
∂δ
∂∆i

∂∆i
∂KP

= τd(t) ∂δ∂∆i I1

∆KI = −τ
∂E
∂KI

= −τ∂E
∂δ

∂δ
∂∆i

∂∆i
∂KI

= τd(t) ∂δ∂∆i I2

∆KD = −τ ∂E
∂KD

= −τ∂E
∂δ

∂δ
∂∆i

∂∆i
∂KD

= τd(t) ∂δ∂∆i I3

(35)

where τ represents the learning efficiency which falls in the interval [0,1], and ∂δ/∂∆i is the sensitivity
of the controlled object, which is identified with the RBFNN.

The adopted RBFNN is a three-layer feedforward network, and its structure is shown in Figure 6.
X denotes the input vector of the network which consists of the PID controller’s output incremental
current ∆ik, the actual steering angle at the present time δk, and at the previous time δk−1.
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The output of the RBFNN δm,k, is computed as follows:

δm,k =
m∑

j=1

w jh j (36)

where wj represents the connection weight between hj and δm,k, and the transfer function hj is calculated
as in Equation (36).

h j = exp

−‖X − c j‖
2

2b2
j

 (37)

where c = [cj1, cj2, . . . , cjn]T, b = [b1, b2, . . . , bm]T represent the center vector and the base width vector
of the jth neuron, respectively.

Finally, the aforementioned sensitivity of the controlled object is identified as

∂δk
∂∆ik

≈
∂δm,k

∂∆ik
=

m∑
i=1

wihi
ci j − xi

bi2
(38)

6. Simulation and Results

6.1. Simulation Design

The double lane change (DLC) trajectory proposed in [24] is used as the reference trajectory to
and a series of simulation studies is conducted jointly with CarSim-Matlab/Simulink to verify the
proposal of this study, A B-Class Hatchback model in CarSim is used and its parameters are shown
in Table 4. The RMS value of the error in lateral positions is adopted to evaluate the 4 variants of
controllers’ performance. Controller A is the pure-pursuit controller embedded in the CarSim driver
model, controller B is the upper-level LTV-MPC controller presented in Section 4.1, controller C is
the proposed two-layer tracking controller without the slip angle constraint, and controller D is the
proposed two-layer tracking controller with the slip angle constraint.

Table 4. Vehicle model parameters.

Symbol Value

m 1843 kg
Iz 4175 kg m2

a 1.232 m
b 1.468 m
r 0.308 m

Three test scenarios are implemented. Scenario 1 presents an emergency obstacle avoidance scene
on a high adhesion road, in which the performance is compared among the controller A, B, and C.
Scenario 2 presents an emergency obstacle avoidance scene on a low adhesion road, in which the
performance is compared among the controller A, B, and C. Scenario 3 presents an emergency obstacle
avoidance scene on a low adhesion road, in which the performance is compared between the controller
C and D.

6.2. Analysis of Simulation Results

6.2.1. Scenario 1

On the road surface which friction coefficient is 0.8, three controllers are tested at different vehicle
speeds ranging from 10 m/s to 25 m/s. Figure 6 show the tracking performance of 3 controllers.
The lateral tracking deviations of 3 controllers are given in Table 5.
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Table 5. Lateral deviations of 3 controllers at different vehicle velocities V(m/s).

Controller
∆YRMS (m)

V = 10 V = 15 V = 20 V = 25

A 0.0672 0.1608 0.2835 1.6067
B 0.0546 0.0973 0.1643 0.2964
C 0.0584 0.0985 0.1679 0.3022

As shown in Figure 7, controller B and controller C both perform well at all speeds, while controller
A can only achieve good tracking performance at relatively low speed (10 m/s). As the velocity increases,
the lateral tracking deviations of controller B and controller C increase slowly, while the lateral tracking
deviation of controller A increases significantly and gets much higher than another two MPC-based
controllers. Besides, at the speed of 25 m/s, both controller B and controller C can still help to guarantee
the vehicle’s lateral stability while tracking the reference path smoothly and accurately.
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Moreover, the performances of controller B and controller C are quite close as shown in Table 5,
which indicates that the lower-level RBFNN-PID controller proposed in Section 5 can effectively deal
with the NTV characteristics of the SBW system and hence achieve no worse performance in path
tracking as compared to the case of controller B where the steering system is completely neglected.



Sensors 2020, 20, 3689 14 of 20

6.2.2. Scenario 2

To test the tracking performance of each controller on slippery roads, we set the road friction
coefficient to 0.3 in this scenario. The lateral tracking deviations of 3 controllers are given in Table 6.

Table 6. Lateral deviations of 3 controllers at different vehicle velocities V(m/s).

Controller
∆YRMS (m)

V = 10 V = 15 V = 20 V = 25

A 0.0320 0.8794 2.2412 2.6585
B 0.0620 0.3348 0.4776 0.6731
C 0.0622 0.3365 0.4764 0.6657

Due to the limited amount of frictional force available, the tracking error of all controllers in this
scenario increases as the vehicle speed increases, as shown in Figure 8. However, it’s observed from
simulation results that controller B and controller C still manage to track the path at high accuracy
while maintaining the stability of the vehicle at medium and low speeds, and also achieve acceptable
path tracking performance at high speeds.
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6.2.3. Scenario 3

In this scenario, the tracking performance of controller C and controller D on a low friction
coefficient road (µ = 0.3) is examined. The difference between the two controllers is that controller
D is imposed with the slip angle constraint. Figures 9–11 compare these two controllers in tracking
performance. The lateral tracking deviations of both controllers are shown in Table 7.
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Table 7. Lateral deviations of 2 controllers at different vehicle velocities V(m/s).

Controller
∆YRMS (m)

V = 10 V = 15 V = 20 V = 25

C 0.0622 0.3365 0.4764 0.6657
D 0.0663 0.3609 0.4616 0.6229

As shown in Figure 10, when the vehicle speed is at or above 10 m/s, the front wheel steering angle
of the vehicle with controller D is within a considerably smaller range as compared to the vehicle with
controller C, indicating that the vehicle is more stable with controller D at high speeds. This is because
the amount of frictional force available is greatly reduced and can be easily saturated with low friction
coefficient conditions. The nonlinear tire model without the slip angle constraint lose the ability to
predict the lateral tire force when the frictional tire forces saturates. With external lateral force applied
at this time, the vehicle loses stability. On the contrary, the controller constrained by the slip angle
ensures that the tires provide additional lateral forces when needed to resist the interference of external
lateral forces such as lateral wind, thereby improving vehicle stability on low friction coefficient roads.
Moreover, the results given in Table 7 and shown in Figure 9 suggest that the tracking performance of
controller D matches with that of controller C when the vehicle speed is relatively low and outperforms
when the vehicle speed is above 20 m/s. It confirms that imposing the slip angle constraint does not
affect the tracking performance while guaranteeing the vehicle stability.
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In conclusion, simulation results show that the proposed two-layer path tracking controller can
track the reference paths accurately and smoothly while ensuring the vehicle’s stability, and is robust
to dynamic changes in road surface conditions and vehicle speeds.

7. Conclusions

A hierarchical controller for lateral path tracking control of autonomous vehicles is proposed.
The upper layer is a PSO-LTV-MPC controller considering the slip constraint which is estimated
from measurable vehicle states, to avoid saturation of the lateral forces of tires. The prediction and
the control horizon are both optimized offline with PSO, thereby improving the performance of the
controller under dynamic conditions. The lower layer is a RBFNN-PID controller, which identifies
the nonlinear characteristics of the steering system online and outputs an executable control signal
for actuators, that is, the current of the steering executive motor, to achieve rapid tracking of the
target steering angle produced by the upper controller. We verify the effectiveness of the proposed
approaches with CarSim-Matlab/Simulink joint simulations under double lane changing conditions
with the vehicle velocity and the road friction coefficient varies. The results show that as compared to
the competitors, the proposed controller tracks the target path accurately while maintaining a good
level of vehicle stability, and is robust to changes in road attachment conditions and vehicle speeds.
Future research will attempt to further improve the tracking performance with coordinated lateral and
longitudinal control.
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