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Abstract: Pilling is caused by friction pulling and fuzzing the fibers of a material. Pilling is normally
evaluated by visually counting the pills on a flat fabric surface. Here, we propose an objective
method of pilling assessment, based on the textural characteristics of the fabric shown in optical
coherence tomography (OCT) images. The pilling layer is first identified above the fabric surface.
The percentage of protruding fiber pixels and Haralick’s textural features are then used as pilling
descriptors. Principal component analysis (PCA) is employed to select strongly correlated features
and then reduce the feature space dimensionality. The first principal component is used to quantify
the intensity of fabric pilling. The results of experimental studies confirm that this method can
determine the intensity of pilling. Unlike traditional methods of pilling assessment, it can also detect
pilling in its early stages. The approach could help to prevent overestimation of the degree of pilling,
thereby avoiding unnecessary procedures, such as mechanical removal of entangled fibers. However,
the research covered a narrow group of fabrics and wider conclusions about the usefulness and
limitations of this method can be drawn after examining fabrics of different thickness and chemical
composition of fibers.

Keywords: optical coherent tomography; textile surface; computer image analysis; pilling grade;
pilling assessment; Haralick features; texture; principal component analysis

1. Introduction

Pilling arises as a result of mechanical factors during the day-to-day use of fabrics, mainly friction
that occurs when the fabric rubs against another surface. Resistance to pilling is desirable from
the points of view of both fabric durability and aesthetics. The main characteristic of pilling is the
formation of small knots at the ends of protruding fibers, which negatively affect the appearance
of fabrics. Pilling is generally considered to be a self-limiting process that occurs in several stages.
Studies by Gintis and Mead [1] have demonstrated that pilling involves three distinct phases, the first
two of which are connected with pill formation. First, the fibers are drawn to the fabric surface as
a result of mechanical action, resulting in the formation of fuzz. The fuzz then becomes entangled
into pills. The final stage is the loss of pills under continued mechanical action, such as rubbing,
laundering, or drying. Cooke [2] supplements the description of the pilling process with more detailed
intermediate steps. After the establishment of a localized area of high fuzz density, he distinguishes
a phase of developing entanglement within that area. The tangle is then compressed into a roughly
spherical mass of fiber, anchored to the fabric by a few unbroken fibers. When the pills form, they are
connected to the fabric. However, the anchoring fibers are subsequently pulled out due to abrasive

Sensors 2020, 20, 3687; doi:10.3390/s20133687 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-6540-352X
https://orcid.org/0000-0003-2776-904X
https://orcid.org/0000-0002-0766-1376
http://www.mdpi.com/1424-8220/20/13/3687?type=check_update&version=1
http://dx.doi.org/10.3390/s20133687
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 3687 2 of 19

forces. As a result, discrete mobile pills are formed. During further use of the fabric, some of the
anchors may become fractured. This process proceeds until all the pills are shed.

In practice, the level of pilling should be specified according to the rates of the parallel processes,
i.e., fiber entanglement leading to pill formation, the development of more surface fiber, and fiber and
pill wear-off. The rates of these processes depend on the properties of the fiber, yarn, and fabric [1,3].
Extreme cases concern fabrics containing strong fibers and fabric containing weak fibers. In the case
of fabrics with strong fibers, the rate of pill formation exceeds the rate of wear-off. This results in
increased pilling, and an increase of wear. In the case of fabrics with weak fibers, the rate of pill
formation competes with the rate of wear-off. This may result in variable pilling symptoms, and an
increase of abrasion. There are other constructions in which surface fiber wear-off occurs before pill
formation. Each of these examples demonstrates the complexity of evaluating surface changes on
different types of fabric. Moreover, due to the action of the pilling motion, fabric surfaces contain pills
of different size and fuzziness. Hence, to better understand the pilling process fabric surface variations
need to be evaluated as a whole.

The assessment of pilling resistance carried out in textile laboratories relies on intensive,
standardized abrasion of specimen surfaces with a brush, followed by a subjective quantitative
assessment of the amount of abrasion or pilling, according to a five-grade rating scale (ASTM D
3511-08). Grade 5 corresponds to pilling-resistant material, while grade 1 indicates very severe pilling.
Grade 3 indicates moderate surface pilling. According to PN-EN ISO 12945-2:2002, grade 3 is an
acceptable rating for both woven fabrics and knitted fabrics after 2000 rubs. The same rating is
acceptable according to PN-EN ISO 12945-1:2002 after 7200/14,400 revolutions. According to these
standards, the tested samples should also be assessed in terms of the distribution of pills on the surface
and the occurrence of other changes affecting the aesthetic values of the material (e.g., color change).
Grading is usually performed in pilling assessment chambers, under an appropriate fluorescent light
source. The sample is compared to a standard photograph or a reference sample to estimate the
number of pills.

The disadvantages of this method include the approximate nature of the results and the risk of
incorrect measurement due to the nature of the fabric. Pilling tests using standard abrasion methods
do not take into account artifacts in the construction of the fabric, nor falsification of the results by pills
detached due to prolonged rubbing.

To improve the quality and durability of textiles, many studies have attempted to identify pilling
patterns automatically, by means of image processing technology. Some non-intrusive methods
use 3D techniques, such as a laser profilometer [4] or high-resolution camera scanning system [5].
These techniques provide data on the roughness of the scanned surface, which may also be assessed in
terms of pilling intensity. A three-dimensional fabric image obtained with a laser beam can also be
analyzed to determine the number, area, and distribution of pills [4,6]. Recently, pilling assessment
methods using thresholding algorithms [7,8], Fourier’s analysis [9,10], and artificial intelligence [11,12]
have become more popular both for two- and three-dimensional images.

This paper describes a new approach to assessing the pilling tendency of textiles, based on
short-term abrasion tests. These abrasion tests do not tend to cause pills, but only lead to the early
stage of fiber detachment. Using 3D images of the near-surface area of the textile after the test, the fibers
protruding from knitwear are observed and analyzed. To detect the pixels of fiber objects, we apply
the methods of image analysis to evaluate quantitative and textural indicators of pilling intensity.
The surface of the knitwear is mapped by means of infrared light, which is emitted, penetrates the
material, and is recorded after reflection from the surface based on the principles of optical coherence
tomography (OCT) [13]. This technology is a powerful tool, which enables sensitive inspection of
surfaces and fiber arrangements with≈5 µm resolution. OCT is one of the most innovative and rapidly
emerging optical imaging techniques in the last decades. Potential fields for OCT applications are
steadily increasing through both numerous functional and contrast-enhanced [14] extensions of OCT
and combining OCT into multi-modal optical systems [15]. For example, the combination of OCT,
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Raman spectroscopy and optoacoustic provides both morphological and molecular information from
a target biological tissue [16]. All three modalities combined have the potential to provide a kind of
non-invasive optical biopsy for skin cancer screenings in deeper lesions. OCT has recorded the most
applications so far in medicine, especially in ophthalmology. Although ophthalmology is currently
almost mainstream of OCT application, this technique is still being developed in this field [17] .

Chu et al. developed the ultrahigh-speed SS-OCT handheld system with a 2D micro-electro-
mechanical system (MEMS) scanning mirror for ophthalmic retinal imaging [18]. Applications of 2D
MEMS and OCT in real-time medical imaging were also investigated by Cogliati et al. [19].

Already highly established in medical applications, this non-destructive and contactless technique
is being extensively investigated, at the moment, in material sciences for determining the microscopic
properties, such as thickness, roughness, and surface profile of steel materials [20–22], laser-processed
plastics [23] and composites [24,25]. Recently, OCT was implemented for recognition of weave patterns
of fabrics [26,27].

Analysis of texture content in digital images plays an important role in the automated visual
inspection of textile images. Such approaches are used mainly to assess the properties and quality
of fabrics, including flaw detection [28] and surface structure [29]. The most popular method for
quantitative assessment of texture is the use of Haralick features [30,31] . These features are calculated
from a Gray Level Co-occurrence Matrix (GLCM), which counts the co-occurrence of neighboring
gray levels in the image. Haralick texture features were originally defined for 2D images, but in this
study we use spatial images of the pilling layer over the fabric surface, formed by pills and single,
protruding fibers.

2. Materials and Methods

2.1. Fabric Material and Laser Processing

Three types of left-right weave knitted fabrics were tested to determine their pilling propensity.
The first sample (F1) was a polyester textile of the single jersey type. The second fabric (F2) was a
polyester-polyacrylonitrile knitwear known as Lacosta blue. The third textile was cotton-poliamid
knitwear (F3). All the fabrics had a surface density of 240 g/m2.

The analyzed fabrics were characterized by high susceptibility to pilling. This tendency was
observable as large amounts of entangled fibers clinging to the cloth surface, which appeared when
the fabrics were worn as clothing. However, despite their common high pilling tendency, the fabrics
were rated differently according to the ISO-12945-2-200 standard (Table 1).

Table 1. Characteristics of knitwear samples used in abrasion tests. The pilling grade refers to materials
after testing with a Martindale device.

Name Composition Weight [g/m2] Pilling Grade Laser Power [W] Pilling Grade after Ablation

F1 100% polyester 240 5 14 5
F2 65% polyester 240 2 18 3

35% polyacrylonitrile
F3 68.1% cotton 240 2-3 16 3

31.9% poliamid

Some of the samples were subjected to laser modification, to reduce their tendency for pilling.
Laser modification leads to the deposition of nanoparticles and nanocrystallinity, which bonds the
fibers on the fabric surface [4]. The surfaces of the samples were modified by laser ablation at
different laser powers, taking into account features of the fabric such as structure and color (Table 1).
A 20 W single-mode optical fiber laser was used with a wavelength of 1.064 µm, manufactured by SPI
(Southampton Photonics Inc.) Lasers company. Unmodified and modified knitwear was subjected to
the same set of abrasion tests. The purpose was to determine the suitability of the proposed pilling
indicators for various fabric cases. A laser pulse with a frequency 80 kHz was applied with a duration
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of 55 ns. The laser beam scanned the surface of the textile material at a speed of 400 mm/s with
hatching 0.01 mm [32].

2.2. Abrasion Tests

We used a Martindale device (Figure 1) [33] and the principles of forced pilling described in
PN-EN ISO 12945-2:2002 and PN-EN 12947-1:2002. Samples with a diameter of 14 cm were mounted
on a felt disk on the head of the device. A felt disc with the tested material placed on it was also
mounted on an instrument table. The disc was moving at a constant speed. Tests were carried out
under a load of 415 g (typical for fabric testing). The head moved relative to the stationary table along
a Lissajous curve track. The samples were evaluated after 5000 head movements. Due to the subjective
nature of the assessment, the samples were evaluated independently by three people according to
ASTM D 3511-08. The presented results are the arithmetic averages of the partial grades given by
the evaluators.

Figure 1. Martindale Abrasion and Pilling Tester TF210 [33].

To cause fiber protrusion, which precedes other typical symptoms of pilling in knitted and
woven fabrics, each type of fabric material was manually rubbed using a rough surface for 15 s while
maintaining a constant pressure. Two types of surfaces were used for fabric friction testing—a brush
with hard fibers (Test 1) and an unglazed ceramic plate (Test 2). The pressure force of the friction
surface on the material, controlled by a strain gauge, was set at 2 N Test 1 and 1 N for Test 2.

Immediately after the abrasion tests, the surface of the fabric was scanned in places subjected
to abrasion using OCT, and the three-dimensional OCT images were archived for further numerical
analysis of the pilling symptoms. After each test, five volumetric OCT images were made for each
of 3 types of fabric without (F1, F2, F3) and for 3 types of fabric after laser treatment (F1a, F2a,
F3a). Every fabric case (F1, F2, F3, F1a, F2a, F3a) was considered to be the untreated fabric (control
one) and after 3 abrasion tests. The data set contained a total of 120 OCT images of the control and
abrasion-tested fabrics.

2.3. Textile Image Acquisition and Pre-Processing

A Spark OCT-1300 image acquisition system by Wasatch Photonics Inc. [34] was used to register
infrared spatial images of the measured fabric layer. A block diagram of the system is shown
in Figure 2. The device consists of three main modules: an OCT Engine, an OCT Imaging Probe,
and a Computational Engine. The OCT Engine contains a Michelson interferometer, electronics,
a spectrometer, a reference arm, and polarization and path length controllers. The interferometer uses
a low coherence broadband laser source and a spectrometer transmitting an image from diffraction
grating typically for spectral domain OCT (SD-OCT). The engine emits an infrared laser beam centered
at a wavelength of 1300 nm. The scanning depth can be calculated directly from the acquired Fourier
transform spectra, without movement of the reference arm. The OCT Imaging Probe contains a
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light source, scanning mirror, optics, and a color camera for creating en-face images of the scanned
region. The computational engine is a PC including a Camera Link card for acquiring data from the
spectrometer and receiving synchronization triggers from the engine. Once the infrared laser light has
penetrated the region of the textile fabric, the intensity of the signal reflected in the location (x, y, z) is
stored in the form of a three-dimensional image array in the PC memory.

(a)

z

y

x

I [X ´ Y ´ Z]

B-scan

...

dx

dz

dy

X

Y

Z

(b)

Figure 2. Acquiring images of textile fabric (a) The functional modules of Spark OCT 1300 nm system;
(b) the stack of acquired B-scans equivalent to volumetric data.

Each image (volumetric data) covers a maximum volume 0.5× 0.5× 0.4 cm containing both the
fabric layer and the pilling layer above it. This space corresponds to a raster of 512× 512× 640 voxels
in the Cartesian coordinate system OXYZ. Any image voxel illustrated in Figure 2b has the dimensions
equal to dx = 5.1 µm, dy = 4.8 µm and dz = 5.4 µm. In the experiments carried out, to limit the
amount of data processed, low resolution images were acquired, where lateral resolutions are 2dx
and 2dy. The scanning process provides B-scan frames (OXZ-planes) in real time and creates a full 3D
image from these frames in off-line mode. The operation takes around 20 s. To simplify and accelerate
the proposed algorithm, it is assumed that the scanning head is positioned so as to maintain the fabric
layer in a horizontal orientation inside each B-scan.

2.4. Fabric and Pilling Layer Detection

The goal of the image processing algorithm is to extract the pilling fiber layer located above the
fabric surface as a separated image. The pilling image is then subjected to textural analyses, providing
quantitative indicators of the degree of pilling (Figure 3). The algorithm is designed for the Python 3.6
environment working in a Windows 10 operational system [35,36].

Block 1 of the algorithm flowchart in Figure 3 shows the pre-processing step. The core fabric
layer is extracted from the OCT image. Visible pilling fibers are suppressed using the concatenation of
image opening and mean filtering operations. Pre-processing starts with the morphological opening
presented in Equation (1) [35,37],

I′(x, y, z) = (I ◦ SC)(x, y, z), (1)

where I is the processed OCT image, ◦ is the symbol of the opening operation, SC denotes a
cube-shaped structuring element with an edge length of 3 pixels. It is used for morphological noise
removal and eliminates small objects to facilitate detection of the fabric layer LF. The opening is a
concatenation of minimum and maximum low pass image filtering. The partial operations replace
each image value I(x, y, z) by the minimum or maximum value found in the SC neighborhood of
(x, y, z). As a result of the opening, small bright areas of the OCT image on a dark background are
removed so as not to interfere with the detection of the fabric layer visible as a large horizontally
located bright area. In the Python implementation, the opening was performed using the function
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skimage.morphology.opening(I, SC), where SC = skimage.morphology.cube(3). Next, an averaging filter
was applied to each B-scan, according to Equation (2):

I′(x, y, z) = (I ∗WA)(x, y, z) (2)

where WA is the local filtering window [5 × 5 × 1] pixels in X, Y, Z directions with the
unit weights of each pixel. The convolution I ∗ WA is executed in the Python script as
scipy.ndimage.uni f orm_ f ilter(I, WA). The OCT image filtering sequence given above exposes the
core fabric layer, the location of which can be detected easily after thresholding to the binary image IB.
The proposed thresholding is performed globally with a threshold value of T1, obtained by the Otsu
method [38] described in Equation (3):

IB(x, y, z) =

{
1 I(x, y, z) ≥ T1,

0 otherwise
(3)

where IB denotes the resulting binary image, and T1 is evaluated by the Python function
skimage. f ilters.threshold_otsu(I). In each B-scan of the binary image IB, the searched fabric layer
is represented by a single horizontal object with a different width or by the set of disjoint binary objects
inside the horizontal band ∆zF, as illustrated in Figure 4.

OCT image preprocessing and 
binarization

Detection of the fabric layer LT and 
the pilling layer LP

START

STOP

1

3

4

2

Noise filtering of the LP layer image

Haralick feature evaluation of the 
spatial pilling layer LP

 LP pilling layer image binarization 

Evaluation of  white voxel fraction in 
the image  LP

5

6

PC1 measure evaluation from PCA of  
LP texture features

7

OCT image preprocessing and 
binarization

OCT image acquisition0

Figure 3. Flowchart of the proposed algorithm.



Sensors 2020, 20, 3687 7 of 19

H
(z
)

Figure 4. Layers inside the B-scan and their Hough transform in the horizontal direction x (at an
angle of 90◦): LP—pilling layer; LF—fabric layer; ∆zP—height of LF layer; ∆zF -the height of LF layer;
H(z)—the Hough transform of a B-scan in the horizontal direction; z0—the middle line position of the
fabric layer LF; z1, z2—limits of the pilling layer LP.

To detect the middle line of the fabric layer LF in a B-scan, rare pilling fiber objects outside that
layer should be omitted, while binary objects in the scope ∆zF that form the layer core should be
included. The Hough transform [39] fulfills this requirement, when limited to the detection of a
horizontal line in every XZ-plane. In the considered case, the Hough transform can be simplified to
the form given in Equation (4).

∀
y

H(z) = ∑
x

IB(x, z) (4)

The transform H(z) is smoothed by the averaging window Wz to eliminate unwanted high
frequency fluctuations over z. This facilitates detection of the fabric layer limit.

H′(z) = (H ∗Wz)(z). (5)

The filter in Equation (5) is implemented as a Python function scipy.ndimage.uni f orm_ f ilter()
with a Wz window 13 pixels wide. This pixel width was adjusted experimentally. Next, the fabric layer
middle line position z0 is determined as the average value H(z) according to Equation (6).

z0 =
Z−1

∑
z=0

zH(z)/
Z−1

∑
z=0

H(z) (6)

The upper limit of the fabric layer is determined in relation to H(z0), as shown in Equation (7):

z2 = max {z : z < z0 ∧ H(z) ≤ k · H(z0)} , (7)

where k = 0.3 is the ratio of H(z) reduction outside the fabric middle line, which was selected
experimentally, z2 is the maximum value in the set of z values that are less than z0 and for which
H(z) < kH(z0). The z2 horizontal line represents the upper limit of the fabric layer equal to the lower
limit of the searched pilling layer. In all B-scans, the pilling layer has the same height ∆zP = z2 − z1,
selected experimentally for all tested fabrics. Therefore z1 = z2 − ∆zP is the value computed form z2

and ∆zP. The set of regions ∆zP(y) in each B-scan y = 0, . . . , Y − 1 defines the cuboid of the pilling
layer LP.

LP(x, y, z′) = {(x, y, z) : z ∈ [z1(y), z2(y)]} , (8)
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where z′ = z− z1. The above operations for separating layers correspond to block 2 of the algorithm
in Figure 3. Figure 5 presents exemplary results of the processing stages discussed above. Figure 5b
includes binarized B-scan obtained from the block 1 of the algorithm flowchart in Figure 3 with the
detected knitwear surface line evaluated in the block 2, corresponding to the value z2 in Equation (7).
Figure 5c is the plot of H(z) for the binarized B-scan. Figure 5d contains the final result of the algorithm
block 1 and 2—the limits z1 and z2 of the LP layer visible as dotted and continuous line respectively

Figure 5. Illustration of pilling layer extraction steps for a knitwear B-scan: (a) example B-scan image;
(b) the image from figure (a) binarized using the Otsu method with the detected knitwear surface line;
(c) the horizontal Hough transform H(z) of the binary image in figure (b) with the line of the material
surface detection level k · H(z0) (Equation (6)); (d) the image from figure (a) with the pilling layer
detected between horizontal lines.

The next step of the algorithm is independent of pre-processing in the blocks 1 and 2 of the
algorithm shown in Figure 3. It contains median filtering [40] of the input image I, expressed in
Equation (9):

J(p) = median
q∈WM(p)

{I(q)}, p, q ∈ I, (9)

where WM(p) denotes the cuboid window of dimensions [WX ×WY ×WZ] around each voxel p =

(x, y, z) of the image I. This is a necessary step before pilling analysis, to reduce the speckle noise
inherent in the content of OCT images. Filtering can be performed by a Python script with the function
scipy.ndimage.median_ f ilter(), applying the local window [5× 5× 5] voxels.

2.5. Assessment of Pilling Layer Textural Features

The median filtered image IP of the layer LP above the fabric surface without pilling is composed
almost exclusively of dark voxels, corresponding to a homogeneous air layer of constant and low
density. In the presence of pilling, fibers projecting above the fabric surface are damp and dissipate
the OCT infrared radiation, resulting in many areas of bright pixels in the image IP. The surfaces and
numbers of these areas increase with the amount of migrating material, in the form of individual fibers
or bundles of fibers. Therefore, a possible measure of the degree of pilling is the increase in the number
of bright pixels in the image IP and the appearance of large changes in the brightness of adjacent pixels,
which will imply changes in the image IP texture. The speckle noise errors are reduced by median
filtering expressed in Equation (9).
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The full OCT image J (with fabric and pilling layers), denoised by the local median in Equation (9),
is binarized with a global brightness threshold in Equation (10), similarly to Equation (3):

JB(x, y, z) =

{
1 J(x, y, z) ≥ T2,

0 otherwise
(10)

The computed Otsu threshold T2 defines the fraction of pixels with brightness similar to the fabric
layer. This corresponds to the outlying fibers of pilling in the LP layer. The fraction fP is evaluated as

fP =
1

VP
∑

x,y,z
JB(x, y, z), (11)

where z ∈ [z1(y), z2(y)] belongs to the layer LP and VP is the volume of the layer measured in voxels.
The content of the pilling layer image LP is characterized by Haralick textural features [30,31].

The features are computed based on the gray level spatial dependence matrix (GLCM) at a distance
of d image voxels. The features are averaged for 13 directions in an image space determined by side
and diagonal neighborhood. Five features were selected to characterize pilling in the image IP: H1

(Energy), H2 (Contrast), H4 (variance), H5 (Homogeneity), and H9 (Entropy).

H1 =
Ng

∑
i=1

Ng

∑
j=1

p(i, j)2, (12)

where Ng = 256 is the number of gray levels, and p(i, j) is (i, j) entry in a normalized GLCM defined
for each pair of related voxels at a distance d = 2. According to the Haralick original paper [30] p(i, j)
means the relative frequency with which two pixels separated by a pixel distance d in one of the space
directions occur, one with intensity i and the other with intensity j. The energy feature H1 of the
GLCM is related to the brightness repeatability of associated pairs of voxels. The high value of H1 in a
uniformly dark image with no pilling fibers will decrease as the layer LP fills with the bright pixels of
protruding fibers.

H2 =
Ng−1

∑
n=0

n2

{ Ng

∑
i=1

Ng

∑
j=1

p(i, j)

}
, |i− j| = n, (13)

The feature H2 defined in Equation (13) provides a measure of contrast or local intensity variation.
It prefers contributions of p(i, j) located away from the GLCM diagonal, i.e., i 6= j. The H2 contrast
feature sums voxel pairs with constant differences in brightness levels, which are additionally weighted
by the size of the differences. Its value increases in the presence of many white and black neighboring
voxels around individual material fibers. The variance of voxel brightness co-occurrence is expressed
by the H4 feature, defined by Equation (14):

H4 =
Ng

∑
i=1

Ng

∑
j=1

(i− µ)2 p(i, j), (14)

where µ represents the average value of GLCM. The feature H5 in Equation (15) provides a measure
of the homogeneity in an intensity image. It returns a value that corresponds to the closeness of the
distribution of elements in the GLC matrix to its diagonal.

H5 =
Ng

∑
i=1

Ng

∑
j=1

p(i, j)
1 + (i− j)2 . (15)

Homogeneity H5 is equal to 1 for a diagonal GLC matrix. The H4 feature value increases and H5

decreases with the variety of gray levels above the fabric surface accompanying the phenomenon of
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pilling. Another Haralick feature known as the sum average H6, used later in the article as an auxiliary
property is described by the following relation:

H6 =
2Ng

∑
k=2

k px+y(k), px+y(k) =
Ng

∑
i=1

Ng

∑
j=1

p(i, j), i + j = k. (16)

In Equation (16) px+y(k) denotes the cumulative frequency of image pixel pairs with constant
sum of intensities equal to k. H6 is the average value of these cumulants for all possible intensity sums
k = 2, 3, . . . , 2Ng. Image entropy H9 presented in Equation (17) takes small values for homogeneous
scenes and greater values when the heterogeneity of the image brightness increases.

H9 = −
Ng

∑
i=1

Ng

∑
j=1

p(i, j)× log (p(i, j)) , (17)

In the proposed algorithm, the function mahotas. f eatures.haralick(JP, distance = 2) computes
the Haralick texture features in the three-dimensional image JP of the pilling layer LP. Because the
values of some features may appear on a very different scale, they have been normalized for better
comparison. The normalization transforms the feature components into random variables with zero
mean and unit variance, using the formula given in Equation (18) [41]:

H̃x =
Hx − µ(Hx)

σ(Hx)
, (18)

where µ(Hx) and σ(Hx) are the sample mean and the sample standard deviation of the feature Hx.
The Hx sample set, for which the statistics µ and σ are computed, includes values either before or
after any type of abrasion test is carried out. This emphasizes the feature changes resulting from
fabric treatment.

Principal component analysis (PCA) was applied to all textural data obtained from the samples,
to reduce the high dimensionality of feature space while preserving the quantitative differentiation of
the results for different levels of pilling [42].

3. Results

3.1. Pilling Visual Assessment

Figure 6 provides a visual comparison of the textile samples subjected to abrasion using a
Martindale instrument. The tests revealed varying degrees of textile pilling, depending on the types of
fabric and surface pretreatment. As can be seen, the flock fibers of sample F1 were almost completely
removed from the substrate fabric during the test cycle. Based on visual inspection, specialists assigned
this fabric pilling grade 5. In the case of the other two example fabrics (F2 and F3), standardized
friction tests resulted in the entanglement of fibers into balls over the fabric, along with residual free
fibers. The cardinality of these phenomena corresponded to grade 2 and grade 2-3 of pilling, for fabrics
F2 and F3 respectively. Modification of the fabric surface by laser ablation revealed fuzzing due to
abrasion in fabric F1 and it caused a slight reduction in pill number in fabrics F2 and F3. Information
on the pilling grades of these fabrics, including after laser ablation, is given in Table 1 (Section 2.1).

Figure 7 shows example OCT images corresponding to cross-sections through the fabrics after the
Martindale test and manual tests. The pilling symptoms in the OCT images usually appear in the form
of white pixels, belonging to protruding fibers and pills.
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Figure 6. Knitwear surfaces after the standardized Martindale pilling test: 0 W indicate fabrics without
laser treatment; 14–18 W indicate fabrics after laser ablation.

Figure 7. Exemplary two-dimensional OCT images (B-scans) of knitwear cross-sections taken from
volumetric data, illustrating the appearance of a layer above the fabric in the absence of pilling (control
samples of F1 and F2, and F1 after standardized abrasion test), in the early stages of pilling (all tested
fabrics after manual tests), and during the pilling phase after standardized abrasion test (F2 and F3).
1—loose fabric fibers, 2—cut fiber fragments, 3—a pill attached to the fabric surface.
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As can be seen, the standard long-term pilling test did not result in pilling symptoms in the case
of the knitwear sample F1, but manual short-term tests resulted in fiber detachment, i.e., the initial
pilling phase, including an area of high fuzz density. In the cases of the other two fabrics (F2 and F3),
the number of fiber pixels increased compared to the original fabric after both manual and machine
abrasion tests. In the OCT images of these fabrics, after the Martindale test both pixels in formations
(pills) and loose pixels forming fiber fuzz can be observed. Manual tests pulled the fibers above the
fabric plane. Test 1, using a rough friction surface, caused both fuzz formation and the development of
entanglement, while the less invasive Test 2 led only to the formation of fuzz.

3.2. Pilling Feature Analysis in OCT Images

Tables 2 and 3 include the values of the voxel fraction fP and selected Haralick features for the
pilling layer LP obtained as a result in step 4 and step 6 of the algorithm illustrated in Figure 3. In each
abrasion test conducted in the experiment a fabric sample was imaged five times in various places
under the same condition. Tables display the mean values of pilling measurements of the sample in
the repeated tests.

Table 2. Fraction fP of fiber voxels (bright pixels in OCT image) counted in the pilling layer LP of
fabrics subjected to friction tests.

Textile Not Pilled (Control) [%] SD Manual Test 1 [%] SD Manual Test 2 [%] SD Apparatus Test [%] SD

F1 0.43 0.22 2.56 0.38 2.93 0.46 0.24 0.02
F2 0.90 0.06 2.54 0.30 1.88 0.34 2.67 0.14
F3 0.89 0.08 2.89 0.07 1.64 0.19 2.16 0.14

Table 3. Selected Haralick’s texture features extracted using GLCM of layer LP in the OCT image.

Feature Textile Not Pilled (Control) SD Manual Test 1 SD Manual Test 2 SD Apparatus Test SD

Energy F1 0.0045 0.0006 0.0021 0.0002 0.0024 0.0002 0.0036 0.0006
H1 F2 0.0034 0.0003 0.0021 0.0004 0.0032 0.0004 0.0030 0.0004

F3 0.0035 0.0005 0.0027 0.0006 0.0030 0.0007 0.0025 0.0003

Contrast F1 17.08 0.46 64.39 7.56 69.24 7.05 24.60 1.19
H2 F2 33.08 3.26 75.53 16.37 47.79 4.97 68.24 3.78

F3 41.83 1.24 87.57 1.97 62.24 8.24 68.77 2.89

Variance F1 33.43 4.28 177.85 13.77 181.26 20.83 55.89 14.90
H4 F2 84.43 11.99 196.26 35.95 121.02 17.00 175.34 12.64

F3 94.49 8.26 205.17 5.96 151.98 28.13 174.91 17.20

Homogeneity F1 0.299 0.006 0.241 0.005 0.249 0.001 0.283 0.002
H5 F2 0.276 0.005 0.244 0.008 0.270 0.007 0.257 0.005

F3 0.280 0.002 0.259 0.006 0.266 0.007 0.258 0.003

Sum average F1 122.05 7.01 115.82 11.46 109.41 15.92 65.58 4.67
H6 F2 123.38 6.34 118.30 10.90 125.57 6.52 100.63 8.37

F3 84.50 1.29 65.98 4.99 90.78 5.11 72.59 3.18

Entropy F1 8.35 0.18 9.86 0.10 9.71 0.15 8.76 0.25
H9 F2 8.96 0.16 9.89 0.30 9.15 0.18 9.37 0.18

F3 8.93 0.18 9.51 0.23 9.31 0.33 9.54 0.15

In Table 3 only H1, H2, H4, H5, H6, H9 textural features were cited from the set of all 13 calculated
Haralick features. These features were chosen by the authors because their changes after abrasion
tests can be predicted looking at the OCT images of the pilling layer as in Figure 7, or changes in their
value have no significant relationship to the density of fibers in the pilling layer (H6). According to
the meaning of those features described by Equations (12)–(17), the contrast (H2), variance (H4) and
entropy (H9) should grow with the number of regions including neighboring bright and dark pixels.
This takes place when many fibers pulled from the fabric layer by abrasion tests migrate to the LP
layer. On the contrary, energy (H9) or homogeneity (H5) should then decrease because the LP layer
brightness becomes uneven as can be seen in Figure 7.

The texture Haralick feature values were normalized according to Equation (18) to obtain
comparable ranges for various features and prepare them for further processing. Figure 8 visualizes the
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changes of the selected features under different tests for a given fabric type (F1, F2 or F3). Considering
a specific fabric type it is easy to see that the features H2, H4 and H9 change similarly under the
influence of all proposed tests (T1, T2, AT). The same can be said about the behavior of H1 and H5

although they change in the opposite direction than the first group of features. Only the feature H6

varies without any relation to the other. This suggests that all selected features except H6 are correlated
and can be approximately represented by one common pilling indicator.

Figure 8. Selected texture feature variability due to fabric abrasion: F1, F2, F3—types of fabric tested;
H1 (energy), H2 (contrast), H4 (variance), H5 (homogeneity), H6 (sum average), H9 (entropy)—Haralick
feature types; fP—fraction of fiber pixels; NP—not pilled (control) sample; T1, T2—manual tests;
AT—apparatus test.

To reduce space dimensionality of the measured parameters and to verify correlation degree
among original features PCA transform is applied. This operation reveals the internal structure of the
data and best explains the variance in the data. It maps the features to a new coordinate system such
that the greatest data variance lies on the first coordinate called the first principal component PC1,
the second greatest variance on the second coordinate PC2, and so on.

The results of the PCA transformation projected on the plane of the first two components (PC1−
PC2) are shown in Figure 9 for a complete set Haralick features and fP feature, including also these
not included in Tables 2 and 3. Sample data are presented there as the cloud of points, the vectors
beginning at the origin of the coordinate system are factor loadings which represent original feature



Sensors 2020, 20, 3687 14 of 19

variables. Most factor loadings of selected features are at a small angle to the PC1 axis, which confirms
their high correlation and allows the representation of them using this component.

Figure 9. Score plot for PC1 and PC2 for different fabric abrasion tests, where: F1, F2, F3—tested
fabrics; NP—not pilled (control) sample; T1, T2—manual tests; AT—apparatus test. A complete set
of Haralick’s texture features (H1-H13) calculated for the OCT images of the fabrics was used for
the analysis.

The value of PC1 component is a proposed pilling indicator. To improve the accuracy of
representation by PC1 the correlated features H1, H2, H4, H5, H9, fP shown in Figure 8 PCA transform
has been repeated only for them, with no participation of other Haralick features. The result of this
operation is visualized in Figure 10. PC1 increases similarly to H2, H4, H9 and fP when filling the layer
LP with protruding fibers due to the partial detachment and pulling them out of the fabric layer after
abrasion. The behavior of PC1 during tests carried out by the authors (T2, T1 and AT) is presented in
Figure 11. The contribution of PC1 component in the textural feature vectors are reported in Table 4.

Table 4. Contributions of the PC1 principal component in the representation of observations in the
feature space for: (H1, H2, H4, H5, H9, fP). F1, F2, F3—tested fabrics; F1a, F2a, F3a—tested fabrics after
the laser ablation,

Textile Not Pilled [%] Manual Test 1 [%] Manual Test 2 [%] Apparatus Test [%]

F1 99.43 95.85 98.17 96.36
F2 95.37 99.23 25.52 89.70
F3 98.44 91.11 85.43 99.03

F1a 99.49 99.15 71.26 99.90
F2a 97.89 14.18 99.48 94.56
F3a 95.93 96.41 94.70 99.36
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Figure 10. Score plot of strongly correlated textural features in LP layer of OCT images cast on the
plane of principal components PC1, PC2 for different fabric abrasion tests. In addition to the original
textile samples, fabrics subjected to laser ablation were also used for PCA analysis, marked in the plot
with the suffix a. (H1, H2, H4, H5, H9, fP)—coordinates of the original feature space. F1, F2, F3—tested
fabrics; NP—not pilled (control) sample; T1, T2—manual tests; AT—apparatus test.

Figure 11. Plots of the PC1 component in the function of different pilling tests for various fabric types:
F1, F2, F3—tested fabrics; F1a, F2a, F3a—tested fabrics after the laser ablation; NP—not pilled (control)
sample; T1, T2—manual tests; AT—apparatus test.
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According to the description given in Section 2.2 of the article the manual test T1 is carried out
using a higher pressure force and a rubbing surface with greater roughness than that used in T2,
so the PC1 component after the test T1 achieves a higher value than in the case of the test T2 for the
fabrics F1 and F2. The lowest PC1 value corresponds to the fabrics before test, which are not rubbed.
The standard apparatus test AT gives lower PC1 values than T1. These results are confirmed by the
observation of the relevant B-scans in Figure 7. The unexpectedly low values of PC1 for F1 fabric after
the test AT are also confirmed by the lack of pills and protruding fibers inside of B-scan in the lowest
row of Figure 7. All fiber formations in the LP layer formed during the test AT are finally detached,
so this test is not reliable for pilling assessment.

The tested fabrics known as F1a, F2a and F3a were subjected to laser ablation to change their
surface properties and to reduce the pilling tendency. PC1 components of these ablated fabric types
are shown in the bottom line of Figure 11. Laser modification can be seen to reduce PC1 compared
to factory prepared surfaces, except for the fabric F3 with factory anti-pilling protection. PC1 values
for fabric F1a become very low because F1 is an easily ablated fabric that completely loses its pilling
tendency after laser treatment. The F2a fabric after surface laser ablation has mostly lower PC1 values
than the corresponding values of F2 for the same types of pilling tests. However, only short-term
tests, especially the T1 test, showed a change in the pilling tendency of these two fabrics. The PC1
values after apparatus test showed no significant changes in pilling compared to the state before laser
modification, although experts have previously assessed that the quality of fabrics F2a and F3a has
improved. The first component PC1 obtained after PCA transform of considered texture features in
the fabric pilling layer can be used as a pilling measure for all types of tested fabrics.

4. Conclusions

This article has demonstrated, to the best of our knowledge, a new method for evaluating
fabric pilling using the OCT imaging technique. Our approach allows improved observation and
quantification of pilling in three dimensions, enabling pilling to be captured in the initial stage,
even after a short period of low friction.

The most important feature of the proposed method is that the fuzzy mass of fiber is quantified
objectively in three-dimensional OCT images, which will eliminate all errors related to subjective
assessment by a man or uneven lighting of a fabric sample. The objective data can be obtained in
the form of the proportion of protruding fibers or by using the texture parameters of the pilling
layer. We have demonstrated that the texture variation accompanies different levels of pilling, and in
addition, it can be expressed by means of one indicator. Thanks to the PCA transformation of selected
Haralick features, together with fiber pixel fractions, a synthetic pilling index was obtained as the
first principal component. This index can be used to objectively evaluate the degree of fabric pilling,
although it requires comparative tests on a larger group of fabric samples as well as capture wide
variation of pilling levels. Furthermore, the PC values could be similar, but not the same, for different
groups of tests (various types of fabric, stitch construction, composition etc.). The proposed method
may fail in the case of strongly reflecting material whose OCT image contains artifacts in the form of
bright vertical streaks that prevent correct detection of pilling fibers. The algorithm of the method
requires a much lower density of fibers (at least ten times) in the pilling layer than in the material
layer so that the material layer can be detected correctly. The width of the pilling layer is determined
arbitrarily by visual assessment of the upper limit of this layer in OCT images. Only protruding fibers
forming structures wider than the OCT lateral resolutions 2dx and 2dy can be encountered as bright
pilling voxels.

Current methods of fabric pilling assessment using expert knowledge or computer image analysis
generally require intensive friction, using a pilling box, Martindale device, or the random tumble
method to obtain pills on the tested fabric surface. The existing methods of pilling evaluation use
mainly a flat material image, include no spatial information and require careful ambient lighting to
obtain proper visibility of the pills by human or computer algorithms. It has been demonstrated that
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polyester fabrics may give a different picture of pilling trends as a result of different types of tests.
It is due to the results of standardized tests do not always correlate well with end-use performance.
These fabrics may lose pills under the influence of strong friction in the Martindale test and in this
way the test result may be falsified. In this case, qualifying fabric as good quality is not allowed.
In tests that detect and quantify pilling in the early stages, as proposed by us, it can be shown
whether the fabric is more or less resistant to fiber detachment. Since these tests are short-term, they
do not lead to mass detachment of fibers and pills. Therefore, these tests can be considered more
reliable. Three-dimensional imaging of fabric surfaces using OCT offers a highly effective method
for assessing pilling, due to the high resolution of the scans and the possibility of imaging individual
fabric fibers, with the thickness above the device resolution limits. This technique may lead to a better
understanding of the behavior of different textiles during normal use. As demonstrated, this OCT
method is characterized by high sensitivity to the presence of fibers above the surface of the fabric,
even when they do not appear after abrasion test, but naturally, as a result of habitual contact with
other surfaces.
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